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Abstract

Different spatiotemporal abnormalities have been implicated in different neuropsychiatric disorders and anthropometric
social traits, yet an investigation in the temporal network modularity with brain tissue transcriptomics has been lacking. We
developed a supervised network approach to investigate the genome-wide association study (GWAS) results in the spatial
and temporal contexts and demonstrated it in 20 brain disorders and anthropometric social traits. BrainSpan transcriptome
profiles were used to discover significant modules enriched with trait susceptibility genes in a developmental
stage-stratified manner. We investigated whether, and in which developmental stages, GWAS-implicated genes are
coordinately expressed in brain transcriptome. We identified significant network modules for each disorder and trait at
different developmental stages, providing a systematic view of network modularity at specific developmental stages for a
myriad of brain disorders and traits. Specifically, we observed a strong pattern of the fetal origin for most psychiatric
disorders and traits [such as schizophrenia (SCZ), bipolar disorder, obsessive–compulsive disorder and neuroticism], whereas
increased co-expression activities of genes were more strongly associated with neurological diseases [such as Alzheimer’s
disease (AD) and amyotrophic lateral sclerosis] and anthropometric traits (such as college completion, education and
subjective well-being) in postnatal brains. Further analyses revealed enriched cell types and functional features that were
supported and corroborated prior knowledge in specific brain disorders, such as clathrin-mediated endocytosis in AD,
myelin sheath in multiple sclerosis and regulation of synaptic plasticity in both college completion and education. Our
study provides a landscape view of the spatiotemporal features in a myriad of brain-related disorders and traits.
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Introduction
The course of human brain development involves complex reg-
ulation of transcriptional gene expression with an orchestrated
dynamic that has both temporal and spatial specificities. Neu-
ropsychiatric disorders are postulated as neurodevelopmental
or neurodegenerative in nature and thus may be pathophys-
iologically linked to an abnormal temporal and spatial gene
expression in the brain. This notion raises the possibility that
investigation of the dynamics of brain spatiotemporal transcrip-
tion is an opportunity that can lead to a better understanding of
the pathophysiology of these disorders. Indeed, the veracity of
this approach has been corroborated by recent studies using spa-
tiotemporal transcriptome data that have implied some specific
brain regions and stages enriched with susceptibility genes [1–
4] in autism [5] and SCZ [1, 6–9]. However, distinct neuropsychi-
atric disorders may have their origins in distinct spatiotemporal
disturbances, yet, until now, no study has thoroughly system-
atically charted the dynamics of spatiotemporal gene expres-
sion, transcript variants and modularity in the brain across
separate neuropsychiatric disorders and traits to ascertain their
conceivable individual and common neurodevelopmental and
neurodegenerative trajectories [10, 11] by unveiling features of
transcription that are either unique or shared in different brain
regions and developmental stages.

According to the polygenic model of the disease, many genes
are contributive to the disease and they are co-regulated or
correlated to confer risk to disease, including brain disorders
[5, 12, 13]. Gene co-expression network is one of the major
approaches to study convergence and divergence of disease
susceptibility genes [14]. Importantly, gene expression profiles
from various tissues, cell types and developmental stages will
empower our investigation of gene functions in dynamic cellular
systems. Weighted gene co-expression network analysis [15]
represents the unsupervised approach for such purposes, where
co-expression modules are constructed using normal samples
and are subsequently tested for disease associations [16–19].
Another category of methods, including two from our group
[20, 21], search for subnetwork modules in a disease-focused or
context-focused way. These methods typically construct mod-
ules guided by scoring systems such as genetics evidence or
gene co-expression regulations and, hence, represent the super-
vised group to prioritize disease-associated genes [22, 23]. We
recently developed an algorithm that enables the node- and
edge-weighted dense module search of genome-wide associ-
ation study (GWAS) signals and that can integrate gene co-
expression profiling (EW_dmGWAS) [21]. Because gene expres-
sion data can be dynamic and can be obtained in different
biological contexts, such as tissues, brain regions, developmental
stages and disease versus healthy samples, this new technique
opened a new avenue to leverage the rich information in gene
expression profile and to subsequently boost the discoveries
from GWAS data. It has been applied and validated in various
disorders including SCZ [24], multiple sclerosis (MS) [25] and
cancer [26].

Here, we first propose a conditional gene expression correla-
tion measurement, namely conditional Pearson correlation coef-
ficient (PCC), by including the developmental stage information
as covariant. In comparison with the canonical PCC, we found

that there are brain disorder genes undergoing transcriptional
changes over the developmental stages, sometimes with an
opposite trend. We then modified our original EW_dmGWAS
algorithm to identify subnetworks constrained by the temporal
transcriptomic context. Finally, we collected GWAS data in 20
brain-related disorders and traits and conducted a comparative
study to explore their distinct features during different devel-
opmental stages, in this case, prenatal and postnatal stages.
The resultant modules also enabled us to investigate modular
gene functions at a fine scale. Indeed, the module genes of
several disorders and traits yielded functional enrichment that is
consistent with prior knowledge, what corroborates and further
validates our method.

Methods and Materials
Selection of multi-trait GWAS data

We collected GWAS summary statistics for 20 brain-related dis-
orders or traits in three major groups: psychiatric disorders and
psychiatric-related traits [attention deficit hyperactivity disor-
der (ADHD) [27], alcohol use disorder (AUD) [28], anxiety [29],
autism spectrum disorder (ASD) [30], bipolar disorder (BD) [31],
depressive symptoms (DS, ‘DSM-oriented depression subscale
of the age-appropriate survey from the ASEBA taxonomy’ as
defined in the original study) [32], internalizing problems (IP)
[33], major depressive disorder (MDD) [34], neuroticism (NEU)
and two of their subtypes, anxiety tension special factor of
neuroticism (ANEU) and general factor of neuroticism (GNEU)
[32], obsessive compulsive disorder (OCD) [35] and SCZ] [36]; neu-
rological diseases [Alzheimer’s disease (ALZ) [37], amyotrophic
lateral sclerosis (ALS) [38], multiple sclerosis (MS) [39] and Parkin-
son’s disease (PD)] [40] and anthropometric social traits [college
completion (COL) [41], educational attainment (EDU) [42] and
subjective well-being (SWB) [43]]. All participants were from
European ancestry.

We used Multi-marker Analysis of GenoMic Annotation
(MAGMA) V1.07 to calculate gene-based P-values [44]. MAGMA
combines multi-markers that are mapped to a gene and takes
into account the effects of the gene length, SNP density and local
linkage disequilibrium structure. For each gene, we considered
all single nucleotide polymorphisms (SNPs) located in the
gene body or the flanking regions (50 kb upstream and 35 kb
downstream). Then, we obtained the mean of the SNP P-values
based on the χ2 statistic as the measurement of the gene-level
P-value. We used the 1000 Genome Project Phase 3 European
population as the reference panel. A summary of all GWAS
datasets and the MAGMA results is available in Supplementary
Table S1 available online at https://academic.oup.com/bib.

Brain gene expression data

We downloaded the BrainSpan developmental transcriptome
data [accessed date: April 2020, currently part of the PsychEN-
CODE data [45, 46]] for normal brains, which contains gene
expression for multiple brain regions in multiple developmen-
tal stages [47]. We excluded lowly expressed genes, defined as
those with RPKM (Reads Per Kilobase of transcript per Million
mapped reads) value <1 in more than half of the samples. Gene

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab214#supplementary-data
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Figure 1. Distinct expression of selected genes at the prenatal and postnatal stages. (A) PCA of the BrainSpan data. Red: Prenatal brain samples. Blue: Postnatal brain

samples. Outlier samples (black dots) were excluded in follow-up analyses. (B) Comparison of ConPCC (y-axis) with canonical PCC (x-axis) using the BrainSpan data. The

black dot in area 1 is the example shown in (C). (C) An example of a pair of genes showing negative correlation among all BrainSpan samples but positive correlation in

either prenatal (red dots) or postnatal (blue dots) subgroup. (D) Distribution of the difference between conditional and canonical PCC values using the BrainSpan data.

(E) Summary of calculation of canonical PCC and ConPCC.

expression was measured using log2 (RPKM+1). Five samples
were excluded based on the principal component analysis (PCA)
(Figure 1A). Finally, we obtained 229 samples for the prenatal and
344 for the postnatal stages. Mean age was 16.28 post-conception
weeks (pcw) (range: 8–26 pcw) for the prenatal samples and
to 14.52 years for the postnatal samples (range: 4 months to
40 years). Regarding sex, 22 were males and 19 females.

Background network data

We downloaded the gene–gene association data from Pathway-
Commons [48] (V12, download date: 12 December 2019) that were
curated and integrated from public pathway and interaction
databases (Supplementary Table S2 available online at https://a
cademic.oup.com/bib). We excluded 2291 ribosomal genes and
351 genes located in the MHC region (chr6:26000000_34000000).
The resultant network served as the background network and
was subsequently assigned with edge weights in different con-
ditions (see below).

Definition of correlation coefficient

In this study, we used PCC to measure gene co-expression. We
defined a conditional correlation coefficient by regressing out

the stage conditions and correlating variables using the resid-
uals. Specifically, given two genes with expression values across
N samples, we fit the linear regression model as below: Y1 ∼ stage
and Y2 ∼ stage, where Y1 and Y2 are the gene expression (a vector
of length N) for the two genes and stage is a categorical variable
indicating the stage of the sample: prenatal or postnatal. ConPCC
is thus defined as the PCC of residuals from the two models.

Temporal EW_dmGWAS

We modified our previously developed method EW_dmGWAS
[21] for the integration of temporal gene expression data.
EW_dmGWAS aims to identify groups of interacting genes
(termed modules) whose joint effects from GWAS are significant,
while the module genes are also significantly concordantly
expressed. In temporal EW_dmGWAS (tpGWAS), we define a
score for each module to measure the combined effect of the
GWAS signal and gene expression correlation among multiple

genes: m = mv + me − sd
(
mv, me

)
, where mv =

∑V
i=1 vi√

V
, me =

∑I
i=1 ei√

I

and sd
(
mv, me

)
measures the deviation between mv and me. V is

the number of vertices in the module, vi is the normalized node
weight, I is the number of interactions and ei is the normalized
edge weight. Node weight was transformed from gene-based

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab214#supplementary-data
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P-values calculated by MAGMA. Edge weight was based on
the PCC calculated using prenatal samples only or postnatal
samples only and then was transformed to zedge following the
original work [21]. We then quantile normalized znode and zedge

by taking the standard normal distribution as the reference,
resulting in v and e (i.e. vi and ei as the node and edge weight,
respectively, for the ith node and the ith edge), both of which are
approximate to the standard normal distribution. Modules were
obtained by using nodes with a positive vi from GWAS as the
seed gene and applying a greedy search algorithm [20], followed
by node and edge trimming [49]. We used the default parameter
for module search. More details of the algorithm can be found
in our previous works [20, 21, 24, 49].

Significant modules

To evaluate the significance of the resultant modules, we gener-
ated random modules by switching the node and weight (znode)
pairing relationships, as well as the edge and weight (zedge) pair-
ing relationships. The resultantly random modules were used to
form the null distribution and to normalize the module scores
for those genuine modules obtained using the actual GWAS and
brain expression data, resulting in zm. The normalized module
z-scores (zm) were then transformed to P-values, followed by
the Benjamini and Hochberg (BH) procedure [50] for multiple
testing correction. We defined significant modules as those with
PBH < 0.05. We also applied a restriction to filter modules that
showed extreme node/edge ratios, e.g. mv

me
> 2 or mv

me
< 0.5, as such

modules were mainly driven by either GWAS or co-expression
but not by a concordant effect.

Cell type-specific enrichment analysis

We collected two single-cell RNA sequencing (scRNA-seq)
datasets: DER-20 and DER-22 [51, 52]. The DER-20 dataset merged
three studies: PsychENCODE (developmental) [45], Darmanis
et al. [53] and Lake et al. [51]. The panel has 35 cell types identified
from both fetal and adult brains, including 13 cell types from
the fetal brain [astrocytes, endothelial, excitatory neuron (ExN),
inhibitory neuron (InN), intermediate progenitor cells, microglia,
neuroepithelial cells, oligodendrocytes, oligodendrocyte pre-
cursor cells (OPCs), pericytes, quiescent newly born neurons,
replicating neuronal progenitors and transient cell type (trans)]
and 22 cell types from the adult brain [astrocytes, endothelial,
eight types of excitatory neurons (Ex1–Ex8), eight subtypes of
InNs (In1–In8), microglia, neurons, oligodendrocytes and OPC]
[45]. The DER-22 dataset merged two studies: PsychENCODE
(adult) [45] and Lake et al. [52]. It has 25 cell types, including
9 types of excitatory neurons (Ex1, Ex2, Ex3e, Ex4, Ex5b, Ex6a,
Ex6b, Ex8 and Ex9), 10 InNs (In1a, In1b, In1c, In3, In4a, In4b, In6a,
In6b, In7 and In8), as well as astrocytes, endothelial, microglia,
oligodendrocytes, OPC and pericytes. For each dataset, we fit
linear regression models to assess the cell type specificity of
each gene in each cell type, following the strategy we developed
for measurement of tissue specificity [54]. As a result, we
obtained a t-score for each gene in each cell type to measure
its cell type specificity. Subsequently, in the cell type-specific
enrichment analysis of module genes, we applied Fisher’s exact
test to assess whether a list of query genes was associated with
cell type marker genes (defined as those with a t-score within
the top 10% quantile).

Results
Temporal gene expression patterns
in normal human brain

After excluding lowly expressed genes and outlier samples
(Figure 1A), we built a working matrix with 11 466 genes in 573
brain samples (229 prenatal and 344 postnatal samples). We
calculated the canonical PCC and conditional PCC (ConPCC) for
all gene pairs using all 573 samples. The former measured the
overall trend of gene co-expression in samples across all stages,
whereas the latter measured gene co-expression conditioned
on stages. Figure 1B illustrated using one example: genes B2M
and CXCR4 had an overall negative correlation across the whole
time points (canonical PCC), but a positive correlation in both
the prenatal and postnatal stages when stage was taken into
account (ConPCC). The distribution of the difference between
these two PCC values (ConPCC − PCC) was shown in Figure 1C.
Large differences indicated that the gene pairs had different co-
expression patterns in all stages compared to each individual
stage. On the plot of the two PCC values for each gene pair, we
defined 16 areas by using threshold values of 0.5 and −0.5 (1–
16 as labeled in Figure 1B). Some gene pairs showed moderate
changes of correlation, e.g. from strong to weak, while their
correlation trend (positive or negative PCC values) remained the
same, such as area 3 (PCC in the range of [0, 0.5] and ConPCC in
the range of [0.5, 1.0]), area 8 (PCC in [0.5, 1.0] while ConPCC in
[0, 0.5]) and, similarly, areas 9 and 14. Other gene pairs showed
strong changes, where gene pairs changed from weak positive
(negative) to strong negative (positive) correlations, such as
area 15 (area 2), or strong positive (negative) to weak negative
(positive) correlations, such as area 12 (area 5). To further explore
the gene functions involved in these areas, we conducted
functional enrichment analysis using ToppGene [55] for areas
2 and 15. As shown in Supplementary Tables S3 and S4 available
online at https://academic.oup.com/bib, we found many genes
from areas 2 and 5 (i.e. genes involved in edges that went
through dramatic changes during brain development) enriched
in brain- and neuron-related processes. In area 2, we found the
genes enriched in GO terms for post-synapse (P = 1.02 × 10−25),
dendritic tree (P = 1.99 × 10−21) and dendrite (P = 1.99 × 10−21).
In area 15, we found dendritic tree (P = 6.00 × 10−19), dendrite
(P = 6.00 × 10−19) and axon (P = 1.95 × 10−21). Overall, we noted
that there were indeed gene pairs that underwent different
co-expression in different developmental stages, implying a
necessity to analyze disease susceptible genes in each stage
separately.

Genes with temporal expression change enriched
in brain-related disorders or traits

Next, we investigated whether GWAS-implied genes were
involved in the gene pairs that showed strong changes in all
samples compared to that in the samples of each stage. We
transformed the normalized difference between the two types
of PCC (ConPCC − PCC) to z-scores (Figure 1D) and focused on
pairs with P-value <5 × 10−5, where the P-values were reversely
transformed from the z-score. There were, totally, 877 genes
involved in 4630 pairs, which showed positive correlation across
the whole developmental stages, while a negative correlation
was found in either the prenatal or postnatal stages. For these
877 genes, we obtained their gene-based P-values calculated
based on the GWAS data for 20 brain-related disorders or
traits. We found that these genes tend to have smaller gene-
based P-values than other protein-coding genes in 7 of the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab214#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab214#supplementary-data
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Table 1. Enrichment results of GWAS genes and genes presenting strong positive or negative co-expression in prenatal and postnatal brain
transcriptomes

Positive Negative Union

Disorder or trait P PBH P PBH P PBH

AUD 0.027 0.076 0.022 0.112 0.027 0.089
ALZ 0.205 0.273 0.293 0.417 0.136 0.226
ALS 0.183 0.262 0.286 0.417 0.147 0.226
Anxiety 0.645 0.645 0.611 0.611 0.751 0.751
ANEU 3.422 × 10−3 0.023 0.011 0.074 0.027 0.089
ADHD 0.021 0.070 0.036 0.121 0.042 0.094
ASD 0.158 0.244 0.253 0.417 0.290 0.341
BD 2.624 × 10−3 0.023 0.262 0.417 4.448 × 10−3 0.044
DS 0.048 0.100 0.312 0.417 0.086 0.157
EDU 0.058 0.106 0.263 0.417 0.086 0.157
GNEU 0.050 0.100 0.030 0.118 0.021 0.089
IP 0.270 0.318 0.611 0.611 0.454 0.478
MDD 0.020 0.070 0.358 0.447 0.041 0.094
MS 6.112 × 10−3 0.031 0.009 0.074 0.019 0.089
Neuroticism 0.042 0.100 0.067 0.191 0.031 0.089
OCD 0.307 0.341 0.392 0.461 0.326 0.363
PD 0.221 0.276 0.098 0.245 0.288 0.341
SCZ 7.623 × 10−5 1.525 × 10−3 6.214 × 10−3 0.074 5.124 × 10−4 0.010
COL 0.094 0.157 0.516 0.573 0.245 0.327
SWB 0.403 0.424 0.128 0.285 0.162 0.231

Positive pairs: ConPCC > canonical PCC. Negative pairs: ConPCC < canonical PCC.
Bold values indicate nominal significance (unadjusted P < 0.05).

20 disorders or traits: AUD (P = 0.027), BD (P = 2.624 × 10−3),
NEU (P = 0.042) and its two sub-phenotypes (P = 3.422 × 10−3

for anxiety tension factor of NEU and P = 0.05 for GNEU),
MS (P = 6.112 × 10−3) and SCZ (P = 7.623 × 10−5) (Table 1). The
opposite trend was observed for a total of 854 genes involved
in 4686 pairs (negative correlation using all samples and
positive correlation in prenatal and postnatal brains analyzed
separately). These genes tended to have smaller gene-based P-
values in five disorders/traits: AUD (P = 0.022), ANEU (P = 0.011),
ADHD (P = 0.036), GNEU (P = 0.03), MS (P = 8.653 × 10−3) and SCZ
(P = 6.214 × 10−3). These results suggested that GWAS-implied
genes for brain-related disorders or traits were likely to be
involved in co-expression correlations undergoing substantial
changes during development. Accordingly, we separated the
brain samples of the prenatal stage and samples of the postnatal
stage to construct gene co-expression weighted networks for the
following analyses.

Distinct prenatal expression in psychiatric disorders
and postnatal expression in neurological disorders

We conducted tpGWAS for each of the 20 GWAS datasets using
co-expression weighted networks in two conditions: the weight
calculated using the prenatal samples only or the postnatal
samples only. The workflow is summarized in Figure 2. For each
run of tpGWAS, we constructed the null distribution for module
scores (see Methods) and defined significant modules as those
with PBH < 0.05 (Table 2). Then, significant modules were merged
to form the disorder/trait-associated network.

As summarized in Table 2 and Figure 3, we found substan-
tially different patterns of gene activities. Psychiatric disorders
(such as AUD, BD, IP, OCD and SCZ) tended to have significant
modules in the prenatal stage, whereas neurological diseases
(such as ALZ, ALS, MS and PD) tended to have more significant
modules in the postnatal stage. These results are consistent

with previous reports that psychiatric disorder genes were found
to be more active in prenatal brain transcriptome, while genes
associated with neurological diseases become more active dur-
ing the life course of an affected individual, and towards aging
stages [56]. However, by integrating GWAS data with gene co-
expression modules, we provided an additional line of evidence
to support the genetic basis of these two different categories
of brain disorders, and at specific temporal levels. In addition,
EDU, COL, SWB and two subtypes of neuroticism yielded more
enriched modules in postnatal transcriptome, which may sug-
gest that these traits are partially influenced by the environ-
ment. Importantly, for SCZ, we found significant modules in
both prenatal and postnatal transcriptomes, although relatively
more modules in prenatal than in postnatal. This is in line with
the current understanding of the pathophysiology of SCZ that
preaches that SCZ has its roots in abnormalities in both neu-
rodevelopmental and neurodegenerative processes. However, we
did not find any alteration for MDD, neither in the prenatal nor
in the postnatal stages. This later finding might reflect the fact
that MDD is a rather heterogeneous condition that can be better
conceptualized as a syndrome as opposed to a unitary disorder.

The BrainCloud (GEO ID: GSE30272) dataset [57] was used
to validate the modules. This dataset profiled 269 human pre-
frontal cortex samples ranging from fetal development through
aging (80 years) using the microarray platform. We implemented
two methods for the validation, one using a one-sided t-test
and the other estimating the random expectation to test if the
module edges had significantly higher edge weight than chance.
Details of both methods were presented in the Supplementary
Material available online at https://academic.oup.com/bib. In
short, more than half of the modules discovered using BrainSpan
were validated by both methods (Supplementary Table S5 and
Supplementary Figure S1 available online at https://academic.ou
p.com/bib). When future data with more samples are available,
we will do further validations.

https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab214#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab214#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 2. Analysis pipeline. Gene-based z-scores calculated from GWAS data and edge-based z-scores calculated based on transcriptomic data were integrated into the

background reference gene–gene association network. We conducted the analysis by stratifying the transcriptome data into prenatal samples and postnatal samples

as well as six brain regions: the NCX, HIP, amygdala (AMY), striatum (STR), mediodorsal nucleus of the thalamus (MD) and cerebellar cortex (CBC). After obtaining

significant modules in different conditions, we next conducted cross-datasets, cross-trait and functional enrichment analysis to investigate the results.

As a result, we focused on modules and genes for 5 disorders
and traits in the prenatal stage (AUD, BD, IP, OCD and SCZ)
and 12 disorders and traits in the postnatal stage (ALZ, ALS,
ADHD, DS, EDU, GNEU, MS, NEU, PD, SCZ, COL and SWB). Specif-
ically, we excluded those ‘disorder/trait – stage’ pairs where
10 or less genes were identified, as these were likely random
co-occurrence, or the resultant networks would be too small
(Table 2). Particularly, for the few modules found in the prenatal
stage for ALZ, ALS, NEU and MS (Table 2), we found that these
modules were all from the cell growth and DNA replication
pathways. We have noticed that cell cycle regulation-related
pathways were particularly more active during fetal brain devel-
opment than in adult brains (Supplementary Figure S2 available
online at https://academic.oup.com/bib). Such pattern was also
validated using the BrainCloud data. Thus, we discarded such
modules since they were not related to diseases but rather to
general cellular processes.

Distinct temporal expression patterns of brain
disorders stratified by brain regions
The original BrainSpan project categorized the brain samples
into 16 brain regions, which can be further combined as six major
regions including the neocortex areas (NCX), hippocampus (HIP),
amygdala, striatum, mediodorsal nucleus of the thalamus, and
cerebellar cortex (CBC) (Supplementary Table S6 available online
at https://academic.oup.com/bib). By stratifying samples based
on both the region and the stage annotations, we conducted tpG-
WAS for each of the 20 GWAS datasets (6 regions × 2 stages × 20
traits = 240 runs). As shown in Figure 4, the enrichment patterns
that we observed when combining all regions (Figure 3) were
largely observed when we stratified samples by regions: psychi-
atric disorders (ASD, AUD, IP and OCD) were mainly enriched
in prenatal, neurological diseases (ALS, ALZ, MS and PD) and
most other traits (COL, DS, EDU, GNEU, NEU and SWB) were
mainly enriched in postnatal, and some disorders, notably BD

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab214#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab214#supplementary-data
https://academic.oup.com/bib
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Figure 3. tpGWAS revealed different patterns of module distribution in 20 brain-related disorders or traits. In each panel, a dot represents a module. The x-axis is the

normalized node score from mv, which is calculated using gene-based P-value from GWAS. The y-axis is the normalized edge score from me , which is calculated using

gene co-expression. Normalization was conducted using random modules, which are not shown in the figure, but the 95% confidence interval estimated by using

random modules is shown as the red eclipse. Color dots indicate significant modules selected to define module genes. The horizontal and vertical gray dash lines

indicate where x = 1.68 or y = 1.68 (95% of modules having the scores below the line). ANX, anxiety; COL, college.
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Table 2. Summary of the EW_dmGWAS results for each brain-related traits or disorders in the prenatal or postnatal stages

Prenatal Postnatal

No. of modules
(BS)

No. of module
genes

No. of avg
−log10(P)

No. of modules
(BS)

No. of module
genes

No. of avg
−log10(P)

AUD 22 33 3.38 0 0 −
ALZ 3 10a 57.22 69 94 7.12
ALS 10 18a 2.27 35 54 2.17
ANEU 1 4 6.55 0 0 −
Anxiety 0 0 − 5 8 2.43
ADHD 0 0 − 7 13 3.44
ASD 1 3 2.67 0 0 −
BD 22 33 3.88 2 5 4.92
DS 5 13 4.17 22 43 4.28
EDU 0 0 − 36 54 5.47
GNEU 3 4 7.38 63 82 3.96
Height 0 0 − 0 0 −
IP 11 15 2.04 4 9 2.18
MDD 0 0 − 0 0 −
MS 4 12a 5.71 83 102 3.70
NEU 4 10 4.74 39 65 4.09
OCD 28 48 1.99 0 0 −
PD 0 0 − 29 48 1.95
SCZ 44 77 6.97 16 24 7.79
COL 2 4 4.25 20 38 3.02
SWB 0 0 − 8 16 2.92

BS, BrainSpan.
−log10(P): average gene-based P-value from GWAS for module genes.
Bold cases indicate the conditions that were considered significant (see main text).
aCell growth and DNA replication-related pathway genes.

and SCZ, were found enriched in both stages. As for region
specificity, we found the neuropsychiatric traits were mainly
enriched in two brain regions, NCX and HIP, in the prenatal stage.
In the postnatal stage, several traits (COL, DS, EDU, GNEU, NEU
and SWB) were enriched in NCX and CBC. On the other hand,
neurological diseases (ALS, MS and PD) were found enriched in
nearly all six regions. Interestingly, we did not find significant
modules for ASD in any stages when combining all regions
(Figure 3), likely due to the limited power of the original GWAS
study [30]. However, in the region-stratified analysis, we found
significant modules in the HIP, the brain region that is mainly
responsible for learning and memory. Abnormality of HIP has
been linked to ASD in many studies [58, 59]. In our results, we
only found enrichment of ASD genes in prenatal HIP, further
underscoring the importance of temporally and spatially strati-
fied analyses. However, considering that the sample sizes were
small in some temporal and spatial conditions, some previously
reported ‘disorder/trait – region’ associations were missing and
future validations with large sample sizes are required.

Cell type-specific expression of module genes

We next examined the cell type-specific features of the mod-
ule genes for each brain-related disorder/trait using two brain
scRNA-seq panels (DER-20 and DER-22). We found that the mod-
ule genes of each trait were generally consistent with their
discovering stages: genes found in prenatal samples were mainly
enriched in cell types identified in fetal brain and genes found in
postnatal samples were mainly enriched in cell types from adult
brain (Figure 5A). For example, all five trait-associated networks
in prenatal stage were significantly enriched in fetal ExN (AUD:

PBH = 0.12; BD: PBH = 2.87 × 10−3; IP: PBH = 0.059; OCD, PBH = 0.059;
SCZ: PBH = 0.059) and fetal transient cells (AUD: PBH = 0.049; BD:
PBH = 0.012; IP: PBH = 0.012; OCD, PBH = 0.027; SCZ: PBH = 0.10). Note
that we considered PBH < 0.2 as statistically significant in these
analyses. In the postnatal stage, all traits showed enrichment in
one or more excitatory neurons, as observed in both the DER-20
and DER-22 panels. EDU, NEU and its subtype GNEU were also
enriched in the InNs.

There was some notable difference in enrichment types
between the DER-20 and DER-22 datasets. In addition to the
batch differences between Lake et al. [51] and Lake et al. [52],
the different cell types in the two panels are, probably, the
main reason for such differences. In each panel, the t-score was
calculated by comparing one cell type to the remaining cells
(considered as the reference group in the regression model).
Thus, the same cell type (e.g. Ex1) in DER-20 was compared
to different reference cells as analyzed in DER-22, especially
because fetal cells are relatively more distinguishable from adult
cells.

We conducted a gene set enrichment analysis to investigate
the functions of module genes using 40 custom gene sets curated
for brain-related functions in our previous study [60]. These
gene sets included neurotransmitter signaling (e.g. dopamine,
neurotrophin, serotonin, and glutamate), postsynaptic density
proteins (PSD), synaptic genes and ion balance, among others
[1, 60]. Figure 5B shows that the module genes found in post-
natal were enriched in PSD-related genes except ADHD genes.
Module genes of neuroticism were enriched in many gene sets,
especially PSD-related sets and neurotransmitter signaling sets.
However, module genes of traits found in prenatal brains were
only marginally enriched in a few functional sets.
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Figure 4. Module discovery using region and developmental stage transcriptome profiles. Full names of the brain regions and traits can be found in the main text and

in the legend of Figure 3.

tpGWAS prioritized distinct genes in prenatal and
postnatal stages

We next examined the module genes and their co-expression
patterns in each brain-related disorder or trait. We explored
the functional enrichment results of subnetworks, the interac-
tions in both stages and the trajectory expression of the major
principal components of the module genes. We demonstrated
tpGWAS by using the following representative disorders and
traits:

Alcohol use disorder

The significant modules found in the prenatal stage for AUD
GWAS were merged as one disease network, consisting of 33
genes (Figure 6A). To examine the expression changes over
stages, we conducted PCA of these genes to identify the major
trajectory patterns. The first three PCs explained 78.73% of the
total variance (Figure 6C). Nine genes showed a pattern similar
to PC1 (absolute PCC > 0.7), including seven genes (ABL1, CAD,
CHD3, CTNND1, DCAF7, EP300 and GATAD2B) highly expressed
in the prenatal stage with decreasing expression along the
developmental stages (PCC < −0.7 with PC1; opposite trend with
PC1) and two genes (ALDOA and FMNL1, PCC > 0.7) showing an
opposite trend (lowly expressed in the prenatal stage followed
by increasing expression). Seven genes showed a pattern
similar to PC2 and two genes with PC3 (GTF3A and PSMA3). In
summary, most of the module genes had high expression in the
prenatal stage when compared to the postnatal stage. Functional
enrichment analysis showed that the top Gene Ontology (GO)
Biological Process term for the AUD network was ‘regulation of
cell-matrix adhesion’ (PBH = 1.04 × 10−3, including ABL1, DAPK3,
LIMCH1, PRKCZ and RHOA). This confirmed the previous report
that cell matrix likely changed the behavioral response to drug
abuse [61], such as alcohol abuse [62].

Schizophrenia

The SCZ GWAS was found enriched in both the prenatal and
postnatal brain transcriptomes, which was the only trait that
showed such a pattern among all the 20 disorders and traits
examined. There are, thus, two distinctive networks from
either stage, and they shared five genes (CACNA1C, CACNB1,
CACNB2, NFATC3 and XRCC3) (Figure 7). These findings support
the hypothesis that SCZ is both neurodevelopmental and
neurodegenerative in nature. The prenatal network (consisting
of 77 module genes) was enriched with biological processes
such as protein C-terminus binding (PBH = 3.19 × 10−4), several
processes of transcription factor binding regulation and several
regulation processes of cell cycle. The postnatal network (24
genes), although with fewer genes, was found highly enriched in
synapse and central nervous system (CNS)-related regulations.
Three of the shared genes were involved in voltage-gated
calcium ion channels, which have been extensively studied
in SCZ [63, 64]. We also find enriched pathways in cardiac
functions. This is not surprising, as investigators have shown
that the risk genes of SCZ may be promoting pleiotropic effects
of cardiovascular dysfunction [65].

Alzheimer’s disease

ALZ is associated with both cognitive and motor deficits in late
life. In our results, we found 69 modules for the ALZ GWAS in
the postnatal stage (Figure 3). After merging these modules, we
found that the resultant network was centered on the well-
studied ALZ gene, APP (Figure 8A). This network included 94
genes, 31 of which were positively associated with PC1, where
22 genes showed higher expression in the postnatal stage than
the prenatal stage and 9 genes showed an opposite trend.
Seventeen genes presented a negative correlation with PC2,
which means that these genes were more highly expressed in
the postnatal stage than in the prenatal stage, and 14 genes
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Figure 5. Enrichment analysis of module genes using cell type expression and functional annotations. (A) Cell type-specific enrichment analysis using two panels of

brain scRNA-seq data (DER-22 and DER-20). (B) Functional enrichment of module genes (rows) using curated gene sets (columns) previously shown to be involved in

brain disorders. The color of each cell is proportional to −log10(PBH).

presented a positive correlation with PC2, which means that
they were more highly expressed in the prenatal stage than
in the postnatal stage. Functional enrichment analysis of the
module genes revealed that they were enriched in protein
kinase binding (PBH = 8.19 × 10−4), lipid binding (PBH = 0.01),
regulation of vesicle-mediated transport (PBH = 2.26 × 10−3),
regulation of synaptic plasticity (PBH = 2.26 × 10−3), clathrin-
coated vesicle membrane (PBH = 3.08 × 10−4) and synaptic vesicle
(PBH = 3.08 × 10−4). Among them, clathrin-coated vesicles are well
studied and highly involved in the pathology of ALZ [66–68]. The
clathrin chains of proteins make up the coating of vesicles,
which are essential to neuronal functions [66]. Abnormal
clathrin-mediated endocytosis has shown to contribute to
pathological processes of some neurological diseases [66, 67].
Furthermore, amyloid-β, which has been largely implicated in
the pathophysiology of ALZ, is produced from amyloid precursor
protein primarily after amyloid precursor protein is internalized
by clathrin-mediated or clathrin-independent endocytosis [66,
69]. Interestingly, three genes (BACE1, APOE and APP) were
involved in amyloidosis-related regulation, such as amyloid-
beta metabolic process (PBH = 0.025) and amyloid fibril formation
(PBH = 0.030).

Multiple sclerosis

The MS GWAS was also more aligned with adult gene expression,
resulting in a subnetwork with 102 genes. The top enriched GO
Cellular Component terms for MS included cellular response
to lipid (PBH = 5.94 × 10−6), myelin sheath (PBH = 4.42 × 10−3, com-
ponent genes: ATP1B1, CLTC, GNB1, NSF, NDUFS3, PHGDH and
SLC25A12), among others. In MS, the autoimmune attacks are
directed toward myelin sheath of the CNS [25, 70], and our
findings support this previous knowledge.

Educational attainment

EDU (an anthropometric social trait that might be used as a proxy
for cognition) GWAS was better aligned with the adult gene
expression data (Figure 3). The top enriched GO Biological Pro-
cess terms for the 54 component genes included synapse orga-
nization (PBH = 9.19 × 10−5, component genes ACTB, ACTR2, APP,
BSN, GABRB2, MEF2C, MTMR2, PAK1, PTPRF, RAB3A and STAU1)
and learning (PBH = 6.73 × 10−3, ACTR2, APP, CLN3, HTT and PAK1).
Regulation of synaptic plasticity plays an essential role in learn-
ing and memory, both of which are very important processes to
EDU [71].
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Figure 6. AUD-associated network and features of module genes. (A) Network visualization of AUD module genes identified in prenatal transcriptome. Blue edges

indicate those involved in the identified modules, while gray edges are only connected using the reference interactome. Node color is proportional to the gene-based

P-value. Edge width is proportional to the absolute PCC value in the prenatal stage. Gray edges are not involved in the discovery of modules. (B-C) Distribution of module

gene interactions (edge scores) in prenatal (left panel) and postnatal (right panel) data. These interactions show consistent high co-expression in prenatal stage in both

the discovery and validation datasets, but such a pattern is not observed in the postnatal stage in either the discovery or the validation dataset. (D) The first three

principal components (PCs) of the module genes and their trajectory expression across the whole developmental stage.

College completion

We found significant modules for the COL GWAS in the adult
gene expression data, resulting in a network with 38 genes.
One of the top 10 GO Biological Process terms enriched for this
network was regulation of synaptic plasticity (PBH = 0.02) with
component genes ARF1, HTT, PRNP, SNAP25 and YWHAG. Notably,
the genes HTT and YWHAG were present in the disease networks
for both EDU and COL. HTT encodes the protein huntingtin.
This protein is essential in brain development, although it has a
poorly understood function [72]. The gene YWHAG encodes for
a signal transduction protein that has been implicated in the
function of smooth muscle [73]. Our results suggest that both
HTT and YWHAG might play essential roles in synaptic plasticity,
which is crucial to learning and memory.

Discussion
In this work, we conducted temporal gene co-expression
network analyses of GWAS data for 20 brain-related disorders
or traits. Our analytical strategy falls in the area of supervised
analyses and our results complement insights from previous
studies. We demonstrated that the integration analysis of
GWAS and co-expression data can reveal biologically insightful
patterns when conducted in a developmental stage-stratified
manner. Our results revealed different stages in which the
trait-associated genes were more coordinately expressed. Also,
our tpGWAS method identified smaller modules that are more
accessible for biological interpretation and, thus, more relevant
for translation and future implementation into actionable
knowledge. Further functional enrichment analyses revealed
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Figure 7. SCZ-associated network and features of module genes. (A) Network visualization of SCZ module genes identified in prenatal and postnatal transcriptomes.

The two networks shared five genes (shaded cyan area). Distribution of module gene interactions (edge scores) in prenatal (B) and postnatal stages (C).

that the module genes had significant relevance to the disorders
and traits examined.

Our results capitalized and confirmed previous reports that
disorders traditionally classified as psychiatric tend to have a
neurodevelopmental origin while neurological diseases tend to
show high gene activity in the postnatal stage. For instance,
BD, OCD and NEU showed marked alterations in the prena-
tal stage, and AD, ALS and PD, together with the anthropo-
metric traits, such as college completion, education and well-
being, were mostly altered in the postnatal brains. Of note,
SCZ was the only condition that was found altered at both

the prenatal and postnatal stages. This helps to conceptualize
and further supports the traditional division of psychiatric and
neurological disorders. It also supports the notion that SCZ
is a more distinct phenotype with some differentiation from
BD, a psychiatric disorder that shares some of SCZ biological
correlates. In addition, the reported module genes supported
biological functions that are related to disorders or traits, such
as cell–matrix adhesion in AUD, clathrin chain cellular com-
ponents in AD, myelin sheath in MS and synaptic plasticity
in learning (EDU and COL). Some of these discoveries provide
insights for maximizing results when searching future optimal
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Figure 8. Alzheimer’s disease (ALZ)-associated network and features of module genes. (A) Network visualization of ALZ module genes identified in the postnatal stage.

(B-C) Distribution of module gene interactions (edge scores) in postnatal (left panel) and prenatal (right panel) stages. These interactions showed consistent high co-

expression in both the discovery and validation datasets using samples of the postnatal stage; however, such a pattern was not observed in the prenatal stage in either

discovery or the validation dataset. (D) The first three principal components (PCs) of the module genes and their trajectory expression across the whole developmental

stage. pcw, post-conception week.

molecular therapeutic targets. For example, the inhibition of
clathrin-mediated endocytosis has been studied as a therapeutic
option to prevent neuronal damage in AD [68]. We prioritized
genes enriched for clathrin-coated vesicle membrane as poten-
tially contributing to AD development, as well as possible thera-
peutic targets: AP2A2, APOE, DNAJC5, FZD2, SNAP91, TGOLN2 and
VAMP2. Taken together, our work not only revealed the critical
developmental stages in which each trait was actively expressed
but also prioritized genes and functions that, much probably,
constitute more promising targets that might be prioritized in
future investigations.

Our work has some limitations. First, we only defined the
prenatal and postnatal stages for temporal analysis. Brain
development involves multiple stages with precise molecular
cascades. With increased sample size and data from more
representative stages, in the future we will integrate in our
network analysis more refined time points that are critical to
brain development such as adolescence. Second, it is important
to notice that we cannot infer causality of the found altered
genes in the 20 conditions considered, or their alterations per
se that are sufficient condition for the development of the

disease/trait analyzed. Most likely, there is a fine interplay
between genes and environment. For example, exposure to
environmental insults, such as tobacco and alcohol, can, at least
in some instances, be a necessary trigger for the development
of the disorders. In future, results from epigenome-wide associ-
ation studies, as well as transcriptional or post-transcriptional
regulatory mechanisms (e.g. DNA and RNA methylation, histone
modification and chromosome remodeling), may be included in
such network modularity-based analysis to identify epigenetic
regulations during brain development. Third, although we
stratified samples based on regions, the sample size in each
spatiotemporal condition was small. Future work with more
samples is warranted to enable the identification of modules
in different brain regions and provide more detailed insights
into how disease genes are coordinately expressed in different
contexts.

In conclusion, we conducted a network-assisted analysis
of GWAS-implied genes using temporal transcriptome data.
Our results not only revealed the brain developmental stages
in which GWAS genes were enriched but also how these
genes were related. Our study not only shed light on the still
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relatively obscure pathophysiology of these disorders by
illuminating implicated biological pathways, it also will aid the
prioritization of promising molecular targets in future endeavors
dedicated to drug development for these serious and often
debilitant disorders.

Key Points
• We conducted a systematic investigation of the tem-

poral expression patterns of a myriad of 20 brain-
related disorders, providing a systematic view of net-
work modularity at specific developmental stages for
these disorders and traits.

• Our analyses unveiled a strong pattern of a fetal origin
for most psychiatric disorders, whereas increased co-
expression activities of genes associated with neuro-
logical diseases and anthropometric traits were more
strongly altered in postnatal brains.

• Further analyses revealed enriched cell types and
functional features that were supported and corrob-
orated prior knowledge in specific brain disorders.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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