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Abstract

The goal of precision oncology is to tailor treatment for patients individually using the genomic profile of their tumors.
Pharmacogenomics datasets such as cancer cell lines are among the most valuable resources for drug sensitivity prediction,
a crucial task of precision oncology. Machine learning methods have been employed to predict drug sensitivity based on the
multiple omics data available for large panels of cancer cell lines. However, there are no comprehensive guidelines on how
to properly train and validate such machine learning models for drug sensitivity prediction. In this paper, we introduce a set
of guidelines for different aspects of training gene expression-based predictors using cell line datasets. These guidelines
provide extensive analysis of the generalization of drug sensitivity predictors and challenge many current practices in the
community including the choice of training dataset and measure of drug sensitivity. The application of these guidelines in
future studies will enable the development of more robust preclinical biomarkers.
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Introduction

Cancer is a complex genetic disease. Because of the hetero-
geneous nature of tumors, the treatment of cancer is very
challenging. Precision oncology aims to tailor the therapies
according to the genomic profile of the tumor. Pharmacoge-
nomics, a crucial component of precision oncology, promises
to utilize the genomic landscape of each individual patient to
find the most effective treatment options [1-3]. However, it still
has limited clinical utility [4], and the availability of clinical
pharmacogenomics datasets is limited by a lack of public access
and small size, both in terms of patient cohorts and investigated
therapies for the few publicly available datasets. As a result,
resources such as cancer cell lines [5-11], patient-derived
xenografts (PDX) [12, 13] or organoids [14] are being employed
in pharmacogenomics to decipher drug sensitivity prediction.
Although these preclinical resources do not fully recapitulate
the inter- and intra-tumor heterogeneity of cancer, they act as
proxies for patient tumors and provide larger dataset, usually
screened with hundreds or thousands of drugs separately or in
combination along with multi-omics characterization [15].

Because of the complexity of generating pharmacogenomics
datasets, discrepancies can even exist across cell line datasets
[11, 16-22]. However, recent efforts such as the PharmacoDB
project (pharmacodb.ca) [15], the ORCESTRA platform (orces-
tra.ca) [23] and CellMinerCDB [24] aimed at standardizing, and
integrating different preclinical pharmacogenomics datasets to
improve downstream machine learning modeling. The data-rich
nature of preclinical pharmacogenomics datasets has paved the
way for the development of machine learning approaches to
predict drug sensitivity in vitro and in vivo [25-27]. These compu-
tational approaches range from simple linear regression models
[28, 29] Lasso [30] and Elastic Net [31] to Random Forest [32],
kernel-based models [33-36], highly non-linear models based on
Deep Neural Networks [37-44], and most recently, reinforcement
learning [45], few-shot learning [46] and multitask learning [47].
These methods often take gene expression as input and predict
the area above/under the dose-response curve (AAC/AUC) or
half-maximal inhibitory concentration (IC50), the concentration
of the drug that reduces the viability by 50%.

Although machine learning for pharmacogenomics is a
promising direction [25], existing guidelines are based on a
single pharmacogenomics dataset [48] or based on bench-
marking different methods without considering technical
differences between molecular profiles or drug screening
assays across different datasets [26]. We believe that there
is a need for comprehensive guidelines based on multiple
uniformly processed datasets on how to properly train and
evaluate drug sensitivity predictors. In this study, we conduct
a systematic and comprehensive analysis based on RNA-seq
data as the input (gene expression-based models) and different
measures of drug sensitivity such as AAC and IC50 as the
output. We employ univariable modeling (using prospective
biomarkers) and multivariable modeling (using state-of-the-
art machine learning methods) to investigate generalization in
drug sensitivity prediction. We consider two common machine
learning paradigms: within-domain analysis and cross-domain
analysis. In within-domain analysis, models are trained and
tested on the same dataset via cross-validation which means
train and test data are from the same distribution. In cross-
domain analysis, models are trained and tested on different cell
line datasets to investigate generalization capability. We also
examine the effect of an analysis choice first proposed by [5], to
separate the data for cell lines originating from hematopoietic

cancers and solid tumors on the ability to learn predictors of
drug sensitivity.

As aresult of this study, we provide guidelines, which we refer
to as PGx guidelines (Figure 1), on the following questions:

1. Which dataset(s) and measure(s) of drug sensitivity are best
for training predictors?

2. How much does the performance of pharmacogenomics
methods change when moving from within-domain anal-
ysis to cross-domain analysis?

3. Whatis the impact of non-solid tumors on the performance
of drug sensitivity predictors?

We focused on these questions based on what we consider
the most urgent challenges that the field is currently facing. (i)
Obtaining integrated and standardized data for cross-domain
analysis. (ii) Employing datasets/measures that offer more con-
sistency for training predictors. (iii) Compatibility between dif-
ferent datasets, comparing the performance using multiple met-
rics and multiple methods.

There are existing studies that cover comparison of different
methods [26, 33], omics data types [33], different unintegrated
datasets [26], different adjusted and unadjusted measures of
drug sensitivity [49], or different representations of input omics
data [33]. But, we noticed a gap with respect to generalization
capability between these studies and formulated our questions
to bridge this gap by employed integrated and standardized data
and showing a path that starts with simple (univariable based on
one gene), then becomes more complex (within-domain multi-
variable analysis) and eventually becomes cross-domain multi-
variable analysis.

We argue that it is necessary to evaluate the generalization
of cell line-based predictors first on cell line datasets before
employing them on PDX or patient data, and therefore we focus
on cell line datasets in this study. We believe that the PGx
guidelines will lead to the development of more accurate and
more generalizable machine learning models for drug sensitivity
prediction from pharmacogenomics data and will contribute
toward the goal of extending the benefits of precision oncology
to a wider range of patients.

Methods
Drug sensitivity metrics

The datasets analyzed in this study combine molecular profiling
of cancer cell lines with high throughput screening for drug sen-
sitivity. For each drug-cell pair investigated in a dataset, cell via-
bility at several increasing doses of the drug was measured and
compared to an untreated control, to obtain % viability values. To
learn predictors of drug response, it is desirable to obtain a single
number summarizing a particular cell line’s sensitivity to a drug
treatment (which can then be used as a label in fitting predictive
models from the molecular features). We study two different
summary measures: the AAC and the half-maximal inhibitory
concentration (IC50). Both of these measures are derived by
first fitting a Hill Curve model to the dose-response data. To
ensure consistency in the inference method, we fit 3 parameter
Hill Curve to all the datasets, using the ‘logLogisticRegression’
function in the PharmacoGx R package, as described previously
[17, 50]. The AAC is then the AAC, integrated from the lowest
to highest measured concentration, normalized to the concen-
tration range. The IC50 is the concentration at which the curve
crosses 50% viability. Some curves estimated in the data never
cross this 50% threshold, and therefore the IC50 does not exist
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Figure 1. Schematic overview of the PGx guidelines. (A) The raw pharmacogenomics datasets are obtained from the ORCESTRA platform. (B) The molecular (RNA-seq)
and pharmacological profiles (area above doseresponse curve—AAC) are obtained for each dataset via the PharmacoGx package. Finally, (C) univariable modeling based
on prospective biomarkers from the literature is performed via the PharmacoGx package, and multivariable modeling using protein coding genes and feature selection

is performed via different packages.

for many experiments where the AAC can be calculated. In
this paper, both these values were calculated using methods
implemented in the PharmacoGx package [50].

Datasets
We employed the following pan-cancer datasets (Table 1):

® The Cancer Therapeutics Response Portal (CTRPv2) [5, 6]

® The Genentech Cell Line Screening Initiative (gCSI) [10, 11]

® The Genomics of Drug Sensitivity in Cancer (GDSCv1 and
GDSCv2) [7, 8]

We obtained these datasets in the format of PharmacoSet
(PSet) that is an R-based data structure that aids in reproducible
research for drug sensitivity prediction. PSets are obtained via
the ORCESTRA platform (orcestra.ca) [23]. The molecular profiles
(RNA-seq) were preprocessed via Kallisto 0.46.1 [51] using GEN-
CODE v33 transcriptome as the reference and the pharmacolog-
ical profiles (AAC and IC50) were preprocessed and recomputed

via PharmacoGx package [50]. In this paper, we focused on
11 drugs in common between these datasets including: Borte-
zomib, Entinostat, Sirolimus, Docetaxel, Gemcitabine, Crizotinib,
Lapatinib, Vorinostat, Erlotinib, Paclitaxel and Pictilisib. These
datasets have missing values for different samples and given
a specific drug, the number of available cell lines for train-
ing/test can change (Table S1); moreover, they also have different
number of doses, replicates and the negative control used for
normalization (Table S2). These 11 drugs are important enough
to be studied in three different large-scale pharmacogenomics
datasets, and also they cover a wide range of drugs includ-
ing chemotherapy agents, targeted therapeutics, FDA approved
drugs and experimental drugs (Table S1). It is important to note
that the data we employed throughout this paper may be slightly
different from the data accompanying the published studies
because we obtained the data from the ORCESTRA platform,
which hosts the integrated and standardized versions of these
datasets, and because the datasets may have been updated by
the study groups since their original publications.
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Table 1. Characteristics of the studied datasets

CTRPV2 GDSCv2 GDSCv1 gCSsI
# drugs 544 190 343 16
# cell lines 821 328 427 334
# tissue types 25 27 28 22
# genes (# protein coding) 60 662 (19 957) 60 662 (19 957) 60 662 (19 957) 60 662 (19 957)
Gene expression assay RNA-seq** RNA-seq RNA-seq RNA-seq
Sensitivity assay CellTiter Glo CellTiter Glo Syto60 CellTiter Glo
Usage Training Test Training Test

State-of-the-art in preclinical pharmacogenomics

We categorized the state-of-the-art predictors of drug sensitiv-
ity based on their input, output and the pharmacogenomics
datasets that they used for training and test (Figure 2). Gene
expression was the most common input data type to predict
drug sensitivity, as it was determined to be the most effective
data type in multiple studies [8, 26, 31, 33]. However, some studies
based on multi-omics data also demonstrated that adding other
omics data types can improve the prediction performance [26,
40]. For drug sensitivity, IC50 was the most common measure
used. The cross-domain training approach was more common
compared to the within-domain approach. Moreover, the major-
ity of these methods were trained on GDSCv1 gene expression
data. We also observed that incorporating drug structure, such as
the SMILES representation of the drug molecule, is an emerging
trend in the field. Because the goal of this study is investigat-
ing generalization in gene expression cell line-based predic-
tors, we did not provide detailed descriptions of drug struc-
ture, interaction, adverse reaction, the type of clinical or PDX
datasets that existing methods have employed and illustrated all
of them under broad categories of ‘drugs’, ‘patients’ and ‘PDX’,
respectively.

Univariable and multivariable analysis

To study the impact of model complexity on the performance
and generalization of drug sensitivity predictors, we investigate
a wide range of modeling approaches ranging from univariable
modeling based on prospective biomarkers to highly complex
and multivariable approaches such as Deep Neural Networks.

The univariable analysis consists of retrieving estimates
for the association between previously studied prospective
biomarkers and AAC or IC50 as measures of drug sensitivity.
In this study, we focused on the prospective biomarkers of 11
drugs in common between the studied datasets as molecular
features. A total of 35 unique prospective biomarkers were
retrieved from literature for eight drugs (out of 11) and used
in the analysis (Table S3). The majority of these prospective
biomarkers were based on gene expression but some of them
were also based on mutation, copy number aberration and
gene fusion. Because the pharmacological datasets store genes
as Ensembl gene ID, the biomarkers were mapped to the
variant identifier using the Uniprot Retrieve/ID mapping tool
(Table S3)

We explored four preprocessing approaches for IC50 includ-
ing: using the raw IC50 values, log transformation of the values,
truncating the values based on the concentration ranges of
each study and a combination of both. IC50 values can span
several orders of magnitude, are bounded below by 0 and are
often skewed. Log transformation tends to reduce the influence

of outliers and brings the distribution of IC50 values closer to
normal. Truncating based on predefined concentration ranges
also reduces outliers, and reduces the influence of IC50 val-
ues that are extrapolated past the measured concentrations.
These extrapolated values tend to be very sensitive to slight
errors in estimation of the Hill Curve arising from noise in the
measurements. AAC values were left unchanged.

Then, we used the PharmacoGx ‘drugSensitivitySig’ function
to compute estimates of the association between prospective
biomarkers and drug sensitivity. For each measured gene this
association is independently modeled using a linear regres-
sion model: Vi = o + BGi + >, BTi' + e. Yi denotes the
measured drug sensitivity for sample i, G; denotes the mea-
sured gene expression for sample i, T;' is an indicator variable
for sample i belonging to tissue of origin t, ¢ is a random
error term which is assumed to be normally distributed, and
the Bs are the estimated regression coefficients [50]. The first
(alphabetically) tissue was taken as the reference and excluded
from the summation. As such, B, can be interpreted as the
effect of this reference tissue on Y, whereas each pg; is the
difference in effect of a tissue t from this reference tissue. Y
and G are scaled to have mean 0 and standard deviation of 1
prior to fitting the model, so that s returned are standardized
coefficients estimating the strength of the gene-drug associa-
tion. The standardization facilitates comparison across genes
and drugs, which may have very different scales and ranges of
measured values. Note that this differs from a partial correla-
tion in that scaling is done before adjusting for the covariates
(tissues).

The multivariable analysis consists of making predictions of
the drug sensitivity measures (AAC or IC50) given the level of
expression of input gene features. Unlike univariable analysis
that considers each biomarker at a time, multivariable analysis
considers all of the input genes together. The goal of multi-
variable modeling is to learn a mapping function Y = f,;(X)
parametrized by one or more parameters 6 that maps the input
gene expression matrix XN*M to the drug sensitivity values YN*1,
where N is the number of samples, and M is the number of input
features. For all models considered in this paper, we employed
the mean squared error as the loss function to optimize 6 as fol-
lows:Luse = Y — fo (X)\|§+.Q(9), where 2(.) denotes regularization.
The regularization used was 2(f) = «||6||2 for Ridge Regression,
2(6) = A[(1 — @)1 + «[6]l,] for Elastic Net, 2(6) = «||6]3 for the
Deep Neural Networks, and no regularization was applied for the
Random Forest models (A and « are hyperparameters controlling
the strength of the regularization). In addition to regularizing
the norm of the parameters, the Deep Neural Networks were
fit to the data with dropout and early stopping. More details on
training and hyper-parameters of the final models correspond-
ing to each method are provided in the supplementary material
(Table S5). From the mapping function point of view (f, (X)), Ridge
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Figure 2. Published studies for drug sensitivity prediction. Gene expression is the most common molecular profile and IC50 is the most common pharmacological
profile, but AAC/AUC has become more common in recent studies. GDSCv1 (originally named CGP) is the most common training dataset and the use of drug information
for training has been more frequent in recent years. The cross-domain training approach denoted by ‘c’ was more common compared to the within-domain approach

denoted by ‘w’. When a method employs both of them, we denote it by ‘cw’.

Regression and Elastic Net are based on linear transformations
of the input and Random Forest and Deep Neural Networks
are based on non-linear transformations of the input. Random
Forest learns the mapping function via an ensemble of decision
trees and Deep Neural Networks learns this function via layer-
wise transformations with non-linear activation functions.

Within-domain and cross-domain analysis

To study the impact of data discrepancy on generalization
of drug sensitivity predictors, we investigate two common

approaches of within-domain and cross-domain. In within-
domain analysis, the goal is to train and test models on the
same dataset via cross-validation. The hypothesis is that if a
model trained to predict sensitivity for a given drug cannot make
accurate predictions for the same dataset (on the test splits),
it is very unlikely that it generalizes to other datasets for the
same drug. In cross-domain analysis, the goal is to train and test
models on different datasets. The hypothesis is that models that
demonstrate high performance in the within-domain should
have better performance in cross-domain and models that
perform poorly in within-domain should also perform poorly in
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cross-domain analysis. Intuitively, if there is enough predictive
information in the training data for the given drug, the model
should have a higher chance of generalizing to other datasets
for the same drug (if the other datasets also have adequate
predictive information).

Experimental design

We designed our experiments to justify the choice of training
dataset (the input) and the measure of drug sensitivity (the
output) as well as studying generalization of different models
in within-domain and cross-domain analysis.

PGx guideline experimental questions

IC50 is the most common measure of the drug sensitivity for
machine learning (Figure 2); however, it suffers from known
limitations. By definition, the IC50 does not exist for any
experiment where the maximum inhibition of growth is not
at least 50%. Furthermore, IC50 estimation is unstable when
there is not at least 1 point measured on each plateau of
the curve [52], and the common technique to overcome this
limitation, by setting IC50’s outside the measured range to
the maximal tested concentration, effectively creates a right-
censored measurement and loses all differences in sensitivity
between such experiments. Our hypothesis is that models
trained to predict AAC should generalize better than those
trained to predict IC50.

To answer the first PGx Guideline question on the best mea-
sure of drug sensitivity, we investigated a wide range of modeling
approaches ranging from simple univariable models based on
prospective biomarkers of each drug to more complex multi-
variable models based on Ridge Regression, Elastic Net, Random
Forest and Deep Neural Networks. We also compared CTRPv2
and GDSCv1 to determine, which dataset is a better training
dataset to build drug sensitivity predictors. We picked GDSCv1 as
the competitor because it is the most common training dataset
(Figure 2). GDSCv1 utilizes a different drug screening assay com-
pared to the other datasets, and for the majority of the drugs,
it has a smaller sample size [23]. Our hypothesis is that models
trained on CTRPv2 are more generalizable because it utilizes the
same assay as other datasets and also has a relatively larger
sample size.

To answer the second question on generalization perfor-
mance, we utilized the state-of-the-art cell line datasets (see
Datasets section) in within-domain and cross-domain analy-
sis. For within-domain analysis, we used 10-fold nested cross-
validation on CTRPv2, the largest dataset in our collection—
9 folds for train and validation and the 10th fold for testing.
For cross-domain analysis, we trained models on the CTRPv2
and tested them on the other cell line datasets (GDSCv2 and
gCsl).

To answer the last question, we investigated the associ-
ation between tissue type and model predictions when the
model was trained with all available tissue types (solid and
non-solid tissues) and when it was trained only on solid tissue

types.

Evaluation

We employed different metrics in our analyses and experiments
of the PGx guidelines including the Peason correlation, Spear-
man correlation, root mean squared error (RMSE), Jaccard index
and standardized regression coefficients. In all of the analyses,

the Baseline performance indicates the correlation of cell lines
in common between train and test dataset of that particular
analysis. To summarize the figures, we also reported the aver-
age +standard deviation of the Pearson correlation over the 11
drugs in common (only in the main text).

Assessing stability of univariable feature rankings

To compare the rankings of univariable associations of gene
expression (60 662 genes) with drug response, we investigated
the intersections between the top-K strongest associations
(absolute value of standardized coefficient) for a range of
K-values across GDSCv2, CTRPv2 and gCSI. We chose these
datasets because they all shared the same drug response
assay (CellTiter-Glo). We focus on the top-K rankings as weaker
associations are more likely to be spurious due to the noise
of the experiments, and therefore should not be expected to
reproduce across datasets. For each drug, the Jaccard index
between the three top-K lists was computed at each K. We
then investigated two ways of measuring the stability of the
top-K list across all three datasets. We first evaluated the
minimum K (Kmin) for which the intersection was non-empty,
which can be interpreted as measuring how many associations
discovered in a single dataset would need to be tested across
the other two datasets before a single hit is replicated. We also
computed 1046 10g(Jous (K) Jexpectea(k))d(10g(k)), where Jons (k) was
the Jaccard observed for the top-k intersection, and Jexpected (R)iS
the expected intersection if the rankings of the three lists were
unrelated. The integral was estimated numerically on a grid of
K values. For this integral, Kmin Was chosen as the first value
where Jops(k) Wwas non-zero (consistent with above), removing
values from the integrand that would otherwise be infinite (and
negative). When comparing values for this integral, this can be
seen as giving an unfair advantage to list-triplets, which have a
high Kmin, and therefore it should be evaluated in tandem with
our first metric.

Implementation details

To ensure the reproducibility of this study, we provide a detailed
description of preprocessing, training and evaluation. For all of
the multivariable experiments, gene expression input data were
normalized via z-score transformation using the parameters of
the training dataset. Furthermore, to correct for the impact of
tissue type, the one-hot encoded representation of it was added
as an input feature to the normalized expression data after
removing non-solid tissue types (except when the goal was to
study the impact of non-solid samples) and those tissue types
that were not available in the training data (CTRPv2).

We implemented the univariable analysis in R via the Phar-
macoGx package (version 2.0.5) [50]. The multivariable analyses
were implemented in Python using the scikit-learn package (ver-
sion 0.23.2). All of the hyper-parameter tunings were performed
via grid search in nested 10-fold cross-validation. We repeated
the within-domain experiments 10 times and fixed the random
seed for the cross-domain experiments and performed it once.

We implemented the deep neural networks in the Pytorch
framework (version 1.4 cpu only) and used 10-fold cross-
validation and 100 trials of random search to select the best
hyper-parameter settings for each drug.

In all of the analyses, we employed previously reported values
of the hyper-parameters as our initial sets for each method and
tuned to select the best setting for each method. More details on
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the considered values and the selected ones are provided in the
supplementary material (Table S5).

Research reproducibility

All the data, code and results employed and obtained in this
study are publicly available for research reproducibility.

Code and supplementary tables/data are available at
https://github.com/bhklab/PGx_Guidelines.

Data and models are available at https://zenodo.org/reco
rd/4642024#.Y GCkbKIKiUl.

Code Ocean capsule: https://codeocean.com/capsule/7358839/
tree/vl.

Results

Models trained to predict AAC outperforms those
trained to predict IC50

Two common summary metrics have been used in the litera-
ture for summarizing dose-response experiments, the IC50 and
the AAC. The IC50 is a measurement of potency, whereas the
AAC can be interpreted as measuring an average of potency
and maximal efficacy, or as a measure of the mean viability
across the concentrations tested. Although the IC50 is easily
interpretable and is an absolute metric (unlike the AAC, which
depends on the concentration range tested), the IC50 has some
technical drawbacks which may make it difficult to use in train-
ing machine learning models. AAC/AUC is a normalized value
between 0 and 1, but IC50 (the concentration) is not necessarily
bounded and can be very small (close to zero) when samples
are highly sensitive to a given drug or very large when they
are highly resistant to a given drug. These issues make prepro-
cessing of IC50 critical. Therefore, we investigated both methods
to preprocess IC50, as one of the key measures of the drug
sensitivity in previous studies and then exploited univariable
and multivariable analysis to compare these two metrics.

Univariable analysis using prospective biomarkers is not conclusive
for preprocessing IC50

We employed univariable analysis of the prospective biomarkers
on different preprocessing approaches for IC50 including, (i)
estimating the associations using the raw IC50, (ii) estimating the
associations using the truncated IC50, (iii) estimating the associ-
ation using log transformed IC50 and (iv) estimating the associa-
tion using log truncated IC50 values. We presented the standard-
ized regression coefficients obtained from the univariable anal-
ysis for eight drugs that we could obtain prospective biomarkers
and highlight one biomarker for each drug (Figure 3A; Table
S6). Across three datasets (CTRPv2, GDSCv2 and gCSI), we did
not observe a clear winner for different ways of preprocessing
IC50. This can be due to the fact that some of these biomarkers
were based on gene expression data and some others based on
mutation (Table S3), and this suggests further investigation.

Univariable analysis using prospective biomarkers is not conclusive
for AAC

We performed the same process of estimating associations for
AAC and compared it to different ways of preprocessing IC50.
Although for Lapatinib and Erlotinib AAC captures the associa-
tions between biomarkers and drug sensitivity more accurately
compared to different approaches to preprocessing 1C50, this
pattern is not visible for other drugs (Figure 3A; Table S6). These
results are not conclusive to compare AAC and IC50 (different

ways to preprocess it) via the univariable analysis which also
suggests further investigation.

Univariable cross-domain stability analysis suggests AAC and
log-truncated IC50 produce most stable associations with drug
response

For each gene with quantified expression (60 662 genes) in the
CTRPv2, gCSI and GDSCv2 datasets, we computed the strength
of association with drug response for the 11 drugs in common
across these datasets. We then ranked the associations by
magnitude and computed the Jaccard index for the 3-way
intersection of the top K ranked univariable features for a range
of K’s between 10 and 10 000 (with steps of 0.1 on a logl0
scale). We examined two metrics: the first K at which the top-K
intersection is non-empty (Figure S1A), and the integral of the
observed Jaccard adjusted to the Jaccard expected by chance,
on a log-log scale (Figure S1B). By both metrics, AAC produced
the most stable or was tied for the most stable rankings of
gene expression markers for the majority of the drugs (9/11
by both first non-empty K and integrated enrichment over
null). Log-truncated IC50 similarly outperformed (or was ranked
most stable or tied for most stable) the other transformations
of IC50 (8/11 drugs by first non-empty K and 7/11 drugs by
integrated enrichment over null). This suggests that AAC
and log-truncated IC50 are better measures for multivariable
analyses.

Multivariable within-domain analysis confirms that models trained
to predict AAC outperforms those of log-truncated IC50

We compared Ridge Regression, Elastic Net and Random Forest
when trained on protein coding genes to predict AAC and log-
truncated IC50, log IC50, truncated IC50 and raw IC50 in a within-
domain analysis using CTRPv2.

The within-domain analysis using Ridge Regression and
Elastic Net reconfirmed the stability analysis results that
log-truncated IC50 outperforms the other approaches to
preprocessing IC50 in terms of the studied metrics (Table S7).
Interestingly, models for Docetaxel, Sirolimus and Paclitaxel
failed because of training to predict very large raw or log IC50
values but models for these drugs were successfully trained
when using truncated IC50.

We observed that AAC achieved higher within-domain
performance (Figure 3B—Ridge Regression achieved 0.24+0.17
in AAC versus 0.234+0.14 in IC50; Elastic Net achieved 0.4 +0.17
in AAC versus 0.314+0.12 in IC50; Random Forest achieved
0.41+0.1 in AAC versus 0.33+0.07 in IC50). These results
reconfirm the stability results that AAC is a better metric for
drug sensitivity prediction compared to log-truncated IC50.
We observed a similar pattern in the Spearman results (Figure
S2) and RMSE (Table S8). In terms of Pearson and Spearman,
7 drugs (out of 11) benefited from training to predict AAC
instead of log-truncated IC50 in at least two different methods
(out of three). These experimental results also align with the
within-domain results in the previous study [48]. For simplicity,
we refer to log-truncated IC50 as IC50 for the rest of the
paper.

Cross-domain analysis decreases generalization perfor-
mance.

To study the generalization capabilities of drug sensitivity
predictors, we analyzed them in a cross-domain setting where
the models are trained and tested on different cell line datasets.
To perform this analysis, first, we determined the most suitable
training dataset.


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab294#supplementary-data
https://github.com/bhklab/PGx_Guidelines
https://zenodo.org/record/4642024#.YGCkbK9KiUl
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https://codeocean.com/capsule/7358839/tree/v1
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab294#supplementary-data
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Figure 3. (A) Comparison of AAC (red) to different approaches of preprocessing IC50 via univariable analysis, tested on selected prospective biomarkers of the studied
drugs in terms of the standardized coefficients. A single prospective biomarker per drug is shown (generally the marker with the strongest association), full results are
available in supplementary data. (B) Mean Pearson correlation (over 10 runs) for different multivariable methods in within-domain analysis trained to predict AAC or
log-truncated log-truncated IC50. Multivariable within-domain analysis results indicated that AAC outperforms IC50 on average.

Multivariable analysis reveals that models trained on CTRPv2
outperform those of GDSCv1 in generalization

As mentioned before, GDSCv1 is the most common training
dataset for machine learning in pharmacogenomics. However,
this dataset utilized the Syto60 assay in contrast to other major
pharmacogenomics datasets that utilized the CellTiter Glo assay.

We believe the difference in the drug screening assay influences
the generalization capability of models because the Syto60 assay
generates noisier drug response estimates [11]. To validate this,
we trained two Ridge Regression models to predict AAC using
protein coding genes: one trained on CTRPv2 and the other
trained on GDSCv1 and then tested both of them on gCSI. We
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removed GDSCv2 from this analysis because of the overlap of
molecular profiles with GDSCv1. We selected CTRPv2 because it
islarger compared to gCSI which makes it naturally a more viable
choice for training.

We observed that the model trained on CTRPv2 demonstrated
better performance in terms of the Pearson correlation com-
pared to the model, which was trained on GDSCv1 (Figure 4).
To be more specific, on average (over 11 drugs), the model
trained on CTRPv2 achieved the Pearson correlation of 0.4 £0.21
(0.39+0.18 for IC50—Table S9), whereas the model trained on
GDSCv1 achieved 0.26 +0.16 (0.16 £ 0.17 for IC50—Table S9). This
suggests that agreement between the drug screening assay as
well as sample size play significant roles in cross-domain gen-
eralization. We observed a similar pattern in the Spearman
correlation (Figure S3) and RMSE (Table S9). It is important to note
that unlike the within-domain analysis, this analysis is based on
one run using the best model (from cross-validation) and not on
multiple runs.

Multivariable analysis reveals that the performance of models
decreases when moving from within-domain to cross-domain
analysis

To study the generalization of drug sensitivity predictors, we
trained different models on CTRPv2 dataset and tested them of
GDSCv2 and gCSI (Figure 5A). The cross-domain performance for
the majority of the studied drugs is decreased significantly com-
pared to the within-domain performance (Figure 5B-D). Elastic
Net performance decreased from 0.4 +0.17 (within-domain AAC)
to 0.34+021 in GDSCv2 and 0.34+0.21 in gCSI (both in AAC,
Figure 5C). Similarly, Random Forest decreased from 0.41+0.1
(within-domain AAC) to 0.33+0.2 in GDSCv2 and 0.35+0.21 in
gCSI (both in AAC, Figure 5D). Ridge Regression demonstrated a
different trend and increased from 0.24+0.17 (within-domain

AAC) to 0.33+0.17 in GDSCv2 and 0.4+0.21 in gCSI (both in
AAC, Figure 5A). This was due to some outlier predictions; Pear-
son correlation is sensitive to outliers and when we looked
at the Spearman correlation results, the performance of Ridge
Regression also decreased in cross-domain analysis (Figure S4
compared to Figure S2).

These results suggest that even when the train and test
data of a model utilized the same drug screening assay and
were preprocessed similarly, it does not necessarily guarantee
generalization. Moreover, the within-domain and cross-domain
analysis together suggest that making models more complex
improves the performance compared to the univariable analysis.
For example, ERBB2 had an estimated association of 0.41 in
GDSCv2 and 0.44 in gCSI; however, Elastic Net achieved 0.61 in
GDSCv2 and Ridge Regression achieved 0.6 in gCSI which demon-
strates the power of multivariable analysis. Finally, the cross-
domain analysis using multivariable methods also reconfirmed
that AAC is a better metric compared to IC50 (Table S10) because
datasets are more consistent on AAC (baseline correlations of
0.45+0.18 in GDSCv2 and 0.43 +0.21 in gCSI for AAC in contrast
to 0.38+0.27 and 0.42+0.13 in IC50, respectively) and meth-
ods are more accurate (for example, in gCSI, Ridge Regression
achieved 0.4+0.21 in AAC versus 0.36+0.18 in IC50; Elastic
Net achieved 0.3440.21 in AAC versus 0.33+0.18 in IC50; DNN
achieved 0.35+0.2 in AAC versus 0.32+0.21 in IC50; Random
Forest achieved 0.35+0.2 in AAC versus 0.37 +0.16 in IC50). We
observed a similar pattern in the Spearman correlation (Figure
S3A-D). We also observed similar patterns in both Pearson and
Spearman results when comparing the best performing within-
domain model to the best performing cross-domain model for
each drug (Figures 5E and S4E).

Although employing gCSI offers more robust comparison
across multiple datasets, it also limits the number of drugs that
we can study because this dataset is only screened with 16
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Figure 5. Comparison of multivariable methods in terms of Pearson correlation in cross-domain analysis trained on CTRPv2 to predict AAC, tested on GDSCv2 and
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drugs. To study the cross-domain performance on more drugs,
we limited our focus to 70 drugs in common between CTRPv2
and GDSCv2. We trained three models using Ridge Regression,
Elastic Net and Random Forest for each drug using CTRPv2 to
predict AAC and IC50 separately and tested the performance in
terms of Pearson, Spearman and RMSE on GDSCv2. We removed
those drugs that have less than 100 samples for training or 50
samples for tests or had a failed model for AAC or IC50 to ensure
a fair comparison.

We observed that the results are fairly competitive between
models trained to predict AAC and those of IC50 when we
only focus on one dataset in terms of Pearson and Spearman
correlations. However, RMSE shows that AAC outperforms IC50
which can be due to larger magnitude of IC50 values as opposed
to AAC (Table S11).

Non-solid tissue types influence the performance of models

The majority of pharmacogenomics datasets are pan-cancer
with solid and non-solid tissue types. We studied the molecular
and pharmacological profiles of non-solid tissues (hematopoi-
etic and lymphoid tissue types) in CTRPv2, GDSCv2 and gCSI.
We observed that the sensitivity outcome (AAC) in non-solid
samples is significantly different compared to solid samples and
they tend to be more sensitive than solid samples (Figure S5A-C)
which aligns with the previous studies [5, 53, 54]. Similarly,
the non-solid samples also clustered differently compared to
solid samples (Figure S5D-F). These results raise the question of
whether including both liquid and solid lines in the training set
is beneficial for learning models to predict drug sensitivity.

To answer this, we trained two Ridge Regression models to
predict AAC using protein coding genes as follows: one trained
on all samples (solid and non-solid together) in CTRPv2, and the
other one trained only on solid samples (non-solid samples were
removed) in CTRPv2. We measured the associations between the
predictions and the binary status of tissue type (solid versus
non-solid) in GDSCv2 and gCSI using the area under precision-
recall curve (AUPR). The predictions of the model that was
trained on all samples demonstrated a very high AUPR compared
to the model that was only trained on solid samples. This sug-
gests that by including non-solid samples, models predict the
tissue type rather than the drug sensitivity itself (Figure 6). To
confirm this, we trained another Ridge Regression model after
removing a random subset of solid samples with the same size as
the non-solid samples to make sure that the observed result was
not because of sample size (we repeated the random selection
10 times and reported the average value). We also reported
the Baseline AUPR that indicates the ground truth association
between actual AAC and the binary status of tissue type. We
observed that models that were trained on all samples (including
solid and non-solid tissues) and the one with a random subset
removed had the highest AUPR in both GDSCv2 and gCSI for the
majority of the drugs compared to the model that was trained
only on solid samples (Figure 6). This confirms previous results
that the difference in molecular profiles and drug sensitivity of
non-solid samples have a negative impact on the drug sensitivity
prediction task, and it is crucial to remove all non-solid tissue
types before any machine learning modeling.

We also studied the impact of different tissue types on the
performance by comparing three scenarios: (i) training a Ridge
Regression model on solid and non-solid tissues combined and
testing it on solid tissues only, non-solid tissues only and all
tissues combined. (ii) training a Ridge Regression model on
solid tissues only and testing it on solid tissues only, non-solid
tissues only and all tissues combined. Finally, (iii) training a

Ridge Regression model on non-solid tissues only and testing
it on solid tissues only, non-solid tissues only and all tissues
combined. For each analysis we used CTRPv2 as the training
dataset to predict AAC, and tested the model on GDSCv2 and
gCSI and reported the results in terms of Pearson, Spearman
and RMSE. For each scenario, the dataset with the largest sample
size was downsampled to have the same size as the smaller one
10 times to control for this factor. We observed that on average
(over 10 runs), models trained on non-solid tissues had the best
performance when tested on non-solid tissue types and simi-
larly, models trained on solid tissues had the best performance
when tested on solid tissues. This reconfirms the importance of
removing non-solid tissue types from the training data for solid
tissues (Table S12).

Discussion

In this study, we investigated the fundamental challenges of
developing machine learning models to predict drug sensitivity
from cell line pharmacogenomics data. We named our study PGx
guidelines because we believe that the answers to these ques-
tions provide actionable guidelines for developing predictors of
drug sensitivity.

The guidelines show that the performance of machine learn-
ing models decreases when moving from within-domain multi-
variable modeling to cross-domain multivariable modeling. This
is particularly important because it shows that models face
generalization difficulties when trained and tested on cell line
datasets with comparable molecular and pharmacological pro-
files. Consequently, such models are highly unlikely to gener-
alize to clinical samples when they fail to generalize to (more
similar) preclinical samples.

The PGx guidelines also demonstrate that the AAC is a more
suitable measure of drug sensitivity as opposed to the IC50
in terms of Pearson and Spearman correlations, and CTRPv2
is a more suitable training dataset as opposed to GDSCv1 due
to the larger sample size available with RNA sequencing and
the difference in the drug screening assay. This is particularly
important because employing IC50 and GDSCv1 is currently the
trend in machine learning for drug sensitivity prediction. We
also reported RMSE results, but we note that unlike Pearson and
Spearman, RMSE does not allow comparison across different
drugs or measures of drug sensitivity, and proper normalization
is required before comparison using this metric.

Finally, The PGx guidelines demonstrate the necessity of
removing non-solid tissue types from the datasets before any
modeling, which is often not considered in training models. This
is especially true for post hoc interpretation of feature impor-
tance. Our results suggest that models trained on a mixture of
these two tissue types primarily learn to predict non-solid tumor
status, bringing into question whether importance scores will be
relevant to the task of drug sensitivity prediction.

Our goal was not to provide a comparative study—train mod-
els to achieve the highest possible performance—in terms of
method; we selected some of the most basic available methods
to focus on the importance of data for drug sensitivity prediction.
The reported results can likely be improved by investing more
time on hyper-parameter tuning or adopting more complex
training schemes or objective functions (particularly for Deep
Neural Networks). However, our experiments shed light on some
of the current issues with machine learning for drug sensitivity
prediction.

Although Ridge Regression and Random Forest showed
slightly better performance compared to Elastic Net, overall,
these methods showed a competitive performance. We focused
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samples decreases the association of predictions with tissue type.

on Ridge Regression for the majority of the analyses of PGx
guidelines because it is less sensitive to the setting of hyper-
parameters than other methods, in particular Deep Neural
Networks, which have the highest number of hyper-parameters
and are more sensitive to the choice of their values. Therefore,
we included Deep Neural Networks for cross-domain analysis
but did not consider them for other experiments. We also did
not perform within-domain analysis for Deep Neural Networks
because of the limited sample size of the nested cross-validation
for the high number of parameters of each network and the early
stopping regularization that makes the comparison difficult for
within-domain analysis. We also utilized feature selection to
reduce the input dimensionality (number of genes) and tried
focusing only on the L1000 landmark genes [55], or focusing on
top genes selected by the Minimum Redundancy-Maximum
Relevance method [56]. However, we did not observe any
significant difference (Figure S6 and Table S13).

Some of the major limitations of this study are as follows:
we assumed a similar concentration range across the studied
datasets, this can be an important factor in generalization
but the problem is that by focusing on the samples with the
same range, we will not have enough samples to train models
especially given the high dimensionality of the data. We believe
this is a very important factor that should be considered
when more samples are available [49, 57]. Similarly, we did
not consider multi-omics data because comparable omics data
types (mutation, proteomics, copy number aberration, etc.) are
not available in the studied pharmacogenomics datasets to
investigate the impact of multi-omics data on cross-domain
generalization [33, 40]. For PGx guidelines, we only focused
on monotherapy models and did not investigate multi-output
or multitask learning, or drug combination which can be
promising future direction, similar to incorporating the chemical
structure representation of the drugs as input. Also, we did
not consider the pathway transformation of the genes as input
features and employed genes themselves. Such transformations
can improve the prediction performance [33]. We studied
gene expression-based predictors, and our approach can be
replicated for other omics data types when more data are
available, and for other gene/feature representations such as
pathway representation, which is covered in other studies
[33].

Investigating the source of the performance drop occurring
when moving to cross-domain analysis is outside the scope of

the current study. However, there have been extensive studies
into inconsistencies between drug screening experiments on
the same cell lines, and the reasons why they arise [11, 16,
21, 58]. These studies have shown that some inconsistency can
be explained by differences in experimental protocols, includ-
ing: choices of drug concentration range and number of tested
points, cell seeding densities, timepoints for measuring viability,
cell viability assays used, number of technical and biological
replicates, growth media and different choices for positive and
negative controls (we summarize a subset of these variables for
the studies used in Supplementary Table S2) [11, 17, 58]. Genetic
drift in cell lines, and different cell line doubling times between
labs has also been shown to affect drug sensitivity measures
such as the IC50 and AAC [58-61]. Finally, technical sources of
variation, even with identical (or as close as possible) protocols,
both in executing the experiments and subsequent analysis have
been shown to lead to considerable variability between labs [21].
Importantly, Niepel et al. [21] found that inconsistencies between
labs often arise when experimental differences interact with
biologically meaningful variation, meaning that particular cell
lines or drugs may be strongly affected by differing experimental
decisions, whereas others are not. It is also important to remem-
ber that IC50 and AAC are complex phenotypes that can only be
measured indirectly through accessing a dose-response curve
and fitting a model to these data. Although in our study we have
removed variation arising from choices of different curve esti-
mation methods, all the sources of variability discussed above
affect each measured point on these curves and the error in
the measurement. This means that the model used to calculate
IC50 and AAC will unavoidably have different bias and variance
characteristics between studies. Overall, measuring and analyz-
ing drug response data in cell lines is technically complex and
given that there is no consensus experimental and analytical
protocol e, our findings reinforce the importance of checking
performance across cell line domains to truly understand the
robustness and generalizability of machine learning models in
this field.
In summary, the key takeaways of PGx guidelines are:

® Models tend to be more accurate when trained to predict
AAC rather than trained to predict IC50. However, we note
that our training datasets for AAC prediction were larger
than those for IC50 prediction, which may have impacted
the accuracy of the resulting models.
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If IC50 is used for the modeling, truncating the IC50 val-
ues after logarithmic transformation yields more predictive
models.

Models trained on CTRPv2 to predict AAC tend to be more
accurate than those trained on GDSCv1, which is partly due
to the smaller size of the GDSCv1 dataset and the use of a
different cell viability assay (which considerably reduce the
consistency across datasets)

In pan-cancer datasets, our results indicate that it is advis-
able to stratify the analysis by tissue types, in particular
solid versus non-solid cancer cell lines. It is important to
note that we did not perform a comprehensive comparison
of all existing methods and some modeling strategies may
be able to leverage the difference between solid and non-
solid cancer cell lines to develop more generalizable models.
To evaluate the predictive performance, only looking at one
metric might not be sufficient and itis more reliable to study
multiple metrics.

We suggest a modeling path that starts with simple analysis
using one gene (biomarker), then performs multivariable
modeling within one dataset, and eventually performs mul-
tivariable modeling across multiple datasets. We note that
testing on one cell line dataset only does not even give an
adequate measure of model performance on another cell
line dataset.

It is important to note that our guidelines do not cover best
practices to choose specific methods or types of input data. We
refer interested readers to previously published literature that
has extensively explored these topics [26, 33, 48, 49, 62].
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