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Abstract

Circadian rhythmicity in transcriptomic profiles has been shown in many physiological processes, and the disruption of
circadian patterns has been found to associate with several diseases. In this paper, we developed a series of
likelihood-based methods to detect (i) circadian rhythmicity (denoted as LR_rhythmicity) and (ii) differential circadian
patterns comparing two experimental conditions (denoted as LR_diff). In terms of circadian rhythmicity detection, we
demonstrated that our proposed LR_rhythmicity could better control the type I error rate compared to existing methods
under a wide variety of simulation settings. In terms of differential circadian patterns, we developed methods in detecting
differential amplitude, differential phase, differential basal level and differential fit, which also successfully controlled the
type I error rate. In addition, we demonstrated that the proposed LR_diff could achieve higher statistical power in detecting
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differential fit, compared to existing methods. The superior performance of LR_rhythmicity and LR_diff was demonstrated
in four real data applications, including a brain aging data (gene expression microarray data of human postmortem brain), a
time-restricted feeding data (RNA sequencing data of human skeletal muscles) and a scRNAseq data (single cell RNA
sequencing data of mouse suprachiasmatic nucleus). An R package for our methods is publicly available on GitHub
https://github.com/diffCircadian/diffCircadian.

Key words: circadian rhythmicity; differential circadian analysis; gene expression; likelihood-based test; R package;
comparison study.

INTRODUCTION
Circadian rhythms are an endogenous ∼24 hours cycle of behav-
ior and physiology including sleep–wake cycles, body tempera-
ture and melatonin [1, 3, 7, 19]. Underlying circadian rhythms is
the clock mechanism that is found in virtually all cells of body.
This mechanism is defined by a transcriptional-translational
feedback loop involving a set of core clock genes [11, 18], includ-
ing CLOCK, BMAL1, period family (PER1, PER2, PER3) and cryp-
tochrome family (CRY1, CRY2). Beyond the core clock mecha-
nism, genome-wide transcriptomic studies have uncovered cir-
cadian genes expression patterns in many tissues, including
postmortem brain [4, 33], skeletal muscle [12], liver [15] and
blood [26]. Zhang et al. [46] and Ruben et al. [31] conducted
genome-wide circadian analyses using transcriptomic data of 12
unique mouse organs and 13 unique human organs, respectively,
and showed that the profiles of circadian gene expression were
tissue specific. It is now recognized from studies in humans and
rodents that disruption in clock and circadian gene expression
are linked to diseases including type II diabetes [35], sleep [26],
major depression disease [22], aging [4], schizophrenia [33] and
Alzheimer’s disease [23].

In the literature, several algorithms have been developed to
detect circadian rhythmicity, including F-test via cosinor-based
rhythmometry [5], Lomb-Scargle periodograms [10], COSOPT [36],
ARSER [44], RAIN [38], JTK CYCLE [16] and MetaCycle [43]. These
algorithms were widely applied in transcriptomic studies, and
the comparisons of these algorithm have been evaluated in
several review studies [14, 21, 25]. Though promising, concerns
have been raised [21] that the P-values generated by many of
these existing methods may not be correct (i.e. do not follow
a uniform distribution [i.e. U(0, 1)] under the null), implying a
potential inflated or deflated type I error rate.

Another increasingly important research question is to
identify differential circadian patterns associated with different
experimental conditions [13, 17, 26]. Figure 1 shows four types
of differential circadian patterns identified in our brain aging
data application (see Section 4.1 for details), among which 31
subjects were from the young group (age ≤ 40 years), and
37 subjects were from the old group (age > 60 years). Gene
CIART in Figure 1A shows the differential amplitude, where
the amplitude in the young group is larger than the old group;
Gene PER2 in Figure 1B shows the differential phase, where the
phases in young and old groups are different; Gene TRIB2 in
Figure 1C shows the differential basal level, where the basal
level in the young group is higher than the old group; Gene
MYO5A in Figure 1D shows the differential fit, where there
exists a good circadian rhythmicity fit in the young group, but
not in the old group. The definition of amplitude, phase, and
basal level is illustrated in Figure 2. The traditional approach
to compare circadian rhythmicity between two experimental
conditions is to adopt a hard threshold (e.g. P ≤ 0.01) as
the significance cutoff, and then declare deferential circadian

rhythmicity if a gene is significant in only one condition [26,
30]. Though straightforward, this approach may fail under the
following two scenarios. Scenario (i): gene PER2 in Figure 1B
is showing significant circadian rhythmicity in both the young
group (P = 1.60×10−4) and the old group (P = 7.37×10−5), and thus
did not satisfy the definition of differential circadian pattern.
However, Figure 1B shows a clear phase difference comparing
young and old groups, and the underlying differential phase
P-value using our proposed method was 5.43×10−5. Scenario (ii):
gene EEF2K had a circadian P-value 0.0096 in the young group,
and a P-value 0.0305 in the old group. Though this gene satisfied
this definition of differential circadian pattern using P ≤ 0.01
as the significance criteria, the rhythmicity P-values under both
conditions were close to 0.01. In fact, the resulting differential fit
P-value using our proposed method was 0.709, indicating EEF2K
was not showing differential circadian pattern comparing the
young group and the old group.

In the literature, some methods have been developed to
identify genes showing differential circadian patterns. Chen et al.
[4] developed a permutation test to quantify the statistical signif-
icance of these four types of differential circadian patterns. How-
ever, the non-parametric permutation test could suffer from low
P-value precision and heavy computational burdens. DODR [39]
and LimoRhyde [34] were developed to examine the hypothesis
that the circadian rhythmicity across two conditions are iden-
tical, but they failed to further categorize different subclasses
of differential circadian patterns illustrated in Figure 1. More
recently, circaCompare [29] was developed to detect differential
amplitude, differential phase and differential basal level using
non-linear least square methods, but it could not characterize
differential fit. To our knowledge, there is still a lack of unified
parametric method that could identify all four differential cir-
cadian patterns simultaneously. In addition, the performance of
these existing methods has not been systematically evaluated.

In the statistics field, likelihood-based methods enjoyed
tremendous popularity for its simplicity when testing single
parameter and its flexibility to extend to test multiple param-
eters or complex models. In addition, the testing procedures
based on the likelihood-based methods are generally considered
as asymptotically the most efficient. However, this concept has
not been fully developed in the field of circadian analysis. To
close these research gaps, and to fully incorporate the merit of
likelihood-based approaches, we propose a series of likelihood-
based methods to detect circadian rhythmicity (within one
condition) as well as differential circadian patterns (comparing
two conditions). The contribution and novelty of this paper
includes the following: (i) systematically evaluated the accuracy
of P-values in detecting circadian rhythmicity of our likelihood-
based methods and other existing methods; (ii) the first to
propose likelihood-based methods to identify all four types
of differential circadian patterns; (iii) systemically evaluated
our likelihood-based methods in detecting differential circadian
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Figure 1. The most significant genes showing four types of differential circadian

patterns from the brain aging data.

patterns, and compared with existing methods in terms of the
correctness of P-value and statistical power; (iv) implemented
our proposed methods in R software package, which has been
made publicly available on GitHub.

METHOD
We developed likelihood-based methods for (i) circadian rhyth-
micity detection within one experimental condition and (ii) dif-
ferential circadian pattern analysis comparing two experimen-
tal conditions. The statistical inference of these methods were
based on the Wald statistics and the likelihood ratio statistics.
Since the accurate inference of the likelihood-based methods
required large sample size, we also employed finite sample cor-
rections to improve the performance under small sample sizes.

Figure 2. Illustration of a sinusoidal wave fitting and its related terminologies.

Notations for a sinusoidal wave fitting

Our methods assume that the relationship between the gene
expression level and the circadian time fits a sinusoidal wave
curve. As illustrated in Figure 2, denote y as the expression value
for a gene; t as the circadian time; C as the basal level (vertical
shift of the sinusoidal wave baseline from 0); A as the amplitude.
ω is the frequency of the sinusoidal wave, where ω = 2π

Period .
Without loss of generality, we set period = 24 hours to mimic
the diurnal period. φ is the phase of the sinusoidal wave curve.
Whenever there is no ambiguity, we will omit the unit ‘hours’ in
period, phase, and other related quantities. Due to the periodicity
of a sinusoidal wave, (φ1, φ2) are not identifiable when φ1 = φ2+24.
Therefore, we will restrict φ ∈ [−6, 18). φ may be difficult to read
from a sinusoidal wave (Figure 2), and a closely related quantify
is the peak time tP. The connection between φ and tP is that
φ + tP = 6 ± 24N, where N is an arbitrary natural number.

Circadian rhythmicity detection

In this section, we develop likelihood-based methods to test the
existence of a circadian rhythmicity within one experimental
condition. Denote yi is the expression value of one gene for
subject i(1 ≤ i ≤ n), where n is the total number of subjects. ti

is the circadian time for subject i. We assume

yi = A sin(ω(ti + φ)) + C + εi, (1)

where εi is the error term for subject i; we assume εi’s are iden-
tically and independently distributed (i.e. iid) and εi ∼ N(0, σ 2),
where σ is the noise level. To benchmark the goodness of sinu-
soidal wave fitting, we define the coefficient of determination
R2 = 1 − RSS

TSS , where RSS = ∑n
i=1(yi − ŷi)

2, TSS = ∑n
i=1(yi − ȳ)2,

ŷi = Â sin(ω(ti + φ̂)) + Ĉ, ȳ = ∑
i yi/n, with Â, φ̂ and Ĉ being

the fitted value for A, φ and C in Equation 1 under least square
loss, respectively. R2 ranges from 0 to 1, with 1 indicating perfect
sinusoidal wave fitting, and 0 indicating no fitting at all. Based
on these assumptions, we derive procedures for testing circadian
rhythmicity. For the ease of discussion, we re-write Equation 1 as

yi = E sin(ωti) + F cos(ωti) + C + εi, (2)

where E = A cos(ωφ), and F = A sin(ωφ). The hypothesis setting
for testing the existence circadian rhythmicity is H0 : E = F = 0
v.s. HA : E �= 0 or F �= 0. We will derive the Wald statistics
and the likelihood ratio statistics to perform hypothesis testing.
Since both Wald statistics and likelihood ratio statistics are
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designed based on large sample theories, we will also employ
finite sample statistics for these methods.

Likelihood ratio test

Based on Equation 2, the likelihood function of all n samples is

L(E, F, C, σ 2)

=
n∏

i=1

Li(E, F, C, σ 2|yi, ti)

=
n∏

i=1

1√
2πσ 2

exp
(

− (yi − E sin(ωti) − F cos(ωti) − C)2

2σ 2

)

The log-likelihood function is

l(E, F, C, σ 2)

= log L(E, F, C, σ 2)

= − n
2

log(2πσ 2) −
n∑

i=1

(yi − E sin(ωti) − F cos(ωti) − C)2

2σ 2

Under H0, β = β0 = (0, 0, Ĉ0, σ̂ 2
0 )�, and l0 = l(0, 0, Ĉ0, σ̂ 2

0 ), where β0

is the least square estimate of Equation 2 under H0. Under HA,
β = βA = (ÊA, F̂A, ĈA, σ̂ 2

A)� and lA = l(ÊA, F̂A, ĈA, σ̂ 2
A), where βA is

the least square estimate of Equation 2. The likelihood ratio test
statistic is: TLR = −2(l0 − lA). Since the degree of freedom is 2,
under H0, TLR ∼ χ2

2 .

Wald test

The Wald test statistic can be derived as TWald = (βA −
β0)

�I(βA)(βA − β0), where I(βA) is Fisher information matrix
evaluated at βA. Under H0, TWald ∼ χ2

2 .

Finite sample Wald/LR tests

The Wald test and the likelihood ratio test may have inflated
type I error when sample size is small since they rely on large
sample asymptotic theory. Parker [28] introduced finite sample
Wald and likelihood ratio test statistics, which could better
control the type I error rate to the nominal level even with small
sample sizes. The finite sample Wald statistics (TWald

FN ) and the
finite sample likelihood ratio statistics (TLR

FN) can be derived as
the following:

TWald
FN = n − k + 1

nr
TWald (3)

TLR
FN = n − k + 1

r

(
exp(TLR/n) − 1

)
(4)

where k = 4 is total number of parameters and r = 2 is number
of parameters of interest. Under the null hypothesis, TWald

FN ∼
F(df1, df2), and TLR

FN ∼ F(df1, df2), where df1 = r and df2 = n − k + 1.

F-test

The F-test method to detect the circadian rhythmicity has been
previously established [5]. F-test constructs its test statistic by
decomposing total variability into model sum of square, and
residual sum of square, which is closely related to our pro-
posed finite sample likelihood method. Thus, we also describe

the F-test method in our manuscript and will draw connection
between F-test and our likelihood method.

TF = (TSS − RSS)/df1

RSS/df2
∼ F(df1, df2),

where residual sum of squares (RSS) = ∑n
i=1(yi − ŷi)

2, total sum
of squares (TSS) = ∑n

i=1(yi − ȳ)2, df1 = 2 and df2 = n−3. Under the
null hypothesis, TF ∼ F(df1, df2).

Other competing methods

We will compare our proposed likelihood-based method to other
existing methods, including F-test [5], ARSER [44], Lomb–Scargle
periodograms [10], JTK CYCLE [16], RAIN [38], MetaCycle [43] and
the permutation test [4]. ARSER, RAIN, JTK CYCLE and MetaCycle
have some special requirement for the input circadian time—the
input circadian time has to be integer value, and the intervals
between two adjacent circadian time points must be the same.
Thus, we will accommodate such design in our simulation set-
tings when needed.

Differential circadian analysis

In this section, we develop likelihood-based testing procedures
to identify genes showing differential circadian patterns, includ-
ing (i) differential amplitude, (ii) differential phase, (iii) differen-
tial basal level and (iv) differential fit, as shown in Figure 1.

Denote y1i as the gene expression value of subject i(1 ≤ i ≤ n1)

in experimental condition 1, where n1 is the total number of
subjects; t1i is the circadian time for subject i; y2j is the gene
expression value of subject j(1 ≤ j ≤ n2) in experimental
condition 2, where n2 is the total number of subjects; t2j is the
circadian time for subject j. Note that y1i and y2j are from the
same gene, but under different experimental conditions. We
assume the following models:

y1i = A1 sin(ω(t1i + φ1)) + C1 + ε1i

y2j = A2 sin(ω(t2j + φ2)) + C2 + ε2j (5)

ε1i ∼ N(0, σ 2
1 ) is the error term for subject i (1 ≤ i ≤ n1) for

experimental condition 1 and ε2j ∼ N(0, σ 2
2 ) is the error term for

subject j (1 ≤ j ≤ n2) for experimental condition 2. These error
terms are assumed to be iid. A1, φ1, C1 and σ 2

1 are the amplitude,
phase, basal level and noise level for the experimental condition
1, and A2, φ2, C2 and σ 2

2 are for experimental condition 2.

Hypothesis testing framework for differential circadian analysis

Below we state the null hypothesis and the alternative hypoth-
esis for testing these four categories of differential circadian
patterns, based on Equation 5.

1. Differential amplitude: H0 : A1 = A2 = Ac v.s. HA : A1 �= A2.
2. Differential phase: H0 : φ1 = φ2 = φc v.s. HA : φ1 �= φ2.
3. Differential basal level: H0 : C1 = C2 = Cc v.s. HA : C1 �= C2.
4. Differential fit: H0 : σ 2

1 = σ 2
2 = σ 2

c v.s. HA : σ 2
1 �= σ 2

2 .

We have several remarks on our procedure. (i) As suggested
by Chen et al. [4], the circadian rhythmicity can be characterized
by the goodness of fit statistics R2. Since it is not easy to derive
statistical inference on R2, we will use a closely related quantity,
σ 2, to quantify the goodness of fit. (ii) The prerequisite for differ-
ential amplitude, differential phase, and differential basal level is
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that there should exist circadian rhythmicity in both conditions
under comparisons. Therefore, we suggested users to set P ≤ 0.01
or P ≤ 0.05 from our previous likelihood-based circadian rhyth-
micity test to ensure the existence of the circadian rhythmicity
in both conditions. (iii) The prerequisite for differential fit is that
there should exist a circadian rhythmicity in either experimental
conditions. We suggested users to set P ≤ 0.01 or P ≤ 0.05
from our previous likelihood-based circadian rhythmicity test to
ensure such prerequisite.

Likelihood ratio test

Based on Equation 5, the log-likelihood function for n1 + n2

samples in both experimental conditions is as follows:

ll(A1, φ1, C1, σ 2
1 , A2, φ2, C2, σ2

2)

=
n1∑
i=1

li(A1, φ1, C1, σ1
2) +

n2∑
j=1

lj(A2, φ2, C2, σ2
2)

=
(

− n1

2
log σ1

2 −
n1∑
i=1

(yi − A1 sin(ω(ti + φ1)) − C1)
2

2σ1
2

)

+
⎛
⎝− n2

2
log σ2

2 −
n2∑
j=1

(yj − A2 sin(ω(tj + φ2)) − C2)
2

2σ2
2

⎞
⎠ (6)

The test statistic is the following: DLR = −2(ll0 − llA), where ll0 is
the log likelihood under H0; and llA is the log likelihood under
HA. Here the null can be one of the following: (i) H0

(a): A1 =
A2 for differential amplitude; (ii) H0

(p): φ1 = φ2 for differential
phase; (iii) H0

(b): C1 = C2 for differential basal level; (iv) H0
(f):

σ 21 = σ 22 for differential fit. For all these null hypotheses, the
degree of freedom is 1, and DLR ∼ χ21 under H0. For example
when testing different amplitude, under H(a)

0 , Â1 = Â2 = Âc,
ll0 = ll(Âc, φ̂1, Ĉ1, σ̂1, Âc, φ̂2, Ĉ2, σ̂2|y); and under H(a)

A , Â1 �= Â2, llA =
ll(Â1, φ̂1, Ĉ1, σ̂1, Â2, φ̂2, Ĉ2, σ̂2|y).

Wald test

Denote p = (A1, φ1, C1, σ1
2, A2, φ2, C2, σ 2

2 )�. p0 is p under H0, where
H0 is one of the null hypotheses in Section 2.3.1; p1 is p under HA,
where there is no restriction on p. Then the Wald test statistic is
DWald = (p1 − p0)

�I(p1)(p1 − p0). Under H0, DWald ∼ χ2
1 , where I(p1)

is Fisher information matrix evaluated at p1.

Finite sample Wald/LR tests

Again, in order to control type I error for small sample sizes, we
derive finite sample version of the Wald statistics and likelihood
ratio statistics DWald

FN and DLR
FN by Equations 3 and 4. Under H0,

DWald
FN ∼ F(df1, df2), and DLR

FN ∼ F(df1, df2), where df1 = r and df2 =
n − k + 1.

Competing methods for differential circadian analysis

We will compare the performance of our method with other
existing methods, including the permutation test [4], DODR [39],
LimoRhyde [34] and circaCompare [29]. We acknowledge that
HANOVA, robustDODR and LimoRhyde are designed to detect
differential rhythmicity (i.e. whether the circadian rhythmicity
across two conditions are identical) and cannot distinguish the
four subcategories in Figure 1. Thus we will apply these two
methods in detecting differential fit, which is closely related to
differential rhythmicity conceptually; circaCompare can exam-
ine differential amplitude, differential phase and differential

basal level, while the permutation test as well as our proposed
method can examine all four types if differential circadian pat-
terns illustrated in Figure 1.

Computational consideration

Parameter estimations for Equation 1 were performed by the
nonlinear least square algorithm in R package minpack.lm [9]. In
addition, for differential circadian analysis, we used optimiza-
tion method in R package nloptr [45] for parameter estimation in
Equation 6.

SIMULATION
In terms of circadian rhythmicity detection, we demonstrated
that our proposed method correctly controlled the type I error
rate to the nominal level, while some of the other methods
failed to control the type I error rate. In terms of differential
circadian pattern detection, our method still controlled the type
I error rate to the nominal level. For differential fit, which is
one type of the differential circadian pattern shown in Figure 1b,
we demonstrated our method achieved higher statistical power
compared to the existing methods.

Simulation for circadian rhythmicity analysis

Simulation settings

Denote i(1 ≤ i ≤ n) as the sample index, where n was the
total number of samples. The circadian time ti for sample i was
generated from uniform distribution UNIF(0, 24). We simulated
the gene expression value for sample i using Equation 1.

yi = A sin(ω(ti + φ)) + C + εi.

Our basic parameter setting for simulation is listed as below.
For each gene, the sample size n was set to be 12; the circadian
time were sampled every 2 hours (i.e. t1 = 1, t2 = 3, . . .,
t12 = 23), such integer circadian time and evenly spaced interval
time are required by some other existing methods. Whenever
the statistical methods have no such requirement, we sampled
circadian time directly from UNIF(0, 24). Amplitude A was fixed
at 1; phase φ was generated from UNIF(0, 24). Basal level C was
generated from UNIF(0, 3). Error term εi was generated from nor-
mal distribution N(0, σ 2) where σ 2 was set to be 1. We simulated
G = 10 000 genes for each simulation, and each simulation was
repeated B = 10 times to increase numbers of replications and to
obtain an standard deviation estimate. To examine whether our
method is robust against higher signal-noise ratios, correlated
gene structures and violations of normality distributions, we
further simulates the following variations:

1. Impact of sample sizes. We varied n = 6, 12, 24, 48, 96 while
fixing other parameters in the basic parameter setting fixed.
Note that when n > 24, we would allow repetitive circadian
time for different samples. For example, when n = 48, the
circadian time sequence would be t1 = 1, t2 = 1, t3 = 2, . . .,
t47 = 24 and t48 = 24.

2. Impact of signal noise ratio. The signal noise ratio is defined
as A

σ
. Thus we varied σ = 1, 2, 3 to mimic varying levels of

signal noise ratio, while fixing other parameters in the basic
parameter setting.
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3. Impact of correlated genes. In transcriptomic data applica-
tions, individual genes can be correlated. Thus, we simulated
the following correlated structure. For every m = 50 genes, we
simulated

y = A sin(ω(t + φ)) + C + ε,

where y = (y1, . . . , ym), t = (t1, . . . , tm) and ε = (ε1, . . . , εm). In
this case, ε were generated from a multivariate normal distri-
bution MVN(0, �). And � ∈ R

m×m was the covariance matrix
generated from the inverse Wishart distribution W−1(�, v). In
order to mimic correlated gene structure, we first designed
�′ = (1 − ρ)Im×m + ρJm×m and then standardized �′ to cor-
relation matrix �, where Im×m was the identify matrix, and
Jm×m ∈ R

m×m a matrix with all elements 1. We fixed v to be 60,
and vary ρ = 0, 0.25, 0.5.

4. Violation of the Gaussian assumption. Instead of assuming
the error term was generated from a standard normal dis-
tribution (i.e. N(0, 1)), we generated ε1 ∼ t(3), t(5), t(10), t(∞),
where t(df) is the t-distribution with degree of freedom df .
This family of t-distributions represents long-tailed error
distribution, with smaller df indicating longer tailed error dis-
tribution, and thus larger violation of the normality assump-
tion. When df = ∞, t(∞) is the same as N(0, 1).

The best performer of the likelihood based methods in detecting
circadian rhythmicity

Before comparing with other existing methods, we first evalu-
ated the type I error rate (nominal α level 5%) of our proposed
four likelihood-based methods in detecting circadian rhythmic-
ity, including Wald test (regular), Wald test (finite sample), likeli-
hood ratio test (regular) and likelihood ratio test (finite sample).
Since the limiting distribution of both Wald statistics (finite sam-
ple) and likelihood ratio statistics (finite sample) follows an F-
distribution, we also include the F-test method [5] as benchmark.

Figure S2 showed type I error rates (nominal α level 5%) of
our proposed four methods and the F-test method. Regardless
of the varying sample sizes, the Wald test (finite sample), the
likelihood ratio test (finite sample) and the F-test controlled the
type I error rate close to the 5% nominal level, while the Wald test
(regular) and the likelihood ratio test (regular) obtained inflated
type I error rate. The Wald test (regular) and the likelihood ratio
test (regular) had better performance when sample size became
larger, which was not unexpected because these asymptotic
tests rely on large sample sizes. Remarkably, we observed that
the Wald test (finite sample) and the likelihood ratio test (finite
sample) achieved almost the same test statistics as the F-test,
indicating the finite sample approximation procedure [28] suc-
cessfully convert our likelihood-based statistics to F-statistics.

Similar results was also observed by varying signal noise ratio
(Figure S3) and varying the strength of gene correlations (Figure
S4). The Wald test (finite sample), the likelihood ratio test (finite
sample) and the F-test could better control the type I error rate
to the 5% nominal level compared to the Wald test (regular) and
the likelihood ratio test (regular).

As shown in Figure S5, when we varied the level of normality
violation by varying df of the t-distribution, we observed that all
test procedures became slightly more conservative.

In particular, for the likelihood ratio test (finite sample),
when these was a slight (df=10) or moderate (df=5) violation
of the normality assumption, this method still controlled the
type I error rate well (0.049 ∼ 0.046). When there was severe

(df=3) violation of the normality assumption, the type I error
rate was still 0.043, which was not far away from the nominal
5% level. These results indicate our method is robust against
normality assumptions. In practice, if the residuals (i.e. yi − ŷi)
violated the Gaussian distribution, we would recommend data
transformations (e.g. Box–Cox transformation [2]) to improve
normality. In supplementary material Section 1, we included a
concrete simulated example to demonstrate how to use the Box–
Cox transformation to rescue the normality assumption under
the setting of detecting circadian rhythmicity.

To summarize, the Wald test (finite sample) and the likeli-
hood ratio test (finite sample) are the best performer of our pro-
posed likelihood-based methods in detecting circadian rhyth-
micity, which could control the type I error rate to the nominal
level under the Gaussian assumption. And these two methods
are equivalent to the F-test method in terms of the test statistics.
Therefore, we will pick up the likelihood ratio test (finite sample)
as the representative of our proposed methods in detecting
circadian rhythmicity, and we denoted LR_rhythmicity as the
short name for this method in all later evaluations.

Type I error rate comparison with other methods

We compared the likelihood-based method (LR_rhythmicity)
with other existing methods in detecting circadian rhythmicity,
including Lomb-Scargle, JTK, ARSER, Rain, MetaCycle and the
permutation test. We excluded the F-test in our evaluation, since
it is essentially the same as LR_rhythmicity. Figure 3 showed type
I error rates by varying sample sizes. In general, LR_rhythmicity
and the permutation test controlled the type I error rate to the 5%
nominal level, while the other methods had inflated or deflated
type I error rate. Similar results were also observed by varying
signal noise ratio (Figure S6) and varying the strength of gene
correlations (Figure S7). As shown in Figure S8, we observed that
violation of normality assumption will lead to a slightly smaller
than expected type I error rate for LR_rhythmicity.

To summarize, under the Gaussian assumption (i.e. the resid-
uals follow normal distribution), only the LR_rhythmicity and
the permutation test can achieve nominal type I error rate
control (i.e. 5%). And when there is a violation of the Gaussian
assumption, LR_rhythmicity is robust and we only observed a
slight deviation of the type I error rate.

These type I error rates ranged from 0.038 to 0.048, which
were close to the nominal 5% level. indicating our method is
robust against normality assumptions.

Power analysis

For the power analysis, we only examined the method that could
successfully control the type I error rate to the 5% nominal
level. Otherwise, the power is directly not comparable because
it cannot be distinguished whether a higher/lower power is a
result of the test procedure itself, or because of inflated/deflated
type I error rate control. Only the LR_rhythmicity and the per-
mutation test survived these criteria. Figure S9 shows the power
with respect to varying sample sizes. Both these methods are
similarly powerful at 5% nominal level of type I error rate. When
the sample size is larger, both tests became more powerful.
However, we want to point out that the precision of the permu-
tation test depends heavily on the number of permutations. For
example, it may need at least 1,000,000 permutations in order
to achieve a P < 10−6, which could be a computational burden.
The LR_rhythmicity has no such restriction and could obtain an
arbitrarily small P-values without extra computational concerns.
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Figure 3. Type I error rate at nominal α level 5% for 7 different methods in

detecting circadian rhythmicity. The sample sizes were varied at n=6, 12, 24, 48

and 96. The blue dashed line is the 5% nominal level. A higher than 5% blue

dashed line bar indicates an inflated type I error rate; a lower than 5% blue

dashed line bar indicates a smaller than expected type I error rate; and a bar

at the blue dashed line indicates an accurate type I error rate (i.e. P = 0.05). The

standard deviation of the mean type I error rate was also marked on the bar plot.

Sensitivity analysis

To examine how the perturbations of the model parameters
affected our results, we further performed sensitivity analysis.
Based on the basic simulation settings in previous sections, we
varied A = 1, 2, 3; φ = 1, 2, 3; C = 1, 2, 3; and σ 2 = 1, 2, 3. As shown
in Table S1, the type I error control remained the same regardless
of the perturbation in A, φ, C and σ 2. In terms of the power, we
observed that φ and C had no impact. A and σ 2 had an impact
on the power, which was not unexpected because A and σ 2 are
directly related to the goodness of fit of a circadian curve.

Differential circadian analysis

In this section, we used simulation to evaluate the performance
of the likelihood-based method in detecting differential cir-
cadian patterns, including differential amplitude, differential
phase, differential basal level and differential fit. We first com-
pared among our proposed likelihood-based methods including
Wald test (regular), Wald test (finite sample), likelihood ratio test
(regular) and likelihood ratio test (finite sample). We found that
likelihood ratio test (finite sample) was the best performer of our
proposed methods. We then compared this best performer with
other existing methods for differential circadian pattern anal-
ysis, including Circacompare, limorhyde, HANOVA, robustDODR
and the permutation test under variety of simulation settings.

Simulation settings

The simulation setting is based on Equation 5. The basic param-
eter setting for simulation is listed as below. We set number
of genes G = 10 000 and the sample size n was set to be 10.
For each gene g (1 ≤ g ≤ G), amplitudes A1 = A2 were set
to be 3; phases φ1 = φ2 were generated from UNIF(0, 24). Basal
levels C1 = C2 were generated from UNIF(10, 13). Error terms εi, εj

were generated from normal distribution N(0, σ 2
1 ) and N(0, σ 2

2 ),
respectively. σ 2

1 = σ 2
2 were set to be 1. This simulation was

repeated 10 times to increase numbers of replications and to

obtain standard deviation estimate. To examine the impact of
sample size, correlation between genes and distribution viola-
tions, we further simulated the following variations.

1. Impact of sample sizes. We varied n = 10, 20, 50 while fixing
other parameters in the basic parameter setting.

2. Impact of correlated genes. For every m = 50 genes,
we simulated the correlated gene structure as described
in Section 3.1.1. We varied the strength of correlation
ρ = 0, 0.25, 0.5 while fixing other parameters in the basic
parameter setting.

3. Violation of the Gaussian assumption. As described in
Section 3.1.1, we varied the error distribution ε1 = ε2 ∼
t(3), t(5), t(10), t(∞) to mimic different levels of violation of
normality assumptions.

The best performer of the likelihood-based methods in detecting
differential circadian patterns

We evaluated the type I error rate (nominal α level 5%) of our
proposed likelihood-based methods, including Wald test (regu-
lar), Wald test (finite sample), likelihood ratio test (regular) and
likelihood ratio test (finite sample), under all pre-mentioned
simulation settings. Figures S10 and S11 show that the likelihood
ratio test (finite sample) had the best performance in terms of
type I error rate control with varying sample size or strength
of correlation among genes. Thus, we denoted this method as
LR_diff and will further compared LR_diff with other existing
methods. In Figure S12, when there was a violation of the Gaus-
sian assumption, we observed that LR_diff still controlled the
type I error rate for differential amplitude, differential phase
and differential basal levels but resulted in inflated type I error
rate of differential fit. This is not unexpected since likelihood-
based methods utilized the Gaussian assumption to derive the
test statistics. Under this situation, we would recommend users
to take transformation (i.e. Box–Cox transformation) to improve
normality (see Section 5 for more discussions).

Type I error rate comparison with other methods

We evaluated the type I error rate (nominal α level 5%) of the
following methods: LR_diff, Circacompare, limorhyde, HANOVA,
robustDODR and permutation test under different simulation
settings (See Section 3.2.1 for details). Here, LR_diff and the
permutation test are applicable for testing all four types of
differential circadian analysis in Figure 1; HANOVA, robustDODR
and LimoRhyde are designed to detect differential rhythmicity
(i.e. whether the circadian rhythmicity across two conditions are
identical) and cannot distinguish the four subcategories. Thus,
we will apply these three methods in detecting differential fit,
which is closely related to differential rhythmicity conceptually,
and Circacompare is applicable for testing differential ampli-
tude, differential phase and differential basal levels (Also see
Table 1 for their applicability).

1. Impact of sample sizes. Based on the basic parameter set-
ting, we varied n = 10, 20, 50. Figure 4 shows the type I
error rate control for the 6 methods. Among which three
methods were applicable for detecting differential ampli-
tude, differential basal level and differential phase, including
LR_diff, Circacompare and the permutation test. All these
three methods could control the type I error rate to the 5%
nominal level, though Circacompare is slightly better than
LR_diff and the permutation test. In addition, five meth-
ods were applicable for detecting differential fit, including
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Table 1. Comparison of LR_diff with other existing methods in
detecting differential circadian patterns. � indicates a method is
applicable or could control the type I error to the nominal level; ∗
indicates the most powerful method among all applicable methods.
− indicates the method could roughly control the type I error to the
nominal level, but with a non-negligible deviation

Differential
amp/phase/basal Differential fit

Applicable Type I error Applicable Type I error

LR_diff � �∗ � �∗
Permutation � �∗ � �
Circacompare � �∗
limorhyde � �
HANOVA � -
robustDODR � -

LR_diff, limorhyde, HANOVA, robustDODR and the permuta-
tion test. We observed that LR_diff, limorhyde and the permu-
tation test could control the type I error rate to the 5% nomi-
nal level, while HANOVA and robustDODR may have slightly
inflated type I error rate. We observed their performance did
not rely heavily on the sample size, which is expected since
these methods did not necessarily rely on large sample size.

2. Impact of correlated genes. Figure S13 shows the type I error
rate control by varying the strength of correlations between
genes. Similar to the previous simulation setting, we did not
observe the correlated gene structure had a big impact on
their performance.

3. Violation of the Gaussian assumption. Instead of assuming
the error term was generated from a standard normal dis-
tribution (i.e. N(0, 1)), we generated ε1 ∼ t(3), t(5), t(10), t(∞),
where t(df) was the t-distribution with degree of freedom
df . Smaller df represents longer tailed error distribution,
and thus larger violation of the normality assumption.
Figure S14 shows the type I error rate control for the six
methods. In terms of differential amplitude, differential basal
level and differential phase, LR_diff, Circacompare and the
permutation test successfully controlled the type I error rate
to the 5% nominal. In terms of differential fit, we observed
that the LR_diff would obtain inflated type I error rate,
while the performance of limorhyde, HANOVA, robustDODR
and the permutation test were similar regardless of violation
of the Gaussian assumption. This is not unexpected
because our likelihood-based method relied on the Gaussian
assumption to derive its test statistics. Under this situation,
we would recommend uses to take transformation (i.e. Box–
Cox transformation) to improve normality (see Section 5 for
more discussions).

To summarize, in terms of differential amplitude, differential
basal level and differential phase, LR_diff, Circacompare and the
permutation test could control the type I error rate to the 5%
nominal level. In terms of differential fit and under normality
assumption, LR_diff, limorhyde and the permutation test could
control the type I error rate to the 5% nominal level, while
HANOVA and robustDODR may have slightly inflated type I error
rate.

Power analysis

In principle, all methods could control the type I error rate to
the 5% nominal level, we included all these methods in the

Figure 4. Type I error rate at nominal α level 5% for six different methods

in detecting differential circadian patterns. The differential circadian patterns

include differential amplitude (Amplitude), differential phase (Phase), differen-

tial basal level (Basal) and differential fit (Fit). The sample sizes were varied at

N=10, 20 and 50. The blue dashed line is the 5% nominal level. A higher than 5%

blue dashed line bar indicates an inflated type I error rate; a lower than 5% blue

dashed line bar indicates a smaller than expected type I error rate; and a bar at

the blue dashed line indicates an accurate type I error rate (i.e. P-value = 0.05).

The standard deviation of the mean type I error rate was also marked on the bar

plot.

power evaluation (Figure 5). In terms of differential amplitude,
differential basal level and differential phase, with increasing
sample size or larger effect size, all three methods, including
LR_diff, Circacompare and the permutation test, became more
powerful. Fixing the sample size and effect size, we observed
that LR_diff and Circacompare are a little bit more powerful than
the permutation test. In terms of differential fit, remarkably, our
proposed LR_diff is much more powerful than the permutation
test, limorhyde, HANOVA and robustDODR. In addition, with
increasing sample size or larger effect size, LR_diff and the
permutation test are becoming more powerful, while the other
methods remained similar power or had a little bit elevated
power. Table 1 summarizes applicability, performance of type I
error rate control and power for all these methods.

We observed that our proposed LR_diff had very similar type
I error rate and statistical power compared to Circacompare. In
fact, both LR_diff and Circacompare were designed to address
the same question (i.e. differential amplitude, phase and basal
level) by deploying cosinor-based rhythmometry. The difference
is that LR_diff utilized a likelihood ratio test, whereas Circacom-
pare employed a non-linear least square approach. In addition,
LR_diff is capable of testing different fit, while Circacompare
cannot be used to perform this test.

REAL DATA APPLICATIONS
We evaluated our likelihood-based methods (LR_rhythmicity
and LR_diff) in four real data applications, including a gene
expression microarray data of human postmortem brain
(comparing chronological age [i.e. young versus old]), a gene
expression RNA sequencing data of human skeletal muscles
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Figure 5. Power evaluation for six different methods in detecting differential circadian patterns. The differential circadian patterns include differential amplitude,

differential phase, differential basal level and differential fit. The sample sizes were varied at N=10, 20 and 50. The standard deviation of the mean type I error rate was

also marked on the bar plot.

(comparing time-restricted feeding [i.e. restricted versus
unrestricted]), a gene expression RNA sequencing data of mouse
skeletal muscles (comparing exercise status [i.e. exercise group
versus sedentary group]) and a single cell RNA sequencing data
of mouse suprachiasmatic nucleus (no comparison groups).
Throughout this section, we used P ≤ 0.01 as the cutoff
to declare statistical significance unless otherwise specified.
Since our likelihood-based method includes both circadian
rhythmicity P-values and differential circadian pattern P-values,
we denote pc as a P-value for circadian rhythmicity detection
(i.e. from LR_rhythmicity), and pd as a P-value for differential
circadian pattern analysis i.e. from LR_diff). pd can also be
expanded as p(a)

d (differential amplitude); p(p)

d (differential phase);

p(c)
d (differential basal level); p(f)

d (differential fit). We did not
systematically compare our methods with existing methods
in the real data application, because there is no underlying
truth in the real data, and thus it is difficult to benchmark their
performance.

Human brain aging data

We first examined our methods in a transcriptomic profile in a
human postmortem brain data (Brodmann’s area 11 in the pre-
frontal cortex). Detailed description of this study has been pre-
viously described by Chen et al. [4]. The final samples included
146 individuals whose time of death (TOD) could be precisely



10 Ding et al.

Figure 6. Circadian rhythmicity for six core circadian genes in the brain aging

data, including PER1, PER2, PER3, ARNTL, NR1D1 and DBP, using LR_rhythmicity.

determined. The mean age at death was 50.7 years; 78% of the
individuals were male, and the mean postmortem interval was
17.3 hours. The TODs were further adjusted as the Zeitgeber
time (ZT), which adjusted factors including time zone, latitude,
longitude and altitude. The ZT was used as the circadian time,
which was comparable across all individuals. A total of 33 297
gene probes were available in this microarray data, which was
publicly available in GEO (GSE71620). After filtering 50% gene
probes with lower mean expression level, 16 648 gene probes
remained in the analysis.

Circadian rhythmicity detection

Under pc ≤ 0.01, we detected 528 significant circadian genes
using LR_rhythmicity. Figure 6 shows the six core circadian
genes, including PER1, PER2, PER3, ARNTL, NR1D1 and DBP,
which are known to have persistent circadian rhythmicity.
All these six circadian genes rendered significant P-values
(5.15 × 10−24 ∼ 3.59 × 10−6), showing the good detection power
of our method in identifying circadian patterns. The number
of significant circadian genes using other methods is shown in
Table S2. We further performed pathway enrichment analysis.
Using pathway analysis P ≤ 0.01 as cutoff, LR_rhythmicity
detected four pathways. The most significant pathway was
the circadian rhythm signaling pathway (P = 3.16 × 10−6). The
second most significant pathway was the senescence pathway
(P = 4.27 × 10−4), which was also known to be associated with
circadian oscillation [20].

Differential circadian analysis

In order to examine whether the chronological age was
associated with disruption of circadian patterns, we further
performed differential circadian analysis comparing the young
group and the old group using our likelihood-based method. We
first divided the 146 individuals into two groups: young group
(age ≤ 40, n=31) and old group (age > 60, n=37). Under pc ≤ 0.01,
we identified 205 genes showing circadian rhythmicity in young
group and 164 genes in old group, with a total of 363 unique
genes, and 6 common genes.

In terms of differential fit, we started with 363 candidate
genes that showed circadian rhythmicity (pc ≤ 0.01) in either
young or old. Comparing the old group to the young group
(baseline group), LR_diff identified six genes showing differential
fit (p(f)

d ≤ 0.01). As shown in Figure 1d, MYO5A is the gene
showing most differential fit (p(f)

d = 4.34 × 10−8), where there
was circadian rhythmicity in the young group, but not in the
old group. In terms of differential amplitude, differential phase
and differential basal level, we started with six candidate genes
that showed circadian rhythmicity (pc ≤ 0.01) in both young

and old groups. Comparing the old group to the young group
(baseline group), our likelihood-based method identified one
gene showing differential amplitude (p(a)

d ≤ 0.01), four genes
showing differential phase (p(p)

d ≤ 0.01) and two genes showing
differential basal level (p(b)

d ≤ 0.01). Figure 1A– 1C showed the
most significant genes in terms of differential amplitude (CIART,
P = 0.008), differential phase (PER2, P = 5.43 × 10−5) and basal
level (TRIB2, P = 2.88 × 10−6) comparing young and old groups,
respectively.

Due to the small sample size and relatively weak transcrip-
tomic alterations in brain tissues, the number of candidate genes
for differential circadian analysis was small. Thus, we further
relaxed the criteria to be pc ≤ 0.05, and we identified 897
rhythmic genes in the young group and 846 rhythmic genes in
the old group. In terms of differential fit, among 1688 genes
that showed circadian rhythmicity (pc ≤ 0.05) in either young
or old group, LR_diff identified 345 genes showing gain or loss
of rhythmicity. In terms of differential amplitude, differential
phase and differential basal level, we started with 55 candidate
genes that showed circadian rhythmicity (pc ≤ 0.05) in both
young and old groups. Comparing the old group to the young
group (baseline group), LR_diff identified 2 genes showing dif-
ferential amplitude, 23 genes showing differential phase and 19
genes showing differential basal level.

Human time-restricted feeding data

We evaluated the performance of our likelihood-based meth-
ods in transcriptomic profiles of mouse skeletal muscle tissue.
Eleven overweight or obese men were included in this dataset;
the age range was 30–45 years; the body mass index range was
27–35 kg/m2. These participants were randomized into time-
restricted feeding (TRF) group and the un-restricted feeding
(URF) group by adopting a cross over design, where each par-
ticipant was assigned to both TRF and URF groups in different
time periods. The skeletal muscle samples of each participant
under each experimental group were repeatedly measured every
4 hours over 24 hours. There were some missing measurement,
but each participant had 4 ∼ 6 measurement, resulting in a total
of 63 samples in restricted group and 62 samples in unrestricted
group. Detailed description of this study has been previously
published [24]. This RNA-seq dataset is publicly available in GEO
(GSE129843). After filtering the genes with mean cpm less than
1, 13 167 gene probes remained for further analysis. We further
performed log2 transformation (i.e. log 2(x + 1), where x is the
cpm of a gene in a sample) to improve the normality of the data.

Circadian pattern detection

We first applied the LR_rhythmicity method to this time-
restricted feeding dataset. Under pc ≤ 0.01, we identified 1407
and 935 genes showing significant circadian rhythmicity for
the restricted group and the unrestricted group, respectively.
Figure S15 and S16 shows the six core circadian genes in the TRF
group and the URF group, including PER1, PER2, PER3, ARNTL,
NR1D1 and DBP, which are known to have persistent circadian
rhythmicity. For these six circadian genes for the restricted
group and the unrestricted group, our method (LR_rhythmicity)
yielded highly significant P-values (1.35 × 10−8 ∼ 1.65 × 10−21),
showing the strong detection power of circadian rhythmicity.
The number of significant circadian genes using other methods
is shown in Table S2. We further performed pathway enrichment
analysis. Using ppathway ≤ 0.01 as cutoff, our likelihood methods
detected 61 and 105 significant pathways for the TRF group
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and URF group, respectively. The top pathways enriched in both
groups included circadian rhythm signaling pathway, prolactin
signaling pathway and IGF-1 signaling pathway; both these
pathways are related with circadian rhythmicity [6, 27].

Differential circadian analysis

We further performed differential circadian analysis comparing
TRF and URF groups using LR_diff. In terms of differential fit, we
started with candidate genes that showed circadian rhythmicity
(pc ≤ 0.01) in either restricted or unrestricted (n=1864). Com-
paring the TRF group to the URF group (baseline group), LR_diff
identified 57 genes showing differential fit (p(f)

d ≤ 0.01). The most
significant gene, RUFY1, is shown in Figure S17D, where there
was a rhythmicity in the TRF group but not in the URF group.

In terms of differential amplitude, differential phase and
differential basal level, we started with candidate genes that
showed circadian rhythmicity (pc ≤ 0.01) in both TRF and URF
(n=478). Comparing TRF to URF, 11 genes showing differential
amplitude (p(a)

d ≤ 0.01), 25 genes showing differential phase
p(p)

d ≤ 0.01 and 8 genes showing differential basal level p(b)

d ≤ 0.01.
Figure S17A–C showed the most significant genes for differential
amplitude, phase and basal level comparing TRF and URF groups,
respectively.

Mouse exercise data

We further evaluated the performance of our proposed methods
in an RNA-seq gene expression profile generated from mouse
skeletal muscle. A total of 69 mice samples were collected,
which can be divided to the sedentary group and exercise group
(acute treadmill exercise). Skeletal muscles were harvested after
0, 4, 8, 12, 16 and 20 hours after sedentary or exercise treat-
ment. Detailed description of this study has been previously
published [32]. This RNA-seq dataset is publicly available in
GEO (GSE126962). With 11 461 gene probes after filtering, we
performed log2 transformation [i.e. log 2(x + 1), where x is the
cpm of a gene in a sample] to improve the normality of the data.

Circadian pattern detection

We first applied the LR_rhythmicity method to this mouse
exercise dataset. Under pc ≤ 0.01, we identified 621 and
752 genes showing significant circadian rhythmicity for the
sedentary group and the exercise group, respectively. Figures S18
and S19 show the six core circadian genes in the sedentary group
and the exercise group, including Per1, Per2, Per3, Arntl, Nr1d1 and
Ddp, which are known to have persistent circadian rhythmicity.
For these six circadian genes for the sedentary group and the
exercise group, our method (LR_rhythmicity) obtained highly
significant P-values (6.76 × 10−5 ∼ 2.23 × 10−17), demonstrating
the strong detection power of circadian rhythmicity. The number
of significant circadian genes using other methods is shown in
Table S2. Using ppathway ≤ 0.01 as cutoff, our likelihood methods
detected 25 and 63 significant pathways for the sedentary group
and exercise group, respectively. We further performed pathway
enrichment analysis and found that the circadian rhythm
signaling pathway is the top pathway for both the sedentary
group and the exercise group. In addition, the NRF2-mediated
oxidative stress response pathway was very significant in the
exercise group (P = 3.2 × 10−8), but much less significant in the
sedentary group (P = 0.002). This is consistent with the literature
that Nrf2 pathway plays important roles in mediating oxidative
stress after acute exercise [8].

Differential circadian analysis

We further performed differential circadian analysis compar-
ing sedentary and exercise groups using LR_diff. In terms of
differential fit, we started with candidate genes that showed
circadian rhythmicity (pc ≤ 0.01) in either sedentary or exercise
(n=1060). Comparing the exercise group to the sedentary group
(baseline group), LR_diff identified 32 genes showing differential
fit (p(f)

d ≤ 0.01). The most significant gene, Maff , is shown in
Figure S20D, where there was a rhythmicity in the exercise group
but not in the sedentary group. In terms of differential ampli-
tude, differential phase and differential basal level, we started
with candidate genes that showed circadian rhythmicity (pc ≤
0.01) in both sedentary and exercise groups (n=313). Comparing
the exercise group to the sedentary group, four genes showing
differential amplitude (p(a)

d ≤ 0.01), 10 genes showing differential
phase p(p)

d ≤ 0.01 and 33 genes showing differential basal level
p(b)

d ≤ 0.01. Figure S20A–C showed the most significant genes for
differential amplitude, phase and basal level comparing seden-
tary and exercise groups, respectively.

Mouse single-cell RNA Sequencing (scRNAseq) data

In mammals, the suprachiasmatic nucleaus (SCN) is considered
as the master pacemaker to overarch prepheriphal circadian
clocks. To examine circadian pattern at single cell level in SCN,
we applied the LR_rhythmicity algorithm in a mouse SCN scR-
NAseq data. The scRNAseq data are publicly available under
GSE117295, and detailed descriptions about these data were
described elsewhere [42]. To be brief, mice were housed in a 12
hour light:dark cycle for 2 weeks, followed by 2 days constant
darkness. During the constant darkness period, these mice were
separately sacrificed at 12 circadian time points (CT14, CT18,...
CT58). A total of 62 071 cells from all 12 mouse samples were
pooled together for data analysis. After applying the following
filtering procedures: (i) cells with less than 200 genes were
removed; (ii) dead cells with less than 5% mitochondrial genes
detection ratio were removed, 59 803 cells remained and were
used for clustering analysis. The data were further normal-
ized using the LogNormalize method with a scale factor 10,000.
Top 2000 highly variable genes were identified using the vst
method of the Seurat package [37], followed by principal compo-
nent analysis. Cell clustering analysis was performed by using a
graph-based local moving algorithm [41]. To visualize the clus-
ters in a 2-dimensional plot, we performed dimension reduction
via t-distributed stochastic neighbor embedding [40]. Eighteen
clusters were identified, which were further merged into seven
unique cell types (Figure S21) after comparing brain cell signa-
ture genes [42]. Number of cells for each cell type is shown in
Figure S22A. For each of these seven cell types, we performed the
LR_rhythmicity analysis to detect genes with circadian rhyth-
micity, respectively.

Circadian pattern detection

As shown in Figure S22B, under pc ≤ 0.01, neurons had the most
number of circadian genes (n=4658), followed by oligodendro-
cytes (n=2219), ependymocytes (n=1431), astrocytes (n=1156),
endothelials (n=1044), NG2_cells (n=760) and microglia (n=458).
A total of 28 genes showed circadian rhythmicity pattern across
all these seven cell types. Figure S23 shows the core circadian
genes (Arntl, Dbp, Nr1d1, Per1, Per2 and Per3) by cell types. We
found Dbp (P-values ranged from 6.67 × 10−158 ∼ 8.17 × 10−9)
and Per3 (P-values ranged from 1.08 × 10−18 ∼ 1.84 × 10−3)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab224#supplementary-data
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showed circadian rhythmicity in all seven cell types. Interest-
ingly, Arntl showed circadian rhythmicity pattern in ependy-
mocytes, endothelials, neurons and NG2_cells (P-values ranged
from 1.30 × 10−15 ∼ 3.93 × 10−3), but not in astrocytes, microglia
or oligodendrocytes (P-values ranged from 0.012 ∼ 0.706), indi-
cating a potential cell type specific circadian rhythmicity pattern
for Arntl in mouse SCN.

DISCUSSION

In summary, we developed a series of likelihood-based methods
for detecting (i) circadian rhythmicity and (ii) differential circa-
dian patterns. In terms of circadian rhythmicity detection, our
method (LR_rhythmicity) could better control the type I error
rate to its nominal level (i.e. produce an accurate P-values) than
the other competing methods. In terms of differential circadian
patterns, our likelihood-based method is the first parametric
method to characterize four subcategories of differential cir-
cadian patterns, including differential amplitude, differential
phase, differential basal level and differential fit. Simulation
shows that our method (LR_diff) successfully controlled the type
I error rate to the 5% nominal level for all four types of dif-
ferential circadian patterns under the Gaussian assumption. In
addition, LR_diff was more powerful than the competing meth-
ods in terms of differential fit. We also applied our methods in
transcriptomic data applications including a human brain aging
gene expression microarray data, a human time restricted feed-
ing data, a mouse exercise RNA sequencing data, and a mouse
SCN single cell RNA sequencing data. Superior performance has
been observed in these applications.

Our methods have the following strengths. (i) The type I error
rates of both LR_rhythmicity and LR_diff were well controlled,
indicating the P-values from these methods are accurate. While
in the literature, it remained a concern about the type I error
rate control for existing methods in terms of detecting circa-
dian rhythmicity. (ii) Some methods require integer input circa-
dian time, and even intervals between adjacent circadian time,
while our methods have no such restrictions. Circadian time
from modern epidemiology studies usually unevenly distributed
between 0 hours and 24 hours. Thus, our method can be more
applicable in biomedical applications. (iii) For examining differ-
ential fit, our method is statistically more powerful compared
to other existing methods. (iv) LR_rhythmicity is robust against
the violation of the Gaussian assumptions. As shown in our
simulation, the severe violation of the Gaussian assumptions
will only result in slightly smaller than expected type I error
rate. We feel that being slightly conservative is not a bad thing
because this won’t contribute false positive results.

Our methods could potentially suffer from the following
limitation. Our proposed methods are based on likelihood,
which assume the residuals (i.e. yi − ŷi) are normally distributed.
The violation of the Gaussian assumptions may result in an
inflated/deflated type I error rate for some of our methods. In
this case, we would recommend users to check the normality
assumptions of the residuals. If the residuals violated the Gaus-
sian assumption, we would recommend data transformations
(e.g. Box–Cox transformation) before applying our method. We
have included a concrete example to show how to use the
Box–Cox transformation to rescue the normality assumption
in Supplementary Material Section 1.

We plan to do the following future works. (i) In epidemiology
studies, many other biological factors (e.g. age, gender, etc.)
could have a confounding impact on the circadian rhythmic-

ity. Adjusting for covariates may potentially improve parameter
estimations and biological interpretations. Our likelihood-based
framework is capable of being extended to adjust for covari-
ates. (ii) To the best of our knowledge, no circadian rhythmicity
detection method could handle repeated measurement from the
same individuals. For example, the time restricted feeding data
example employed a cross-over design, and the 11 participants
with each participant repeatedly measured four to six times. By
extending our methods to model this within subject correlation,
we would expect higher power to detect circadian rhythmicity
and differential circadian patterns. An R package for our method
is publicly available on GitHub https://github.com/diffCircadian/
diffCircadian.

Key Points
• Systematically evaluated the accuracy of P-values in

detecting circadian rhythmicity of our likelihood-based
methods and other existing methods.

• The first to propose likelihood-based methods to iden-
tify four subcategories of differential circadian patterns.

• Systemically evaluated our likelihood-based methods
in detecting differential circadian patterns, and com-
pared with existing methods in terms of the correctness
of P-value and statistical power.

• Implemented our proposed methods in R software
package, which has been made publicly available on
GitHub.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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