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Abstract

Antimicrobial resistance (AMR) is a major global health threat that affects millions of people each year. Funding agencies
worldwide and the global research community have expended considerable capital and effort tracking the evolution and
spread of AMR by isolating and sequencing bacterial strains and performing antimicrobial susceptibility testing (AST). For
the last several years, we have been capturing these efforts by curating data from the literature and data resources and
building a set of assembled bacterial genome sequences that are paired with laboratory-derived AST data. This collection
currently contains AST data for over 67 000 genomes encompassing approximately 40 genera and over 100 species. In this
paper, we describe the characteristics of this collection, highlighting areas where sampling is comparatively deep or shallow,
and showing areas where attention is needed from the research community to improve sampling and tracking efforts. In
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addition to using the data to track the evolution and spread of AMR, it also serves as a useful starting point for building
machine learning models for predicting AMR phenotypes. We demonstrate this by describing two machine learning models
that are built from the entire dataset to show where the predictive power is comparatively high or low. This AMR metadata
collection is freely available and maintained on the Bacterial and Viral Bioinformatics Center (BV-BRC) FTP site ftp://ftp.
bvbrc.org/RELEASE_NOTES/PATRIC_genomes_AMR.txt.
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Introduction
Antimicrobial resistance (AMR) occurs when a microorganism
becomes resistant to a compound that is intended to kill or
arrest its growth [1]. Resistance can spread rapidly through hori-
zontal gene transfer mechanisms and the unintended selection
of resistant strains [1–3]. This spread is typically fueled by the
overuse or incorrect administration of antibiotics in both clinical
and agricultural settings [1, 4–8], and the problem is worsened
by a lack of uniform international policies governing antibiotic
stewardship [8–11]. As a result, AMR causes considerable morbid-
ity and mortality for patients worldwide, with correspondingly
severe economic impacts [8, 12, 13]. Indeed, AMR is predicted to
cause approximately 700 000 deaths worldwide each year, and
costs 55 billion dollars annually in the USA due to health care
related expenses and lost productivity [8, 12]. In the last few
decades, the discovery and development of new antimicrobial
compounds has not kept pace with the spread of resistance, so
this global health concern that used to be managed by selecting
from a variety of efficacious drugs has become more alarming
as the arsenal of effective antibiotics has dwindled [1, 14, 15].

In the clinic and at the bench, AMR is typically assessed
using antimicrobial susceptibility testing (AST) methods that
detect the growth of an organism in the presence of a known
concentration of an antibiotic [16, 17]. These are often measured
as minimum inhibitory concentrations (MICs) or by measuring
the size of a zone of inhibition in a disk diffusion or test-strip
assay on a plate [16, 17]. Several diagnostic devices, including
the BD Phoenix (Becton Dickinson) and VITEK 2 (bioMérieux)
instruments, are commonly used to perform rapid AST testing in
the clinic [16–18]. Establishing whether an organism is resistant
or susceptible to an antibiotic is then performed by comparing
the test results with clinical breakpoints, which are established
by organizations such as the Clinical and Laboratory Standards
Institute (CLSI) or the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) [19–21]. These AST data are fre-
quently published in studies tracking AMR epidemiology and
genetics [22–27].

Genome sequence data provide an alternative view of
AMR, enabling researchers to assess the genetic mechanisms
conferring AMR in each strain [28–30]. Many publicly available
resources have been developed to help determine AMR
phenotypes based on the presence of resistance-conferring SNPs
and genes [31–39]. Coupling AST data with genome sequences
also offers the potential to discover regions of the genome that
are directly involved in resistance, have changed as a result
of epistasis, or that correlate with the presence of AMR [28,
29]. This is typically done through genome wide association
studies or with machine learning techniques [40–52]. The use
of machine learning algorithms for predicting AMR phenotypes
and identifying genomic regions associated with resistance has
generated considerable interest in the literature over the last
few years [53–55].

A major challenge in developing machine learning tech-
niques for predicting phenotypes or identifying AMR-related
genomic features is the difficulty in obtaining genome sequences
paired with laboratory-derived AST data [41, 56–58]. Although it
is customary for researchers to submit genomes to a public
repository before publication, this is not a prerequisite for AST
data [59, 60]. This makes it difficult to quickly collect datasets
that are large enough for modeling. Once the data are obtained,
other issues arise from ensuring that the dataset is balanced
across phenotypes, phylogenetically and geographically diverse,
and representative of the AMR mechanisms that exist in nature
or the clinic [41, 42, 45, 61, 62]. In general, these data do not
accumulate evenly. Sampling tends to reflect the prioritization
of certain pathogens over others, along with the missions and
needs of public health agencies and the populations that they
serve [60, 63]. To help with this problem, several resources
including NCBI, EMBL-EBI, the Relational Sequencing TB Data
Platform, AR Isolate Bank and Pathogenwatch maintain sets of
genomes that are paired with AST data for use in downstream
analyses, including comparative genomics and modeling [64–69].

For several years, we have been collecting bacterial genomes
and manually curating AST data from a variety of sources [70].
The purpose of this paper is to describe this AST data collection,
use it to evaluate areas where sampling within the collection is
comparatively shallow or deep, and demonstrate how it can be
used for predicting AMR and guiding future research.

Characteristics of the AST data collection

The data collection consists of a set of assembled and uniformly
annotated bacterial genomes with laboratory-derived AST data
for each isolate [71]. The data are housed and maintained within
the Bacterial and Viral Bioinformatics Resource Center (BV-BRC),
which is the umbrella project operating the bacterial Pathosys-
tems Resource Integration Center (PATRIC) [70]. The AST data
for each genome have been curated primarily from the lit-
erature, data resources including NCBI, direct submissions to
the PATRIC resource, and projects that have been supported by
the United States National Institute of Allergy and Infectious
Diseases (NIAID) (Table 1) [64]. In addition, at least 218 stud-
ies publishing AST data with sequenced genomes have been
curated from the literature for use in this collection (Table S1).
As of November 2020, the collection contains 67 817 bacterial
genomes with some form of AST data covering 38 bacterial
genera. These data are most frequently represented as either
MICs or susceptible, intermediate and resistant (SIR) calls based
on a standard set of breakpoints. In some cases, phenotypes have
been recorded as ‘reduced susceptibility’, ‘non-susceptible’, etc.
by the original authors, and these calls have been kept in their
original form. In addition to MICs and SIR calls, the collection
also contains diameter sizes for zones of inhibition. In cases
where the genomes have been deposited in GenBank, the origi-
nal assemblies were integrated into PATRIC [72]. However, many
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Figure 1. Histograms depicting (A) the number of genomes for the top organisms in the AST data collection, and (B) the average number of antibiotics tested per isolate.

Whisker bars depict the standard deviation.

Table 1. Characteristics of the AST data collection

Genomes 67 817

Genera 38
Species∗ 88
Antibiotics 128
MICs 324 134
Phenotype calls (e.g. SIR) 356 206
Measurement methods ∼20
Publication sources ∼218

∗Count does not include unnamed species with a ‘sp.’ designation.

of the genomes corresponding to these isolates were deposited
in either SRA or ENA as reads, and were subsequently assem-
bled using the PATRIC assembly service prior to integration [40,
73, 74]. Approximately 36 000 genomes in this collection were
assembled from reads.

The data collection is mostly comprised of pathogens, with
Mycobacterium tuberculosis, Salmonella enterica, Streptococcus pneu-
moniae and Neisseria gonorrhoeae currently having the largest
number of genomes with AST data (Figure 1A). The data for
many of the highly represented species are the result of sequenc-
ing efforts led by large consortia, such as CRyPTIC (Compre-
hensive Resistance Prediction for Tuberculosis: an International
Consortium) and TB ARC (Tuberculosis Antibiotic Resistance
Catalog Project), and genomic surveillance programs that are led
by large public health agencies such as NARMS (the National
Antimicrobial Monitoring System), which consolidates monitor-
ing and outbreak tracking efforts from the United States Food
and Drug Administration, Centers for Disease Control and Pre-
vention, US Department of Agriculture, and other Public Health
agencies [75–78]. However, a variety of smaller studies have
published data covering over 88 species.

Across all organisms, data have been reported for approxi-
mately 128 antimicrobial compounds. Most of these compounds
are well known antibiotics that are used extensively in the
clinic. The compounds that have been tested on each isolate
vary due to the organism’s physiology, risks to patients, and
the original study design and scope (Figure 1B). For example,
many studies have focused heavily on extended spectrum beta-
lactamase producing Gram-negative pathogens, methicillin and
vancomycin resistant Gram-positives, and resistance to antimy-
cobacterial drugs in M. tuberculosis (Figure 2). Data on experimen-
tal compounds, topical antibiotics and antibiotics that are used
in veterinary settings are present in the collection, but are less
common. SIR determinations are more common than the MICs,
and although many species have a handful of organisms with
MIC data, the most deeply sampled MIC datasets correspond
with A. baumannii, C. jejuni, E. cloacae, E. coli, K. pneumoniae, N.
gonorrhoeae, P. aeruginosa, S. enterica and S. pneumoniae (Figure 3).

Data coverage and considerations

To our knowledge, this is one of the largest publicly available
AST data collections that is paired with genome sequence data.
Although it contains a large number of species, strains, genomes
and antibiotic resistance phenotypes, there are sampling biases
that exist due to the limited availability of data. For example,
there are several important bacterial pathogens that are con-
spicuously underrepresented in the collection, including E. coli,
which has only 4217 genomes with AST data. By comparison,
there are just under 30 000 E. coli genomes in the PATRIC data
resource. Considering that E. coli is one of the most intensely
studied organisms and one of the most common Gram-negative
bacterial pathogens in hospital systems worldwide, it is strik-
ing that such a small number of studies have published AST
data and associated sequences for this pathogen [44, 79–84].
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Figure 2. Counts of susceptible and resistant isolates with sequenced genomes for each species and antibiotic in the AST data collection. The category (susceptible

or resistant) with fewer genomes is depicted. The color scale is capped at 500 genomes. Antibiotic abbreviations are defined in Table S2. Unnamed species with a ‘sp.’

designation are not shown.

Figure 3. Counts of sequenced isolates with a given MIC for each species and antibiotic in the AST data collection. MICs are shown on the left. The color scale is capped

at 500 genomes. Antibiotic abbreviations are defined in Table S2.

The related Shigella species are similarly underrepresented. In
these cases, and that of other important surveillance organisms
including Campylobacter, Enterobacter and Enterococcus, the efforts
of genomic surveillance and source tracking projects are actively
improving data coverage [85]. On the other hand, anaerobic
organisms, including Clostridium difficile, are underrepresented
due to the added difficulty in growing and testing these iso-
lates. Many non-human pathogens commonly seen in veteri-
nary and agricultural settings, and important environmental
isolates, which may be acting as reservoirs of resistance, are also
underrepresented. Despite these limitations, data continue to
accumulate for more diverse organisms over time.

In addition to the variation in species sampling, the data
collection also has biases that are related to the geographical
sampling and the mission objectives of funding agencies. For
instance, M. tuberculosis sampling skews heavily toward Asian,
African and South American countries where tuberculosis is
problematic and individual nations and the research commu-
nity are focusing on surveillance (Figure 4). On the other hand,
sampling of N. gonorrhoeae is heavily biased toward the USA,

Canada and the UK. In some cases, the deepest sampling is
the result of sequencing during outbreaks, which can also skew
the data phylogenetically. For example, most of the S. enter-
ica serovar Paratyphi and Typhi data are from outbreaks from
the Indian Subcontinent and Southeast Asia [86–91]. We expect
some of these sampling biases to become less dramatic as more
studies publish AST data, however; local outbreaks, endemic
disease burdens and biased geographic sampling will continue
to remain important considerations when using these data for
downstream studies.

Because the sampling of genomes with AST data often
reflects certain study goals, such as surveillance for resistance
to certain classes of antibiotics, sequencing during outbreaks,
and sequencing in the event of antimicrobial treatment failure,
there can be differences in the underlying AMR gene content of
the genomes in the AST data collection when compared with
other publicly available genomes, or what might be expected in
naturally occurring bacterial populations. As an illustration of
this, Table S3 shows examples where there are large differences
in the fraction of PATRIC genomes encoding various AMR genes

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab313#supplementary-data
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Figure 4. The country of isolation for genomes in the AST data collection. The top four species with the most genomes are shown: (A) Mycobacterium tuberculosis, (B)

Neisseria gonorrhoeae, (C) Salmonella enterica and (D) Streptococcus pneumoniae. The legend depicts the number of genomes from each country. Global map courtesy of Free

Vector Maps.com.

versus the subset of these genomes represented in the AST
data collection. For example, there are currently 13% more E. coli
genomes encoding TEM-type beta lactamases in the AST data
collection versus all E. coli genomes in PATRIC, and there are 18%
fewer genomes encoding OXA-23-type beta-lactamases in the
A. baumannii genomes in the AST data collection versus all of
A. baumannii genomes in PATRIC. These sampling differences
should be taken into consideration when conducting analyses
and evaluating the generalizability of models that are built from
the data.

Using machine learning to predict AMR phenotypes
and genomic regions

Advancements in artificial intelligence (AI) methods, and the
development of software packages that support their use, have
led to an explosion of interest in using these methods to advance
our understanding of biology [92, 93]. One of the reasons for gath-
ering and curating this AST data collection is to help advance our
ability to predict AMR phenotypes and identify genomic regions
that may be associated with resistance.

Many machine learning studies building predictive models
from AST data have been published in recent years. The way
that these models are constructed can differ depending on the
research objectives, but models are typically built either as clas-
sifiers, which predict discrete phenotypes such as SIR calls, or as
regressors, which predict a numeric value in a rage, such as MICs.
In either case, the features are often derived from the genome
sequence data, and studies have used nucleotide and amino
acid k-mers of various lengths, SNPs, gene content, phylogeny
and combinations thereof to predict AMR phenotypes [41–46,
51, 52, 94, 95]. These features are given to the machine learning
algorithm in the form of a matrix of frequencies or counts of each
feature, and the machine learning identifies the features that
best distinguish each category in order to make the prediction.

In previous work, we have built machine learning models
using nucleotide k-mers of various sizes as features and several
ensemble methods, including adaptive boosting (AdaBoost), ran-
dom forest and extreme gradient boosting (XGBoost), to predict
both SIR calls and MICs [41–43, 49]. The experimental design and
computing requirements often dictate the choice of algorithm,
parameters and k-mer lengths for these models. For example, we
have used k-mer lengths ranging in size from 7 to 31 nucleotides.
Shorter oligonucleotide k-mer lengths usually result in smaller
matrix files, lower memory usage and faster compute times
because there are fewer k-mer combinations. This can enable
modeling on a larger number of genomes, but if the k-mer size
is too small, the model accuracy begins to decay. Also, as the k-
mer length decreases, they occur more frequently in the genome,
making the interpretation of the important features more chal-
lenging. In our experience, k-mers that are 7–10 nucleotides
in length are usually sufficient for good computing times and
accuracies, and slightly longer k-mers of approximately 14–15
nucleotides usually provide the uniqueness needed for feature
lookup.

Many of the machine learning algorithms allow the user to
extract the top features that were used by the model to make
the prediction. This offers the potential of using the algorithms
as a research tool. When AMR models are based on sequence
data, such as nucleotide k-mers or alignments, the top features
often correspond with regions of the genome that are known to
be involved in resistance [42, 43, 45, 46, 48, 51, 52, 61, 96]. Several
previous studies building AMR prediction models have found
top features in known AMR genes, resistance-conferring SNPs
in housekeeping genes and integration sites for AMR conferring
genetic elements, such as SCCmec [41–43, 45, 46, 48, 49, 51, 52, 61,
83, 96]. Other features, including SNPs in transporters and viru-
lence factors that are correlated with resistance are also often
found to contribute to the models [96]. In addition, these models
frequently identify features in regions of the genome that are
not known to be involved in resistance, such as SNPs in genes

Maps.com
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Figure 5. F1 scores for an XGBoost model built to classify susceptible and resistant phenotypes. One model was built using nucleotide 7-mers as input features for all

species with at least 75 susceptible and resistant genomes. The coloring depicts the F1 score for each antibiotic-species combination based on a 5-fold cross-validation.

The ‘All’ category depicts the average F1 score for each species and antibiotic, respectively. Antibiotic abbreviations are defined in Table S2.

encoding metabolic functions [43, 46, 51, 52, 96]. In these cases,
the direct relationship between the features found by the models
and AMR phenotypes can be difficult to interpret. It is possible
that some of these features may have a previously unrecognized
role in AMR, or that they are compensatory epistatic changes
that occurred as resistance became fixed in a given lineage
[46, 51, 96]. In any case, the features found by a machine learning
model can be thought of as a set of testable hypotheses, and they
offer a useful starting point for downstream analyses.

The AST data collection as an exemplar data frame for
modeling

To demonstrate the utility of the AST data collection for model-
ing, we built a classifier for predicting susceptible and resistant
phenotypes across all of the species in the collection with at least
75 resistant and susceptible genomes (Figure 5). This represents
a large number of genomes and compute resource consumption
relative to models previously built by the group. To accommodate
the large number of genomes, we used 7-mer oligonucleotides
as features and trained the model using XGBoost, as described
previously [41–43]. Overall, the F1 score for the entire model,
averaged over each fold of a 5-fold cross-validation, is 0.925
[0.924–0.927, 95% confidence interval]. We also built a regression
model to predict MICs using 7-mers and XGBoost using similar
parameters (Figure 6). In this case, the average accuracy for the
model, within ±1 two-fold dilution step (which is the limit of
resolution for most AST methods), is similarly high when there
is sufficient sampling of genomes corresponding to a given MIC
value for a species. In both cases, the models show that most of
the AMR phenotypes in the collection with good sampling depth
are predictable.

In general, the quality of these models often tracks with
sampling, with the undersampled bins usually having lower
accuracies. However, there are cases where the sampling is
relatively deep, but the F1 scores and accuracies remain low.
For example, in K. pneumoniae there are 860 and 528 genomes
with AST data for tetracycline and tigecycline, but the F1 scores
for these antibiotics are only 0.763 and 0.781, respectively. In
these cases, more detailed examination of the data is required
to understand the low F1 scores. For example, there could be
issues with the underlying dataset relating to biases in sampling,
phylogeny, genome quality, AST methods, etc. There could also
be a genuine biological reason for the low accuracies such as
phenotypes that are not hard-coded in the genome, including
gene expression differences or persistence phenotypes. In either

scenario, the model serves as a useful starting point for both
curation and research. It is also important to recognize that
in the reverse case, where accuracies are high but sampling is
low, more data are needed to ensure that the models remain
generalizable. In these cases, it is often best to retrain a model
as new data become available.

As data coverage improves and new modeling strategies are
applied to the data, we will likely see incremental improvements
in AMR prediction accuracies and their ability to generalize.
In particular, several studies describing deep learning-based
approaches have been published, and could offer a framework
for improvement [45, 48, 82, 97]. This may eventually lead to
diagnostic quality models that could be applied to whole genome
or metagenomic sequence data.

Similar modeling approaches have also been used in source
tracking projects to predict host organisms for E. coli and S.
enterica strains [98–102], and may eventually be used on other
phenotypes as data become available. An incisive use of machine
learning models for feature extraction is also beginning to help
disentangle our understanding of the epistatic changes and
other previously unrecognized genomic changes that are corre-
lated with AMR [46, 51, 96].

Concluding remarks
The objective in collecting and curating this AST dataset is to
provide a resource to the research community that can be reused
and shared. Well-curated structured datasets are required for
building high-quality machine learning models and other tools.
This is especially important in the biological sciences. The AST
data provide a quantifiable phenotype for bacteria, so they offer
one of the best opportunities for advancing AI in this space.
Indeed, several machine learning studies have made use of this
data collection, and they illustrate the many different ways that
the data can be used for modeling [41–43, 45, 46, 49, 51, 52, 61,
96, 103, 104]. In addition to modeling, the data offer a means
of identifying genomic regions involved in resistance and could
aid in the development novel antibiotics and countermeasures
to help prevent the spread and burden of AMR.

This data collection would not exist without the many contri-
butions to science by the research community. We have curated
the data as a means to advance the field, but consideration
should be given to the authors of the original studies. Collecting
these data from the literature, which includes the curation of
data from supplemental spread sheets, tables and figures can
be challenging and labor intensive. We strongly encourage data

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab313#supplementary-data


A resource of genomes with AST data 7

Figure 6. Accuracies for an XGBoost model built to predict MICs. One model was built for all species with at least two different MICs, and 450 genomes for each antibiotic

using nucleotide 7-mers as input features. The coloring depicts accuracy for predicting the MIC for each antibiotic and species based on a 5-fold cross-validation.

Accuracies are reported within ±1 two-fold dilution step, which is the limit of resolution for most automated MIC detection methods. Antibiotic abbreviations are

defined in Table S2.

generators to submit AST data to NCBI using their structured
antibiogram template. This ensures that the data are publicly
available and long-lasting. It also reduces the potential errors
that can result from secondary curation efforts.

As the field advances toward having millions of bacterial
genomes, we should take a moment to look back upon the
value of this massive data generation effort. In many cases,
genomes are sequenced for the purposes of observing a natural
phenomenon, such as looking for resistance genes or monitoring
an outbreak. However, AI methods can be used to enable the
design of targeted sequencing experiments aimed at solving
specific biological problems and filling gaps in our current
knowledgebase. As the cost of sequencing has gone down,
projects that aim to sequence large strain collections with
diverse phenotypes have become achievable and could lead to a
wide range AI-enabled discoveries. For example, in addition to
AMR, there are many other phenotypes that could be measured
and collected, such as virulence and growth requirements, but
sequenced genomes with these data remain surprisingly scarce
[105, 106]. It is also possible that the aggregation of different
types of metadata could lead to improvements in the accuracy or
interpretability of AMR and other phenotype prediction models.
In our opinion, more attention should be given to generating and
storing metadata to improve the overall value and reusability of
genome sequences. To this end, we hope that this AST data
collection will serve as a reference point for designing targeted
studies that will more rapidly improve our knowledge and ability
to fight AMR.

Key Points
• Antimicrobial resistance (AMR) is a major global

health threat.
• A necessary tool in studying and predicting AMR are

genomes paired with phenotypes from laboratory-
derived antimicrobial susceptibility tests (AST) for a
given isolate.

• In this paper, we describe a curated collection of over
67 000 publicly available genomes with AST data and
demonstrate how it can be used to predict resistance
phenotypes.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.

Data availability

The AST data collection is currently maintained on the
PATRIC FTP site (ftp://ftp.patricbrc.org/RELEASE_NOTES/PA
TRIC_genomes_AMR.txt), and is now also mirrored on the
BV-BRC FTP site (ftp://ftp.bvbrc.org/RELEASE_NOTES/PATRI
C_genomes_AMR.txt). Genomes and features can be down-
loaded by using the PATRIC and BV-BRC websites, FTP sites
and the PATRIC command line interface tools (https://do
cs.patricbrc.org/cli_tutorial/#installing-the-cli-release). The
modeling code and the AST data file used to build the models
can also be found at https://github.com/BV-BRC/AMRMetada
taReview_2021.
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