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Abstract

DNA N6-methyladenine is an important type of DNA modification that plays important roles in multiple biological
processes. Despite the recent progress in developing DNA 6mA site prediction methods, several challenges remain to be
addressed. For example, although the hand-crafted features are interpretable, they contain redundant information that may
bias the model training and have a negative impact on the trained model. Furthermore, although deep learning (DL)-based
models can perform feature extraction and classification automatically, they lack the interpretability of the crucial features
learned by those models. As such, considerable research efforts have been focused on achieving the trade-off between the
interpretability and straightforwardness of DL neural networks. In this study, we develop two new DL-based models for
improving the prediction of N6-methyladenine sites, termed LA6mA and AL6mA, which use bidirectional long short-term
memory to respectively capture the long-range information and self-attention mechanism to extract the key position
information from DNA sequences. The performance of the two proposed methods is benchmarked and evaluated on the
two model organisms Arabidopsis thaliana and Drosophila melanogaster. On the two benchmark datasets, LA6mA achieves an
area under the receiver operating characteristic curve (AUROC) value of 0.962 and 0.966, whereas AL6mA achieves an AUROC
value of 0.945 and 0.941, respectively. Moreover, an in-depth analysis of the attention matrix is conducted to interpret the
important information, which is hidden in the sequence and relevant for 6mA site prediction. The two novel pipelines
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developed for DNA 6mA site prediction in this work will facilitate a better understanding of the underlying principle of
DL-based DNA methylation site prediction and its future applications.
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Introduction
Epigenetics is regarded as a critical component of genetics,
which can be expressed at different levels including protein
posttranslational modifications, RNA interference, DNA modifi-
cations, etc. Briefly, epigenetics results in heritable gene expres-
sion or cell phenotype changes through certain mechanisms
without changing the sequence [1]. As a novel epigenetic reg-
ulation, DNA methylation is discovered across various species
and is found to be closely correlated with a myriad of biological
processes such as cell differentiation, neural development and
cancer suppression [2, 3]. Different types of methylation can
occur with respect to the different positions of modifications.
For example, 4-methyl-cytosine (4mC) occurs at the 4th posi-
tion of the pyrimidine ring of cytosine, 5-methyl-cytosine (5mC)
appears at the 5th position of the pyrimidine ring, whereas 6-
methyl-adenine (6mA) occurs on the 6th position of the purine
ring of adenine [4]. Among all of those mentioned above, 4mC
and 5mC have been extensively studied due to their widespread
distributions.

For a long time, 6mA had been believed to occur only
in bacteria, whereas the distribution and the function of
6mA in eukaryotes had remained largely unknown because
it was not detectable in early-stage studies [5]. In recent
years, benefiting from the advances and applications of high-
throughput sequencing technology, 6mA has also been detected
in eukaryotic species [6–12]. 6mA sites can be detected through
a series of wet-lab experimental methods, which include
but are not limited to methylated DNA immunoprecipitation
sequencing [13], capillary electrophoresis and laser-induced flu-
orescence [14] and PacBio single-molecule real-time sequencing
[15]. The experimental results provide a wealth of information
and meanwhile also suffer from obvious shortcomings, such
as high expense and low efficiency. 6mA sites are sparsely
and unevenly distributed across the genome; our current
understanding of the functional role of 6mA modification is still
limited. Therefore, predicting 6mA sites at single-nucleotide
resolution and exploring the key information surrounding
the targeted methylation sites are of great significance to the
characterization of their role in epigenetic regulation of gene
expression and associations with human diseases.

Several computational methods have been developed for
6mA site prediction in eukaryotes. Early-stage methods focus
on the representation and extraction of hand-crafted features
and employ traditional machine learning algorithms for making
the prediction. For example, Chen et al. [16] proposed the
first Machine Learning (ML)-based method i6mA-Pred for 6mA
site identification, which uses support vector machine (SVM)
and utilizes nucleotide chemical properties and nucleotide
frequency as the input features. i6mA-DNCP [17] employs dinu-
cleotide composition and dinucleotide-based DNA properties
to represent the input DNA sequence and uses a bagging
classifier for the prediction. iDNA6mA-Rice [18] adopts the
mononucleotide binary encoding for sequence representation
and utilizes Random Forest for classification. SDM6A [19] uses
five different encodings to identify the optimal feature sets as

the input into SVM and extremely randomized tree classifiers.
6mA-Finder [20] uses the recursive feature elimination strategy
to select the optimal feature group from seven types of
sequence-derived features and three physicochemical-based
features. Hand-crafted features such as accumulated nucleotide
frequency, frequency of certain k-mer motifs, electronion
interaction pseudopotential, position-specific triple-nucleotide
propensity and pseudo nucleotide composition are often being
used for sequence representation [21–24]. In addition, statistical
models have also been employed. For example, MM-6mAPred
[25] uses a 1st-order Markov model for identifying 6mA sites
in the rice genome. However, the combination of hand-crafted
features and machine learning classifiers is widely used to
process the genomic sequence, which inevitably suffers from
certain disadvantages. For example, manually crafted features
have redundant information and are very subjective, although
they are interpretable. Besides, the hidden information in the
sequence is often neglected, making it difficult for the manually
crafted features to be explored as an optimal option for training
the classifiers. With the development of deep learning (DL), some
sequence-based end-to-end algorithms have been employed
for 6mA site identification. These methods include iDNA6mA
(five-step rule) [26], SNNRice6mA [27], DeepM6A [28], Deep6mA
[29] and i6mA-DNC [30] all of which are convolutional neural
network (CNN)-based models by taking one-hot encoding of
the sequence as the input. In particular, i6mA-DNC [30] splits
the DNA sequences into dinucleotide components before being
fed into the CNN model to detect the N6-methyladenine sites.
Deep6mA [29] combines CNN with LSTM to predict 6mA sites
and finds that similar patterns around 6mA sites are shared
across different species.

Despite the promising predictive performance, DL-based
models are often criticized as ‘blackbox’ and suffer from issues
such as lack of interpretability. A typical workflow of DL is as
follows: The encoded sequences are fed into a DL-based model,
and then the hyperparameters or structures are further modified
to achieve better performance. In this context, a natural question
to ask is why the model could make accurate predictions? What
important information did it learn from the input sequences
and use for making the final prediction? From the end users’
perspective, understanding how and why it works are much
more meaningful than just training an accurate model based
on trial-and-error efforts. There have been some ongoing efforts
in using CNN-based methods to learn characteristic motifs that
correspond to the regulators associated with the mechanism
of DNA methylation. Each filter of the first convolutional layer
can be regarded as a motif detector, which is widely used to
understand how the network responds to an input sequence [31–
33]. Meanwhile, in the field of natural language processing, an
increasing number of studies have also been recently conducted
to leverage and interpret the attention mechanism in an effort
to improve the model interpretability [34–37].

In light of the achievements already made in DNA 6mA site
prediction, we are curious about which key information the
model pays special attention to when making the prediction. In
this study, two end-to-end methods are proposed for 6mA site
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Table 1. Statistical summary of the datasets curated in this study

Dataset Positive Negative Total

Arabidopsis thaliana 19 616 19 616 39 232
Drosophila melanogaster 10 653 10 653 21 306

prediction, termed LA6mA and AL6mA. These two sequence-
based methods extract sequence features automatically and
distinguish 6mA site from non-6mA site using the DNA sequence
as the only input, thereby avoiding the trouble and overreliance
on the extraction of hand-crafted features. In addition, bidirec-
tional long short-term memory (Bi-LSTM) is used to capture the
important short-range and long-range information from DNA
sequences, and the self-attention mechanism is also adopted
to capture the position information of the sequences. Through-
out the benchmarking experiments, different combinations of
LSTM and self-attention mechanism are adopted to examine
the efficiency of the methods. Detailed analyses of the attention
matrix are also conducted, including the key positions of input
sequences, the variation of attention vectors when attending
to these key positions and similarities and differences of the
attention layers from the two models and two model organisms.
The differences in the attention layer for both true positive
(TP) examples and true negative (TN) examples are found to be
beneficial for our understanding of why the models make correct
predictions. Extensive experiments demonstrate the competi-
tive performance of the proposed LA6mA and AL6mA methods
in comparison with other existing state-of-the-art methods for
6mA prediction. An online web server of AL6mA and LA6mA are
implemented and made publicly accessible at http://csbio.nju
st.edu.cn/bioinf/al6ma/.

Materials and methods
In this section, we will first provide a description of the cura-
tion of the benchmark datasets and then introduce the two
proposed methods. Implementation of the methods and perfor-
mance evaluation metrics will also be provided afterward.

Benchmark datasets

In this study, the DNA 6mA data of the two model organisms
Arabidopsis thaliana and Drosophila melanogaster were taken from
[28]. The raw data came from the PacBio public database [38].
Candidates were further filtered out by excluding those with the
sequence variance located between 10 bp upstream and 5 bp
downstream of the identified modification site and the variation
ratio of the estimated methylation level of greater than 30%.
After this filtering procedure, 19 632 and 10 653 6mA sites for
A. thaliana and D. melanogaster were obtained, respectively. Non-
6mA sites of the same number were used as negative samples.
Each non-6mA site was at least 200 bp away from any neigh-
boring 6mA site. For more detailed information on the data set
construction, please refer to [28].

We further screened the sequences to weed out those
sequences that contained sites with uncertain DNA bases.
Finally, 19 616 positive samples and 10 653 positive samples
were retained for A. thaliana and D. melanogaster, respectively. A
statistical summary of the two datasets is provided in Table 1.
For each organism, the samples were randomly divided with a
ratio of 9:1 as the training and independent test datasets.

Feature representation

The proposed models take as the input a DNA sequence centered
on 6mA site or non-6mA site. The binary one-hot encoding
scheme is adopted to represent the input DNA sequences with
the following rules: A = [1, 0, 0, 0], C = [0, 1, 0, 0], G = [0, 0, 1, 0] and
T = [0, 0, 0, 1]. Such encoding scheme makes the elements in the
encoding matrix correspond to the bases in the input sequence,
which is convenient for the analysis of the attention matrix/vec-
tor. Accordingly, each DNA sequence of length L is converted
to a 2D matrix of the size L × 4 after the encoding. The length
of each sequence is 41 bp, which is composed of 20 flanking
nucleotides at each side and the centered adenine site (refer
to the Supplementary Figure S1 for performance comparison of
models trained with different lengths of flanking sequence, with
experimental details in the Supplementary Material S1).

Network architecture

The input sequences are encoded and fed into the end-to-end
networks directly. DNA data analysis is analogous to natural
language processing [39], in which recurrent neural networks
(RNNs) can be used to process the sequential data. As a popular
and powerful RNN architecture, long short-term memory (LSTM)
[40] has been widely used to address sequence analysis problems
[41] and has achieved excellent performance. Here we employ Bi-
LSTM to capture the short-range and long-range information of
DNA sequences. The use of LSTM makes up the shortcoming for
the lack of time information in the one-hot encoding. The archi-
tecture of each LSTM unit is shown in Figure 1E. The formulas of
each LSTM unit can be expressed as:

it = σ
(
Wi × [ht−1, xt] + bi

)
(1)

ft = σ
(
Wf × [ht−1, xt] + bf

)
(2)

∼
ct = tanh

(
Wc × [ht−1, xt] + bc

)
(3)

ct = ft ∗ ct−1 + it ∗ ∼
ct (4)

ot = σ
(
Wo × [ht−1, xt] + bo

)
(5)

ht = ot ∗ tanh (ct) (6)

where it, ft and ot denote the input gate, forget gate and out-
put gate, respectively.

∼
ct and ct are new memory cell and final

memory cell, respectively. htis the hidden state vector at the
position t. xt is the input vector at the position t. Wi, Wf , Wc

and Wo are weight matrices that need to be learned. bi, bf ,
bc and bo are bias vectors of the corresponding parts. [ht−1, xt]
represent the concatenation of the vector ht−1 and vector xt.σ ( )
and tanh( ) are the sigmoid function and hyperbolic tangent
function, respectively. ∗ is the element-wise multiplication.

In addition to the Bi-LSTM architecture, the attention mech-
anism is also employed to capture the position information of
the DNA sequence. It was originally proposed to solve machine
translation tasks [42] and has proven to be capable of identifying
the key information [43]. In recent years it has been applied to
bioinformatics to address the problems faced by RNNs [44] and
has been shown to achieve a competitive performance in a wide
range of biological sequence analysis problems [45–47]. Hence, it
is adopted in this study to investigate the key information that
affects DNA methylation site prediction. The attention layer is

http://csbio.njust.edu.cn/bioinf/al6ma/
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4 Zhang et al.

Figure 1. Network architectures of the proposed LA6mA and AL6mA methods for the prediction and analysis of DNA 6mA sites: (A) network architecture of LA6mA;

(B) analysis of the attention matrix of AL6mA; (C) analysis of the attention matrix of LA6mA; (D) network architecture of AL6mA and (E) network architecture of an

LSTM unit.

able to compute the weight coefficients matrix T ∈ RL×k using
the following formula:

T = softmax (s (M, Q)) (7)

where M ∈ RL×k is the input matrix, Q ∈ RL×L represents the
weight matrix of attention and s(M, Q) is the attention scoring
function represent as s(M, Q) = MT × Q.

To address the problem of DNA N6-methyladenine site iden-
tification, we proposed two networks based on Bi-LSTM and the
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attention mechanism. The frameworks of the proposed AL6mA
and LA6mA methods are illustrated in Figure 1. As can be seen,
both networks take the encoded matrix as the input; however,
there are some differences in the network structures of the two
methods.

The framework of LA6mA is shown in Figure 1A. Its Bi-LSTM
layer is connected to the encoding matrix firstly, in which two
bidirectional LSTM layers with num_units set of 32 are employed.
Then each time step of LSTM is used to connect the attention
layer, and the parameter k in the weight coefficient matrix
T ∈ RL×k equals 32. Finally, the attention layer is flattened and
connected to the output after the fully connected (FC) layer. The
number of nodes in the FC layer is set to be 100.

The structure of AL6mA is a little different from that of
LA6mA, as shown in Figure 1D. The input sequence of length
L is encoded and then directly connected with the attention
layer. After the attention layer is one bidirectional LSTM layer,
the parameters of which are as follows: num_units set is at 128,
whereas the time_steps is set at 41. Finally, the output of the last
time step of Bi-LSTM is used as the final predict result.

It is noteworthy that the two proposed methods are not
merely used to predict potential methylation sites. They also
enable us to perform an in-depth analysis of the hidden infor-
mation that the model pays attention to and utilizes to make the
prediction. Figure 1B and C depict how the attention matrices are
analyzed and interpreted for this purpose.

Implementation

The models are implemented in Keras (version 2.3.1) and trained
on one NVIDIA TITAN X GPU. The batch size is set to be 128.
The Adam optimizer is employed with the default learning rate
of 0.001, beta_1 = 0.9, beta_2 = 0.999, and a learning rate decay
of 0.5 with patience of 7. 5-fold cross-validation is performed
to determine the model structure and hyperparameters on the
training data. After the model structure is determined, we take
8/9 (about 8/10 of the whole dataset) and 1/9 (about 1/10 of
the whole dataset) of the training data to train and verify the
trained model, respectively. Early stopping with patience of 7
is adopted on the validation set to avoid overfitting, which
means the training process will terminate when the prediction
performance does not improve on the validation set.

Performance measurement

Five performance measures are adopted to assess the perfor-
mance of the proposed methods. Among these, four perfor-
mance metrics for evaluating the binary prediction output can
be derived from the confusion matrix. These include sensitivity
(Sen), specificity (Spe), accuracy (Acc) and Matthew’s correlation
coefficient (MCC), which are respectively defined as follows:

Sen = TP
TP + FN

(8)

Spe = TN
TN + FP

(9)

Acc = TP + TN
TP + FP + TN + FN

(10)

MCC = TP × TN − FP × FN√
(TP + FP) × (TN + FN) × (TP + FN) × (TN + FP)

(11)

where TP, false positive (FP), TN and false negative (FN) represent
the numbers of TPs (i.e. number of correctly predicted samples

as 6mA sites), FPs (i.e. number of incorrectly predicted samples
as 6mA sites), TNs (i.e. number of correctly predicted samples
as non-6mA sites) and FNs (i.e. number of incorrectly predicted
samples as non-6mA sites), respectively. In addition, the area
under the receiver operating characteristic (ROC) curve (AUC)
is also used as a measure to comprehensively evaluate and
compare the performance of different models.

Results and discussion
Rapid identification of key positions

As shown in Figure 1B and C, the attention matrix T ∈ RL×k

is extracted from each input sequence being fed into AL6mA
or LA6mA. Then the rows of the attention matrix are averaged
and the matrix is transformed into an attention vector with
the same length as the input sequence. These vectors can be
used to identify the key positions relevant for making the pre-
diction by the model. Specifically, for an input DNA sequence
articulated as S = S1, S2, . . . , Si, . . . , SL, where L was the length
of the sequence, it was converted into an attention vector V =
[v1, v2, . . . , vi, . . . , vL]T ∈ RL. A larger value of vi meaned Si made a
more important contribution to the prediction result.

We selected all the TP samples (i.e. correctly predicted 6mA
sites) in the test dataset to generate the final attention vec-
tors and displayed them in an intuitive way. Figure 2 illustrates
the experimental results on A. thaliana by AL6mA and LA6mA,
including randomly initialized attention vectors, attention vec-
tors of the final model and changes in the attention vectors.

Figure 2C and F display the randomly initialized attention
vectors of the AL6mA and LA6mA methods, respectively. As can
be seen, the initial attention weights of AL6mA appeared to
be distributed randomly throughout the sequence (Figure 2C),
which obviously differed from each other. In the case of LA6mA,
its initialized attention weights were almost evenly distributed
(Figure 2F). When an input sequence was fed into an initial-
ized LA6mA model, the LSTM layer extracted the features of
the sequence, which were then passed into the attention layer.
That is the main reason why the values in the extracted initial
attention vector of LA6mA were distributed evenly.

Figure 2A and D show the final attention vectors of AL6mA
and LA6mA, respectively. Regardless of the distribution of the
initial attention, it is apparent that the weights of the central
region in the attention of the final model are larger than those of
the marginal region. This suggests that the central region made
more contributions to the prediction of the final result. Further-
more, we conjecture that the right flanking region contributed
more to the prediction than the left flanking region. Specifically,
the region of [−2, 9] made the most significant contributions to
the prediction in terms of the values of the attention weights.
From a biological perspective, mutations in this region might
affect the methylation possibility of the centered adenine site,
which has been confirmed in [48]. In addition, the changes in
methylation caused by such mutation may lead to abnormal
biological processes.

To observe the changes of the attention vectors, the attention
weights were extracted during model optimization. The changes
are then displayed as 3D graphics, shown in Figure 2B and E.
It can be seen that, in accordance with the increase of the
epochs, the values of the central regions increased, whereas
the values of the marginal regions decreased, highlighting that
the models could automatically focus on the key areas during
the optimization. Surprisingly, the changes of the attention vec-
tors that attended to the key positions appeared to occur after
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Figure 2. Characterization of the attention vectors of the AL6mA and LA6mA methods for predicting 6mA sites in A. thaliana: (A) attention vectors of well-trained

AL6mA; (B) changes of the attention vectors of AL6mA for 10 epochs; (C) randomly initialized attention vectors of AL6mA; (D) attention vectors of well-trained LA6mA;

(E) changes of the attention vectors of LA6mA for 10 epochs and (F) randomly initialized attention vectors of LA6mA. The x-axis of the panels B and E represents the

position of the sequence; the y-axis denotes the increase of epochs, whereas the z-axis denotes the value of the attention vector, respectively.

only a few epochs, and as the iteration progressed, the values
of the attention vectors were being constantly fine-tuned and
eventually reached the plateau. Figure 2B and E verified rapid
identification of the key positions that are relevant for making
the prediction by the model.

Similarities and differences of different attention layers

In this section, we performed a detailed analysis of the attention
vectors on the two model organisms. The attention vectors of
AL6mA and LA6mA on A. thaliana are displayed in Figure 2A and
D. The final attention vectors of the well-trained AL6mA and
LA6mA on D. melanogaster are displayed in Figure 3.

We made the following important observations:

(i) The right flanking region made more important contribu-
tions to the prediction than the left flanking region. In
general, the values of the attention vectors within the region
of [−2, 9] were comparably larger. It is also worth noting
that LA6mA and AL6mA exhibited different characteristics
with respect to the attention vectors. More specifically, the
attention vectors calculated by the final LA6mA model of
two model organisms seemed to be more similar (e.g. both
values at the positions −2, −1, 3 and 4 were larger), whereas
the attention vectors of the AL6mA model appeared to be
significantly different (e.g. the values at the positions 0, 2, 6
and 7 were larger for A. thaliana, whereas the values at the

positions −2, 0, 1, 2 and 3 were larger for D. melanogaster).
These results suggest that the attention mechanism could
indeed attend to the key differential features and was good
at identifying key areas of universality. In contrast, the
attention layers connected to the original sequence tended
to find the key positions of individuality.

(ii) Although for both AL6mA and LA6mA, the attention
weights of the central region were larger than those of
the marginal region, they differed from each other in
terms of the distribution of values. Taking Figure 3A and
B as an example, the attention weight of the central
region for the AL6mA method was considerably larger
than that of the marginal region (approximately 7–12
times larger). In contrast, the weight difference for the
LA6mA method was only 2.5–4 times larger. This result
was not due to the different initialization values, but
due to the use of different structures. For the LA6mA
method, the attention layer was placed following the
feature extraction layer and thus resulted in the attention
distraction.

(iii) For the AL6mA method, there existed an abnormal region
whose weight increased at the end of the right flanking
region (i.e. the position −18, 19 and 20 for A. thaliana and the
positions −18 for D. melanogaster, respectively). In addition, it
can be observed that they gradually increased with increas-
ing iterations, as shown in Figure 2B. A possible explanation
is that only the output of the last time step of LSTM was
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Figure 3. Distributions of the final attention vectors of AL6mA and LA6mA for predicting 6mA sites in D. melanogaster: (A) attention vectors of AL6mA and (B) attention

vectors of LA6mA.

Figure 4. Sequence logo representations of the nucleotide preferences of the upstream and downstream positions surrounding 6mA sites and non-6mA sites: (A) A.

thaliana and (B) D. melanogaster. The height of each base represents its over- or underrepresentation at the given positions, whereas the red line indicates significant

enrichment.

used for making the prediction. Therefore, after continuing
the iteration for some time, the attention weight of the right
end would become larger. But fortunately, this change did
not affect the pattern of the central key region.

In summary, the LA6mA method placed the attention layer
after the feature extraction layer prior to being connected to
an FC layer. Thus, the attention layer of the LA6mA model
paid attention to the extracted features instead of the original
sequence. To a certain extent, the attention may be distracted
and become more abstract. On the other hand, the AL6mA model
directly connected the attention layer to the input matrix, which
paid attention to the underlying information and facilitated the
discovery of the key position information.

AL6mA revealed key nucleotides for 6mA prediction

As aforementioned, the attention vectors of LA6mA reveal key
areas of universality, whereas AL6mA tends to find the key posi-
tions of individuality. The attention layer in AL6mA is directly
connected to the encoding matrix, and the size is the same as
that of the input 2D matrix. In this section, we further analyzed
the detailed parameters in the attention layer of AL6mA.

To facilitate the analysis of the attention mechanism, we
used pLogo [49] to generate the sequence logo representations
for each position in the aligned groups of sequences. Specif-
ically, the sequences surrounding the A bases at the center
of A. thaliana and D. melanogaster were examined and motifs
identified. The base heights were adjusted according to the
statistical significance with P-value <0.05. As shown in Figure 4,
in both datasets, the enriched and depleted nucleotides in the

DNA sequences surrounding the 6mA and non-6mA sites were
significantly different.

For the well-trained model, an attention matrix with the size
of L × 4 can be extracted from each input sequence. Differ-
ent attention matrices were obtained from different sequence
inputs, and the values in the attention matrix reflect which
specific areas the model paid attention to when making the
prediction. As shown in Figure 5A, the heatmap provides a visu-
alization of the matrix, in which the values were highlighted by
dark or light colors, with darker colors indicating larger values of
the attention matrix, whereas lighter colors being the opposite.

Widespread short nucleotides of DNA sequences that are
conjectured to have a functional role are defined as DNA
sequence motifs [50]. In this context, except for the key area
with a single sequence, we also analyzed the results based on
a set of samples. Specifically, all the test samples were fed into
the well-trained AL6mA model and accordingly all the attention
matrices were extracted. Subsequently, the attention matrices
of the TP and TN samples were picked out to calculate the mean
value of the attention matrices. The mean attention matrix could
be further mapped to a sequence to indicate the amount of
information provided by different positions in the sequence.
Figure 5B and C and Figure 6 show the results on A. thaliana and
D. melanogaster, respectively. Taking the middle site in Figure 5B
as an example, which referred to an adenine encoded with
[1, 0, 0, 0], it shows that the 1st position (i.e. adenine) provides
more important information than the other three positions.

We further revealed key nucleotides for 6mA prediction in
lieu of the importance of each location in the key area through
the analyses of the attention matrices of the TP examples and
TN examples. With reference to the attention matrix in Figure 5B
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Figure 5. Illustration of the attention matrix of AL6mA for predicting 6mA sites of A. thaliana. It consists of (A) heatmap of key areas for a single input sequence; (B)

attention matrix for TPs and (C) attention matrix for TNs. The darker colors in the heatmap indicate larger values in the attention matrix, whereas lighter colors denote

the opposite. The height of the cones in B and C is proportional to the contribution to the prediction.

Figure 6. Illustration of the attention matrix of AL6mA for predicting 6mA sites of D. melanogaster. (A) Attention matrix for TPs. (B) Attention matrix for TNs.

and C and Figure 6, we list the key nucleotides that collectively
contributed to the correct prediction. The key nucleotides for A.
thaliana and D. melanogaster are listed in Tables 2 and 3, respec-
tively. We consider the number of statistically significant bases.
Taking the position 1 in the Sequence logo of positive samples in
Figure 4A as an example, both nucleotides C and G were found
to be statistically significant. Thus, the two nucleotides with the
highest height at the position 1 in Figure 5B are listed in the
Table. Comparing the key nucleotides with the result of statisti-
cal significance one by one, we can find that for the TP samples,
only several key nucleotides weight share consistent patterns
with nucleotide sequence logos, whereas most key nucleotides
are different from the nucleotide sequence logos. Specifically, for
the TP samples of A. thaliana, only the positions −1, 1, 2 and 7

share the same pattern with the sequence logos (G, C/G G/C, G
respectively). And for the TP samples of D. melanogaster, only the
positions −1, 1, 2, 4, 7 shared the same motifs (G, G, G, A, A/G).
In contrast, for the TN samples of the two model organisms, the
nucleotides with the high attention weight are almost identical
to the sequence logos.

This is an interesting phenomenon. The correct prediction
of negative samples is largely attributed to the attention to
enriched nucleotides. For the type of binary classification prob-
lem, the number of negative samples is huge. The experiment
randomly selects samples with the same number of positive
samples as negative samples. If the algorithm needs to iden-
tify negative samples correctly, it should pay attention to the
distribution of nucleotides. The correct prediction mechanism
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Table 2. Key nucleotides at specific positions for A. thaliana

−2 −1 0 1 2 3 4 5 6 7 8 9

TP A/C G A C/G G/C A C/T C A G C/G A
TN A/T T/C/G A C/T T A T C/G A C/T C/G A/T

Table 3. Key nucleotides at specific positions for D. melanogaster

−3 −2 −1 0 1 2 3 4 5 6 7

TP G G G A G G T/A A A/G – A/G
TN A/T A C/G/T A A/T T/C/G C A/T A/T – A

Table 4. Performance comparison of the proposed AL6mA and LA6mA methods with LA6mA-al and AL6mA-al with the removal of the attention
layer on the test datasets

Dataset Method Sen Spe Acc MCC AUROC

Arabidopsis thaliana LA6mA 0.899 0.917 0.909 0.817 0.962
LA6mA-al 0.904 0.891 0.897 0.794 0.958
AL6mA 0.862 0.905 0.884 0.768 0.945
AL6mA-al 0.854 0.888 0.871 0.743 0.935

Drosophila melanogaster LA6mA 0.909 0.915 0.912 0.824 0.966
LA6mA-al 0.896 0.907 0.902 0.803 0.962
AL6mA 0.840 0.916 0.878 0.758 0.941
AL6mA-al 0.866 0.872 0.869 0.738 0.937

of the positive sample is different. The key nucleotides are not
the same as significant distribution. It automatically pays more
attention to the C site and G site.

Impact of the attention layer on the model performance

In this section, we investigated the potential impact of the atten-
tion layer on the model performance. Specifically, we removed
the attention layers of LA6mA and AL6mA, respectively, and
compared the performance of these methods. For convenience,
the attention-layer-removed LA6mA is named as LA6mA-al, and
the attention-layer-removed AL6mA is named as AL6mA-al. The
performance results on the test datasets are shown in Table 4.
It can be seen that nearly all the performance measures of the
models without the attention layer decreased, compared with
those of the corresponding models with the attention layer.
Of the five performance measures in Table 4, AUROC can be
regarded as a comprehensive prediction performance measure
as it does not rely on the prediction cutoff threshold. LA6mA-
al and AL6mA-al achieved an AUROC of 0.958 and 0.935 on A.
thaliana, which were 0.004 and 0.01 lower than that of LA6mA
and AL6mA, respectively. On the dataset of D. melanogaster,
LA6mA-al and AL6mA-al achieved an AUROC of 0.962 and
0.937, which were decreased by 0.004 and 0.004, compared
with that of LA6mA and AL6mA, respectively. On the other
hand, the results highlight effectiveness of the attention layer
on the performance of the two proposed methods. It can be
seen from Table 4 that LA6mA performed better than AL6mA
with an improvement of 0.017 and 0.025 in terms of AUROC on
A. thaliana and D. melanogaster, respectively. The performance
difference is due to by their different structures (Figure 1A
and D). In addition, it is worth mentioning that with the
attention layer removed, LA6mA-al still performed better than
AL6mA. This is because LA6mA used the FC layers, but AL6mA
did not.

Performance of the proposed models on 5-fold
cross-validation

We evaluated the performance of the proposed models on the
training datasets on 5-fold cross-validation. To do so, we ran-
domly divided the training datasets into five nonoverlapping
subsets. In each validation step, four subsets were used to train
the model, whereas the remaining subset was used to test the
performance of the trained model. The unweighted averages of
the 5-fold cross-validation were calculated as the final results.
To make a fair comparison, the division of the subsets was fixed
for the methods on the same model organisms. The average
performance results, along with the SD, are provided in Table 5.
It can be seen that LA6mA achieved the best performance. The
AUROC value was 0.960 and its SD was 0.002 on A. thaliana,
whereas the AUROC value was 0.963 and its SD was 0.003 on
D. melanogaster, respectively. The performance of AL6mA was
slightly lower than that of LA6mA. The SD of the performance
measures of LA6mA ranged from 0.002 to 0.016, whereas those of
AL6mA ranged from 0.003 to 0.018, which reflects the robustness
of the proposed models on the 5-fold cross-validation.

Performance comparison with the existing methods

The categories of the methods mentioned in the introduction
section can be generally categorized into three major groups,
i.e. ML-based models, statistical models and DL-based models.
To evaluate the performance of our two methods for predicting
m6A sites, we further compared them with both DL-based meth-
ods and classical k-mer-based logistic regression (LR) method.
The compared DL-based methods include DeepM6A [28], i6mA-
DNC [30] and iDNA6mA [26]. All the methods used the same
training dataset and test set to make a fair performance com-
parison. Table 6 summarizes the main characteristics of the
compared 6mA site prediction methods, including the features
employed, performance evaluation strategy, the corresponding
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Table 5. Performance of the proposed AL6mA and LA6mA methods using 5-fold cross-validation

Dataset Method Sen Spe Acc MCC AUROC

Arabidopsis thaliana LA6mA Average 0.895 0.908 0.901 0.803 0.960
SD 0.014 0.002 0.003 0.006 0.002

AL6mA Average 0.852 0.897 0.874 0.750 0.938
Standard 0.015 0.018 0.005 0.010 0.003

Drosophila melanogaster LA6mA Average 0.911 0.902 0.906 0.812 0.963
SD 0.004 0.013 0.008 0.016 0.003

AL6mA Average 0.859 0.895 0.877 0.755 0.942
SD 0.013 0.015 0.009 0.017 0.006

Table 6. A summary of the main characteristics of the compared methods for 6mA site prediction

Method/Tool Year Features Evaluation strategy Speciesa Code or web server

DeepM6A [28] 2020 One-hot encoding 10-fold
cross-validation

Arabidopsis thaliana (19 632 + 19 632),
Drosophila melanogaster
(10 653 + 10 653),
Escherichia coli (33 700 + 33 700)

https://github.com/tanfei2007/Dee
pM6A/tree/master/Code

i6mA-DNC [30] 2020 Dinucleotide
components

10-fold
cross-validation

Rice (880 + 880) http://nsclbio.jbnu.ac.kr/tools/i6mA-
DNC/

iDNA6mA [26] 2019 One-hot encoding Independent test Rice (880 + 880) http://nsclbio.jbnu.ac.kr/tools/iDNA6
mA/

species and the number of samples as well as the availability of
code or web server.

The source code of DeepM6A [28] was downloaded from
https://github.com/tanfei2007/DeepM6A/tree/master/Code. To
make a fair comparison, we maintained its structure and
hyperparameters, adopted the same optimizer with an early
stopping strategy and used the final well-trained models for
the prediction. The length of the input sequence was adjusted
to 41, consistent with the length used in the original DeepM6A
work. For both A. thaliana and D. melanogaster, the models were
trained on the training datasets independently without transfer
learning. i6mA-DNC [30] and iDNA6mA [26] were reimplemented
on the same dataset in this work. The k-mer encoding scheme, a
commonly used method of DNA sequence encoding, was used to
generate all the possible subsequence frequencies of the input
DNA sequences. We set the length of the subsequences as 3, so
that each sequence was encoded as a vector of length 64.

We used the scikit-learn library to train the LR model (https://
scikit-learn.org/stable/modules/generated/sklearn.linear_mo
del.LogisticRegressionCV.html). Five-fold cross-validation was
performed to obtain the optimal parameters for the 3-mer-LR
method. Table 7 summarizes the performance results of the six
different 6mA prediction methods on the two test datasets. In
Table 7, the performance values of Sen, Spe, Acc and MCC were
calculated based on the prediction cutoff threshold set as 0.5. To
facilitate the performance comparison, the values of Sen were
calculated by fixing the Specificity. In addition the ROC curves
of these methods are displayed in Figure 7.

As can be seen, DeepM6A achieved the overall best perfor-
mance for 6mA prediction with AUROC = 0.966 on A. thaliana
and AUROC = 0.969 on D. melanogaster, respectively, both of which
were higher than all the other compared methods. Not sur-
prisingly, the 3-mer-LR method, which was developed based on
conventional machine learning, achieved the lowest predictive
performance in terms of all performance metrics. For 6mA pre-
diction in A. thaliana, our proposed LA6mA method achieved
an AUROC value of 0.962, which was the 2nd-best performance

and slightly lower than that of DeepM6A, which achieved an
AUROC of 0.966. While for 6mA prediction in D. melanogaster,
the other three DL-based methods, including i6mA-DNC, AL6mA
and iDNA6mA achieved a very similar performance with AUROC
values ranging from 0.937 to 0.947 (Table 7). True positive rate
is also named as Sen, and the sum of false positive rate (FPR)
and Spe is 1, which means FPR = 1−Spe. In addition, Table 7
also provides performance comparison of different methods
in terms of Sen under the fixed Specificity (i.e. 0.8 and 0.9).
For both model organisms, it can be concluded that DeepM6A
consistently performed best under fixed Specificity, followed by
LA6mA. As shown in Figure 7, for A. thaliana, the Sen of AL6mA
and i6mADNC reached the same value under the fixed Speci-
ficity of 0.93. The Sen of AL6mA achieved a larger value when
the Specificity was smaller than 0.93; however, the situation
was the opposite when the Specificity was larger than 0.93. In
contrast, for D. melanogaster in Figure 7B, the threshold of the
Specificity between AL6mA and i6mADNC was 0.82. It is worth
mentioning that DeepM6A is a deep convolutional network with
315 481 parameters, whereas the proposed AL6mA and LA6mA
only have 138 043 (43.76% of DeepM6A) and 159 235 (50.47% of
DeepM6A) parameters, respectively. This suggests that LA6mA
could achieve a competitive performance with that of DeepM6A
by using only half of its parameters.

Conclusions
DL can automatically extract useful features from raw genome
sequence data that are pertinent to the prediction task.
Nevertheless, such capability can be a ‘double-edged sword’:
on one hand, researchers are liberated from the complicated,
tedious and manual feature extraction process, but on the other
hand, researchers find it challenging to address the ‘blackbox’
issue and interpret the models. In this study, we have proposed
two novel computational methods for DNA 6mA site identifi-
cation, which are termed LA6mA and AL6mA, respectively. The
networks of these two methods mainly consist of the LSTM

https://github.com/tanfei2007/DeepM6A/tree/master/Code
https://github.com/tanfei2007/DeepM6A/tree/master/Code
http://nsclbio.jbnu.ac.kr/tools/i6mA-DNC/
http://nsclbio.jbnu.ac.kr/tools/i6mA-DNC/
http://nsclbio.jbnu.ac.kr/tools/iDNA6mA/
http://nsclbio.jbnu.ac.kr/tools/iDNA6mA/
https://github.com/tanfei2007/DeepM6A/tree/master/Code
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
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Table 7. Performance comparison of the proposed AL6mA and LA6mA methods with other existing methods for predicting 6mA sites on the
test datasets

Dataset Method Sen1 Spe1 Acc1 MCC1 AUROC Sen2 Sen3

Arabidopsis thaliana DeepM6Aa 0.894 0.931 0.913 0.826 0.966 0.920 0.956
i6mA-DNCb 0.846 0.909 0.878 0.757 0.944 0.853 0.912
iDNA6mAc 0.843 0.889 0.866 0.733 0.932 0.833 0.902
3-mer-LRd 0.669 0.728 0.699 0.397 0.773 0.411 0.577
LA6mA 0.899 0.917 0.909 0.817 0.962 0.912 0.948
AL6mA 0.862 0.905 0.884 0.768 0.945 0.867 0.927

Drosophila melanogaster DeepM6Aa 0.901 0.939 0.920 0.841 0.969 0.930 0.959
i6mA-DNCb 0.869 0.917 0.893 0.787 0.947 0.878 0.916
iDNA6mAc 0.883 0.843 0.863 0.727 0.937 0.846 0.904
3-mer-LRd 0.680 0.702 0.691 0.383 0.753 0.347 0.558
LA6mA 0.909 0.915 0.912 0.824 0.966 0.921 0.955
AL6mA 0.840 0.916 0.878 0.758 0.941 0.848 0.920

aResult obtained by retraining and retesting the source code of DeepM6A [28].
bResult obtained by the re-implementation of i6mA-DNC [30] on benchmark datasets.
cResult obtained by the re-implementation of iDNA6mA [26] on benchmark datasets.
dResult obtained by testing the well-trained 3-mer-based LR model.
1With prediction cutoff threshold value set as 0.5.
2With the fixed Specificity at 0.9.
3With the fixed Specificity at 0.8.

Figure 7. ROC curves of different methods for 6mA prediction on the two organisms: (A) ROC curves on A. thaliana and (B) ROC curves on D. melanogaster.

layer and attention layer. The LSTM layer can automatically
capture the short-range and long-range information from the
encoded input sequences, whereas the attention layer provides
biologically meaningful interpretations through introducing
sequence context information and identifying the key positions
surrounding the potential 6mA/non-6maA sites that contribute
the most to the final prediction. Specifically, the attention layer
after the LSTM layer is responsible for processing the extracted
features and generating the abstract attentions to find the key
areas of universality between the organisms (e.g. A. thaliana
and D. melanogaster), whereas the attention layer preceding
the LSTM layer pays attention to the individuality between
organisms. Benchmarking experiments have demonstrated that
the two methods could achieve a competitive performance for

DNA 6mA site prediction. In future work, a potentially useful
strategy based on the multi-head attention mechanism [51] can
be employed, which has been successfully applied to address
protein classification and generation tasks [52]. Analogous to
the simultaneous use of multiple filters in CNNs, the multi-head
attention allows the model to capture information from different
representation subspaces, which might be helpful for extracting
richer information from the input sequences. Interpreting the
attention mechanism with complex RNN network architectures
or the attention mechanism with RNN and CNN can be also
investigated. The two proposed methods herein are promising
and are generally applicable to address other sequence-based
problems in the fields of bioinformatics and computational
biology.
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Key Points
• Accurate prediction of DNA 6mA sites is important

for the characterization of their functional roles in
multiple biological processes.

• Two novel methods, termed LA6mA and AL6mA, are
developed to automatically capture the short-range
and long-range information from DNA sequence
using LSTM.

• The self-attention mechanism is employed to effec-
tively capture the position information from DNA
sequence.

• In-depth analyses of the changes in the attention
weights, similarities and differences of the attention
layer from the two 6mA prediction models for A.
thaliana and D. melanogaster, and the differences of
the attention layer for TP and TN examples are con-
ducted to interpret what key information underpins
the model prediction.

• An online web server is implemented and pub-
licly available at http://csbio.njust.edu.cn/bioinf/al6
ma/, which can be exploited as useful tool for the
prediction of DNA 6mA sites.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.
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