Table 7.
Dataset | Method | Sen1 | Spe1 | Acc1 | MCC1 | AUROC | Sen2 | Sen3 |
---|---|---|---|---|---|---|---|---|
Arabidopsis thaliana | DeepM6Aa | 0.894 | 0.931 | 0.913 | 0.826 | 0.966 | 0.920 | 0.956 |
i6mA-DNCb | 0.846 | 0.909 | 0.878 | 0.757 | 0.944 | 0.853 | 0.912 | |
iDNA6mAc | 0.843 | 0.889 | 0.866 | 0.733 | 0.932 | 0.833 | 0.902 | |
3-mer-LRd | 0.669 | 0.728 | 0.699 | 0.397 | 0.773 | 0.411 | 0.577 | |
LA6mA | 0.899 | 0.917 | 0.909 | 0.817 | 0.962 | 0.912 | 0.948 | |
AL6mA | 0.862 | 0.905 | 0.884 | 0.768 | 0.945 | 0.867 | 0.927 | |
Drosophila melanogaster | DeepM6Aa | 0.901 | 0.939 | 0.920 | 0.841 | 0.969 | 0.930 | 0.959 |
i6mA-DNCb | 0.869 | 0.917 | 0.893 | 0.787 | 0.947 | 0.878 | 0.916 | |
iDNA6mAc | 0.883 | 0.843 | 0.863 | 0.727 | 0.937 | 0.846 | 0.904 | |
3-mer-LRd | 0.680 | 0.702 | 0.691 | 0.383 | 0.753 | 0.347 | 0.558 | |
LA6mA | 0.909 | 0.915 | 0.912 | 0.824 | 0.966 | 0.921 | 0.955 | |
AL6mA | 0.840 | 0.916 | 0.878 | 0.758 | 0.941 | 0.848 | 0.920 |
aResult obtained by retraining and retesting the source code of DeepM6A [28].
bResult obtained by the re-implementation of i6mA-DNC [30] on benchmark datasets.
cResult obtained by the re-implementation of iDNA6mA [26] on benchmark datasets.
dResult obtained by testing the well-trained 3-mer-based LR model.
1With prediction cutoff threshold value set as 0.5.
2With the fixed Specificity at 0.9.
3With the fixed Specificity at 0.8.