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Abstract

Over the past few years, meta-analysis has become popular among biomedical researchers for detecting biomarkers across
multiple cohort studies with increased predictive power. Combining datasets from different sources increases sample size,
thus overcoming the issue related to limited sample size from each individual study and boosting the predictive power. This
leads to an increased likelihood of more accurately predicting differentially expressed genes/proteins or significant
biomarkers underlying the biological condition of interest. Currently, several meta-analysis methods and tools exist, each
having its own strengths and limitations. In this paper, we survey existing meta-analysis methods, and assess the
performance of different methods based on results from different datasets as well as assessment from prior knowledge of
each method. This provides a reference summary of meta-analysis models and tools, which helps to guide end-users on the
choice of appropriate models or tools for given types of datasets and enables developers to consider current advances when
planning the development of new meta-analysis models and more practical integrative tools.

Key words: meta-analysis; predictive power; sample size; data integration; cohort study; experimental study

Introduction
Recent advances in high-throughput technologies and compu-
tational scanning approaches have led to the availability of
enormous amounts of publicly available clinical and biological
datasets [1–4]. These datasets, however, are often produced by
different research projects or sites, and in most cases, often
have some limitations when trying to combine them, including
increased heterogeneity, as samples type collected are generally
not standardized across sites; limited sample size in each site,
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which may lead to insufficient power for inferences; unbal-
anced sample sizes between cases and controls, which may
yield high biases in the outcome and often inconclusive results;
and also batch effects and noise introduced into datasets from
the technical origin that do not reflect biological variation [5,
6]. Combining these datasets is advantageous to researchers in
increasing statistical power to detect biological phenomena from
studies where logistical considerations restrict sample size or in
studies that require the sequential hybridization of arrays [5].
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Figure 1. Number of publications on the application of meta-analysis to GWAS

or gene expression datasets over the years. Search query used in PubMed

search: [(meta-analysis[Title/Abstract]) AND (gene expression[Title/Abstract]) OR

(genome wide association[Title/Abstract])].

Through funder or journal requirements, many of the large
datasets which have accumulated from different studies are
available in public data repositories and databases including
Gene Expression Omnibus (GEO) @ http://www.ncbi.nlm.nih.go
v/geo/, The Cancer Genome Atlas (TCGA) @ http://cancergeno
me.nih.gov, Array Express @ http://www.ebi.ac.uk/arrayexpress/
and Sequence Read Archive (SRA) @ http://www.ncbi.nlm.nih.
gov/sra/. There is potential value in combining related datasets
for further analysis, but the challenges mentioned earlier limit
this potential. To address this, effective statistical analyses have
been widely suggested in biomedical research [7], one of which
is meta-analysis. Meta-analysis is described as a statistical anal-
ysis of a large collection of analysis results from individuals to
integrate the findings to increase statistical power and obtain
more precise effect size estimates [8, 9]. In meta-analysis, two
types of information integration are often considered: horizontal
meta-analysis and vertical integrative analysis [10].

Horizontal meta-analysis, also known as multi-study data
integration combines multiple genomic studies (e.g. multiple
microarray, methylation or GWAS studies) to increase statistical
power, accuracy and validation [10], while vertical integrative
analysis combines multi-omics data (e.g. gene expression, CNV,
genotyping, methylation, somatic mutation, miRNA and clinical
variables) to investigate disease subtypes, disease associated or
driving genes and related regulatory networks [11]. Over the
years, there has been exponential growth in the application
of meta-analysis to different types of datasets, most especially
Genome Wide Association studies (GWAS) and microarray gene
expression datasets (see Figure 1), which have generated promis-
ing results.

Several statistical methods have been proposed for perform-
ing meta-analysis [6, 7, 11–21]. This article comparatively reviews
three different categories of these meta-analysis techniques:
Combining P-values, Combining Effect Sizes and Combining
Ranks. We applied these methods to datasets retrieved, assessed
their pros and cons, and discussed each performance based on
our result as well as assessment results from previous research.
Finally, we briefly discuss available meta-analysis software such
as METASOFT [22], MANTRA [11], GWAMA [23], METAL [24], rmeta
[25], MetABEL [26], catmap [27], Metafor [28] and MetaOmics [29].
This provides information to help orient the implementation of
new models and practical integrative tools, as well as enables
researchers to choose appropriate models or tools for given types
of datasets.

Meta-analysis methods
Meta-analysis techniques have been widely developed and
applied in genomic applications, especially for combining mul-
tiple transcriptomic studies. The most commonly used meta-
analysis methods in the analysis of clinical and transcriptomic
datasets mainly aim to identify genes associated with an
outcome in the case where the expected outcome is continuous,
multi-class or survival censored, or to identify differentially
expressed genes in the case where the expected outcome is
binary [6, 29]. These meta-analysis methods used for combining
such data are grouped into three categories, namely, combining
P-values, combining effect sizes and combining ranks. Figure 2
shows a graphical representation of the most commonly used
meta-analysis methods, indicating the time each method was
developed, while Table 1 provides a summary of existing meta-
analysis methods and their features. We discuss each category
in detail below.

Combining P-values methods

Combining P-values is a popular approach used in meta-
analysis. It provides simplicity and flexibility to different out-
come variables including survival, multi-class and continuous
outcomes. There are several methods of P-value combinations
from independent statistical tests with each having different
statistical properties [6, 29, 30]. Next, we provide a summary
of some methods used in combining P-values across several
studies.

Fisher’s method: Fisher developed this method in 1925 [8]. It is
the most straightforward statistical approach used in combining
P-values across studies to estimate the accuracy of a unified P-
value [7]. It combines log-transformed P-values from indepen-
dent datasets/studies. The Fisher’s statistical formula is given by

SFisher = −2
J∑

j=1

log
(
Pj

)

where Pj is the P-value for the jth study, and SFisherfollows a chi-
squared distribution under the null hypothesis (assuming null P-
values are uniformly distributed), with 2J degrees of freedom,
where J is the total number of studies [8]. One major constraint
this method has is that all studies are weighted uniformly, and
this is likely inappropriate when combining GWAS studies with
different sample sizes [6]. Also, it is impossible to estimate the
average magnitude of differential expression when working with
P-values [31]. An implementation of this method is found in
metap an R package for meta-analysis of significance values [32].

Stouffer method (Z-transform test): Stouffer introduced this
method in 1949 [18]. Unlike the Fisher method, Stouffer’s method
adopted a different approach by using a simple transformation
to transform the P-values Pj from an individual study into a new
variable say:

zj
∗ = Φ−1 (

1 − Pj
)

where Φ−1 is the inverse cumulative distribution function of
the standard normal distribution which follows a standard nor-
mal N(0,1) under the null hypothesis [18]. Stouffer’s statistical
formula is given by

SStouffer = 1√
J

J∑
j=1

z∗
j

which also follows a normal distribution to obtain its combined
P-value. Advantages of this method include: (i) It is more robust

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov
http://cancergenome.nih.gov
http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/sra/
http://www.ncbi.nlm.nih.gov/sra/
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Figure 2. Timeline of existing meta-analysis methods showing the evolution of the meta-analysis model development. (Fisher [8], MinP [19] Stouffer [18], MaxP [21], FE

[37], Good [13], weighted z-score [33], RE [10, 20], RankProd/Ranksum [15, 41], adaptive weighted Fisher [16], RE2 [22], BE [10] and roP [17]).

Table 1. Summary of existing meta-analysis methods—Yes means feature is present and No implies absence of feature in each model

Model AWF Baye BE FE Fisher MaxP MinP RankProd/
RankSum

RE roP SR/PR Stouffer WZscore

Effect size no yes yes yes no no no no yes no yes no no
Fold change no no no no no no no yes no no no no no
Heterogeneity estimate no no no no no no no no yes no no no no
HSA no no no no no yes no no yes no yes no no
HSB yes no no no yes no yes yes no yes no yes no
HSr no no no no no no no no yes yes no no no
M-value no no yes no no no no no no no no no no
MCMC no yes no no no no no no no no no no no
P-value yes no no no yes yes yes no no yes yes yes yes
Sample size no no no no no no no no no no no no yes
Standard error no no no yes no no no no yes no no no no
Weight yes no yes yes no no no no yes no no no yes
Z-score no no yes yes no no no no yes no no no yes

and has little loss of efficiency compared to combining effect
sizes methods where estimated effect sizes and standard error
are considered as input; (ii) It is useful in cases where effect size
estimates cannot be retrieved [18].

Weighted Z-score method: This method is a major improve-
ment over the Stouffer method and was introduced by Liptak in
1958 [33]. In this case, P-values are transformed to Z-scores in a
one-to-one transformation and also incorporate weight. Unlike
the Stouffer method, the weighted Z-score is more efficient and
powerful by allowing different weights for different studies [7].
Its statistical formula is given by

SWZ =
∑

j zjwj√∑
j w2

j

where

zj = Φ−1
(

1 − Pj

2

)
∗ sign

(∇j
)

with Pj the P-value for the jth study, ∇j, the direction of the effect
for study j and weight wj = √

Nj with Njbeing the sample size of
thejth study [34]. In the case where a study has unequal numbers
of cases and controls, Willer et al. [24] recommended that the

effective sample size should be calculated as

Neff = 4(
1

Ncases
+ 1

Nctrls

)

Also SWZ follows a normal distribution to obtain its com-
bined P-value. An implementation of this method is the METAL
software which provides a fast and efficient meta-analysis of
genome wide association scans.

Adaptively Weighted (AW) Fisher’s method: This method is
an extension of the Fisher method and was developed by Li
and Tseng in 2011 [16]. The method includes adaptive weights
for individual studies in order to characterize effective studies
contributing to the meta-analysis for an improved biological
interpretation and statistical power of the results. It searches for
all possible weights that will be identified as the best adaptive
weight of an individual study with the smallest derived P-value.
The adaptive weighted statistic given by

Sg = pU
(
ug

(
w∗

g

))
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is the P-value of the minimum P-value among all possible
weights, where the observed weighted statistics

ug
(
wg

) = −
J∑

j=1

wgjlog
(
Pgj

)
,

and

wg
∗ = arg min

wg∈W
pU

(
ug

(
wg

))
,

is the optimal weight that gives an indication of which
studies contribute to the statistical significance or differentially
expressed evidence of the meta-analysis. The corresponding
P-value of the AW-statistics Sg is calculated as

p
(
Sg

) =
∑B

b=1

∑G
g′=1 I

{
S(b)

g′ ≤ Sg

}
B ∗ G

(See Supplementary File for details). One disadvantage of
this method is its inadequacy for traditional meta-analysis
in evidence-based medicine research or epidemiology, and it
also introduces bias toward studies with consistent significant
effects [16].

Minimum P-value method (minP): Tippet in 1931 developed
the minP method to detect differentially expressed genes when-
ever a small P-value exists in any one of the J studies [19]. Its
statistical formula is written as

SminP = min
1≤j≤J

Pj.

It uses the minimum P-value among the J studies which
follows a Beta(α,β) distribution with degrees of freedom α = 1 and
β = J as the test statistic under the null hypothesis [19].

Maximum P-value method (maxP): The maxP method was
developed by Wilkinson [21] in 1951 to target differentially
expressed genes that have small P-values in all studies. Its
statistical formula is written as

SmaxP = max
1≤j≤J

Pj.

It takes the maximum P-value which follows a Beta(α, β)
distribution with degrees of freedom α = J and β = 1 as the test
statistic under the null hypothesis [21].

rth ordered P-value method (rOP): Song and Tseng [17] devel-
oped the rOP method in 2014. This method uses the r-th ordered
P-values from J combined studies. This method is considered
a strong form of maxP (where J/2 ≤ r ≤J) to identify candidate
markers differentially expressed in most studies. The minP and
maxP methods are special cases of rOP [17]. It also follows a
Beta(α, β) distribution with degrees of freedom α = r and β = J
− r + 1 as the test statistic under the null hypothesis [17].

The implementation of all these methods mentioned above
can be found in MetaDE [35] an R package for microarray meta-
analysis for differentially expressed gene detection. A signif-
icant advantage of using the combining P-value approaches
is the allowance for standardization of the associations from
genomic studies to a common scale. Compared to combining
effect sizes, its simplicity and extensibility to different kinds of
outcome variables is also a major advantage. Also, where the
effect size may not be well defined, the association P-values can

still be calculated when the outcome variable is not binary [6].
Disadvantages of combining P-value include failure to provide
an overall estimate of effect sizes, inaccessibility of between-
study heterogeneity and it may be erroneous when there is
inconsistency in the direction of effects of the combined studies
[34]. The combining P-value methods are primarily applied to
gene expression datasets [16, 31].

Combining effect sizes methods

The effect size combination method uses a two-group compar-
ison to derive standardized effect sizes and its associated stan-
dard error across combined studies. Choi et al. [36] was among
the first to apply the two most popular approaches namely fixed
effects model (FE) and random effects model (RE) to microarray
meta-analysis. In any given study of measuring differentially
expressed genes, effect sizes are calculated using a standardized
mean difference, that is,

dj = T∗
j − C∗

j

SP

where T∗
j and C∗

j are the treatment and control group of the jth

study, respectively, and SP is the estimated standard deviation
[31, 36]. Other effect size measures can be of log odds ratios
or regression coefficients of the J independent studies [22]. We
briefly illustrate the models used in combining effect sizes from
multiple studies (See details in Supplementary File).

Fixed effect model (FE): Cochran in 1954, in his paper the
combination of estimates from different experiments developed the
fixed effect model (FE) [37], which assumes that all the studies
under consideration share a common/fixed true effect size [10,
20]. Let Tj be the effect size estimate of each study which follows
a normal distribution with mean μ and variance σ 2. Also, let the
weight assigned to each study wj = v−1

j be the inverse of the
variance, where vj is the within-study variance for study j in a
meta-analysis of J studies. The test statistic for the FE model is
given by

SFE =
∑J

j=1 wjTj√∑J
j=1 wj

which follows N(0,1) under the null hypothesis that there is no
association. If we assume a one-tailed test, the P-value of the
association is given by

p = 1 − Φ (SFE)

while for a two-tailed test,

p = 2 [1 − Φ (|SFE|)]

where Φ is the standard normal cumulative distribution function
[10, 20]. According to Evangelou et al. [34], FE is the best approach
for prioritizing and identifying phenotype associated SNPs when
combining GWAS data [34]. A major advantage FE has over the
random effect model (RE) is its ability to maximize discovery
power [34, 38]. This model is mostly applied to GWAS datasets
[10, 20].

Random effect model (RE): Unlike the FE model, the RE model
assumes that the effect sizes for each study in the meta-analysis
are different and are drawn from a normal distribution with
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mean μ and variance σ 2 [10, 20]. The RE analysis approach is to
decompose the observed variance into its two component parts,
i.e. the within-study variance vj and between-study variance
τ 2. DerSimonian and Laird [11] in 1986 proposed a method of
moments estimator for τ 2using Cochran’s Q test statistics (See
Supplementary File for details). The test statistics for RE model
is given by

SR =
∑J

j=1 w∗
j Tj√∑J

j=1 w∗
j

where w∗
j = v∗

j
−1, v∗

j = vj + τ 2 with vj and τ 2 the within-study
and between-study variance values, respectively. Similarly, the
P-value is

p = 1 − Φ (SR)

for one-tailed test, and

p = 2 [1 − Φ (|SR|)]

for a two-tailed test, where Φ is the standard normal cumu-
lative distribution function. In comparison to FE, RE has lim-
ited power in discovery effort. However, RE is better off when
considering the generalized observed association, uncertainty
across different studies and estimating average effect size of
the associated variant [34, 38, 39]. This model is mostly applied
to GWAS datasets [10, 20]. Furthermore, Han and Eskin [22]
made improvements on the RE (see ref [22] for details). They
developed RE2 by assuming no heterogeneity under the null
hypothesis, which contradicts the former RE. This was done in
order to improve discovery power in the presence of between-
study heterogeneity in the effect sizes [22, 34]. This model is
mostly applied to GWAS datasets [10, 20].

Binary effect model (BE): BE is a new type of random effect
model of meta-analysis developed by Han and Eskin in 2012 [10].
This model captures studies with or without an effect together.
This model is the weighted sum of z-scores method where the
m-values, that is, the posterior probability that an effect exists in
each study of a meta-analysis, are incorporated into the weights.
It assigns more weight to studies predicted to have an effect and
lesser weight to the studies predicted not to have an effect. Let
zj = Tj√

vj
be the z-score of the jth study. The binary effect model

statistic is given as

SBE =
∑J

j=1 mj
√

wjzj√∑J
j=1 m2

j wj

,

where the weight
√

wj ≈ √
Np(1 − p) with N the sample size and p

the effect size (minor allele) frequency while
√

wj ≈ Nwhen the
effect size is the same between studies. mj is the correspond-
ing m-value of study j(see Appendix for details). This model is
mostly applied to GWAS datasets [10].

Bayesian meta-analysis: A Bayesian approach to meta-
analysis was developed in 2011 by Morris [40] to specifically
perform trans-ethnic meta-analysis [11]. It assumes that a given
population cluster with the same ethnic group may share the
same effect size, but there is a difference in effect sizes among
different population clusters. It assume the observed effect size
of the jth study bj ∼ N(βj, sj) where sj is the corresponding
standard error and βjis the population-specific effect for the
jth population cluster. Then let M0 be the null hypothesis of no
association and M1 the alternative hypothesis in a Bayesian

framework. The evidence of association can be assessed by
means of Baye’s factor

Λ = f
(
b, s|M1

)
f
(
b, s|M0

)

where

f
(
b, s|M) =

∫
θ

f
(
b, s|θ)

f (θ |M) ∂θ

is the marginal likelihood of the observed effect size under the
model M with θ denoting the unknown model parameter which
includes the population-specific effect β and hyper-parameters
relating to prior distribution (see Supplementary File for details).
This approach performs better compared to fixed-effects and
random effect meta-analysis, especially in terms of power to
detect association and localization of the causal variant over a
range of models of heterogeneity between ethnic groups and
also has increased power and mapping resolution when the
similarity in allelic effects between populations is well cap-
tured by their relatedness [36]. A minor limitation might be that
its implementation can be computationally intensive [34]. This
model is also mostly applied to GWAS datasets [11].

Even though combining effect size methods are well known,
they are powerful and also have a strong Gaussian assumption
on effect size. They often fail in transcriptomic data due to their
restriction to only two group comparisons [29].

Combining ranks methods

Combining rank statistics methods are used to avoid results
which can be influenced by outliers, which methods such as
combining effect sizes and P-values may overlook. What the
rank-based method does is to calculate the ranks of differentially
expressed evidence for each gene in each study instead of calcu-
lating their effect size or P-value. Methods used in combining
ranks are discussed below.

RankProd (RP) & RankSum (RS) methods: Breitling et al. [41]
introduced the rank product (RP) method, which aims to detect
differentially expressed genes [15]. Suppose we have a total of G
genes in differential expression data across Jreplicated experi-
ments. Let ri,j be the position of the ith gene in the jth replicate
experiment in a list ordered according to fold changes. The rank
product (RP) statistics for the ith gene is defined as the geometric
mean of all the rank of genes obtained in each replicate. That is,

RPi =
⎛
⎝ J∏

j=1

ri,j

⎞
⎠

1
J

Also, the rank sum (RS) statistics is defined as the arithmetic
mean of all the ranks. That is,

RSi = 1
J

J∑
j=1

ri,j

In the case where the datasets to be analyzed are unpaired
datasets, the RP/RS is performed using the algorithm explained
in Supplementary File [15, 41]. This method has advantages
over linear models, including fewer assumptions and better
robustness, and a biologically intuitive fold change (FC), thereby
increasing power in low sample size and/or large noise settings
[41].
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Sum of ranks (SR): This method applies a naive sum of the
differentially expressed evidence ranks across studies. The test
statistic of SR is obtained as follows:

SRg =
J∑

j=1

Rgj

where Rgj is the rank of P-value of gene g among all genes in the
jth study [42, 43].

Product of ranks (PR): Similarly, this method applies a naive
product of the differentially expressed evidence ranks across
studies. The test statistic of PR is obtained as follows:

PRg =
J∏

j=1

Rgj

where Rgj is the rank of P-value of gene g among all genes in the
jth study [42, 43].

The P-values of these test statistics can be calculated ana-
lytically or obtained from a permutation analysis as shown in
Supplementary File. Note that genes with the smallest RP or RS
values are the most likely to be upregulated or downregulated
based on your choice of order when ranking the fold changes.
One major disadvantage is that combining ranks methods only
consider gene ranks rather than absolute expression values,
which often leads to its robustness against heterogeneity across
different studies. The implementation of this method can be
found in a Bioconductor package (RankProd) [15] and it is mostly
applied to differentially expressed datasets.

Hypothesis setting
Considering a meta-analysis of J combined transcriptomic stud-
ies, with each study j containing G genes, it is essential in meta-
analysis to choose an appropriate method suitable for any type
of research based on the objectives of the studies. This is due
to the influence that the correctly identified method has on
the final result of the differential expression analysis. Thus,
depending on the aim of identifying different types of targeted
markers based on the biological question or objectives under
consideration, researchers have developed three main hypoth-
esis settings as a guide in identifying targeted differentially
expressed markers using the right meta-analysis method [16, 17,
44]. Given the null hypothesis for each gene g:

H0 : ∩
j

{
θgj = 0

}
,

where θgj is the effect size of gene g and study j with 1 ≤ g ≤ G,
1 ≤ j ≤ J and following Birnbaum [45], Li & Tseng [16] and Song &
Tseng’s [17] convention, the complementary hypotheses settings
are:

(1) HSA for detecting targeted biomarkers that are differen-
tially expressed in all studies or cohorts

HSA :
{

H0 vs H(A)
a : ∩

j

{
θgj �= 0

}}

Under the alternative hypothesis H(A)
a , gene g is identified only

when it is differentially expressed in all studies. It also implies
that for gene g, the effect sizes of all J combined studies are
nonzero. The suitable meta-analysis methods for HSA are maxP

[16, 17, 44], sum of ranks [29], product of ranks [29] and RE model
[16, 17].

(2) HSB for detecting targeted biomarkers that are differen-
tially expressed in one or more studies

HSB :
{

H0 vs H(B)
a : ∪

j

{
θgj �= 0

}}

Under the alternative hypothesis H(B)
a , gene g is identified only

if it is differentially expressed in one or more studies. It also
implies that for gene g, the effect sizes of at least one of the
J combined studies are nonzero. This is with the hope that an
extremely small P-value in one study is usually enough to influ-
ence the meta-analysis and bring about statistical significance.
Suitable meta-analysis methods for HSB are Fisher [16, 17, 29, 44],
Stouffer [16, 17, 29, 44], AW-Fisher [16, 17, 29, 44], minP [16, 17, 29,
44], rankprod and the FE model [29].

(3) HSr for detecting targeted biomarkers that are differen-
tially expressed in most of the studies

HSr :
{
H0 vs H(r)

a :
∑

I
{
θgj �= 0

} ≥ r
}

where r is pre-specified with J
2 ≤ r ≤ J and I{·} is an indicator

function. Under the alternative hypothesis H(r)
a , gene g is identi-

fied only if it is differentially expressed in the majority of studies.
It also implies that for gene g, the effect sizes of at least r with
J
2 ≤ r ≤ J of the J combined studies are nonzero. The suitable
meta-analysis methods for HSr are rOP [17, 29, 44] and the RE
model [29].

In meta-analysis applications, it is more appealing to detect
differentially expressed markers in all studies, that is HSA, how-
ever, in the case where we have large J combined studies, it
is difficult to detect those markers in all the studies. This is
because there is always additional noise/bias present in exper-
imental data. Thus, most researchers prefer the hypothesis HSr

which detects differentially expressed markers in the majority of
studies, i.e. >70% of the studies. HSB is useful when considering
statistically significant biomarkers in at least one study and
when heterogeneity is expected [17].

Meta-analysis software
There are several existing tools that are used to carry out meta-
analysis. Table 2 provides some existing meta-analysis software
and their respective attributes with a brief explanation as fol-
lows.

METAL was initially released in 2008 and then later
published in 2010 (http://www.sph.umich.edu/csg/abecasis/me
tal/) [24]. It is a fast and efficient computational tool for meta-
analysis of large datasets such as genome wide association
scans, and is the most widely used meta-analysis software
package [7] which was designed to improve complex traits gene
mapping studies. METAL was written in C++ and applies two
main approaches in combining evidence for association from
individual studies using appropriate weight. These approaches
are (1) the weighted Z score approach as discussed above which
is based on the sample size, P-value and direction of effect in
each study, and (2) the effect-size based method weighted by the
study-specific standard error. It requires effect size estimates
and their standard errors to be in consistent units across
studies.

Genome-Wide Association Meta-Analysis (GWAMA) (2010) [23]
is an open-source software (http://www.well.ox.ac.uk/GWA

http://www.sph.umich.edu/csg/abecasis/metal/
http://www.sph.umich.edu/csg/abecasis/metal/
http://www.well.ox.ac.uk/GWAMA
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Table 2. Existing meta-analysis software and their attributes

Software Graphical tool Heterogeneity metric Meta-analysis
models

Preprocess software Reference

catmap NA Q, I2 FE, RE NA [27]
GWAMA Manhattan, QQ plots Q, I2 FE, RE SNPTEST, PLINK [23]
MANTRA NA NA Bayesian analysis NA [11]
MetABEL Forest plot Q, I2 FE ABEL [26]
Metafor Forest plot Funnel plot Q, I2 FE, RE, Mixed

effect model
NA [28]

METAL NA Q, I2 Weighted Z-score NA [24]
MetaOmics HeatMap Q, I2 MetaDE (Fisher,

Stouffer, AWF,
MinP, MaxP, roP,
FE, RE, RankProd,
RankSum, SR, PR)

MetaQC [29]

METASOFT Forest-PMPlot Q, I2 FE, RE, RE2, BE NA [22]
rmeta Funnel plot Q, I2 FE, RE NA [25]

MA) designed for performing meta-analysis of summary
statistics generated from genome-wide association studies of
dichotomous phenotypes or quantitative traits. The software
incorporates existing tools such as SNPTEST and PLINK to
preprocess genome-wide association analysis files, aligns
studies to the same reference strand irrespective of the genome-
wide association genotyping product, and performs fixed effect
meta-analysis, and in the presence of heterogeneity can perform
random-effects meta-analysis. It calculates two heterogeneity
measures (Cochran’s Q statistic, I2) of allelic effects between
studies and provides graphical visualization of meta-analysis
results using separate scripts for Manhattan and quantile–
quantile (QQ) plots, and also accounts for automated genomic
control for population structure.

METASOFT (http://genetics.cs.ucla.edu/meta/) is also an
open-source software designed for performing a range of basic
and advanced meta-analytic methods in an efficient manner.
The methods incorporated in METASOFT include Fixed Effects
model (FE) which is based on inverse-variance-weighted effect
size as previously discussed, Random Effects model (RE) also
based on inverse-variance-weighted effect size, Han and Eskin’s
Random Effects model (RE2) optimized to detect associations
under heterogeneity and Binary Effects model (BE) optimized
to detect associations when some studies do or do not have an
effect. Similar to GWAMA, the heterogeneity measures used are
Cochran’s Q statistic and I2. It uses ForestPMPlot, a visualization
tool to display results such as the P-value, study name, log odds
ratio and its standard error and summary statistics for each
study. It produces a computed m-value, that is, the posterior
probability that the effect exists in each study and the PM-Plot
visualizes the m-value of each study along with its P-value [22].
The MANTRA (Meta-ANalysis of Transethnic Association studies)
software has been developed to implement two independent
runs of the MCMC algorithm used in the Bayesian approach
meta-analysis and also estimate the Baye’s factor for each
variant resulting in a summary output of the MCMC algorithm.
This software is only available on request from the author [11].

MetaOmics is an analysis pipeline and browser-based soft-
ware suite for transcriptomic meta-analysis. It is freely available
at https://github.com/metaOmics/metaOmics. There are several
R software packages and modules incorporated in MetaOmics.
They include the MetaPreprocess module which allows users to
input and preprocess multiple transcriptomic datasets for stor-
age and later meta-analysis implementation of other analytical

modules, such as MetaQC, a microarray meta-analysis in quality
control that provides a quantitative and objective tool to assist
with study inclusion/exclusion criteria for meta-analysis, and
MetaDE, a microarray meta-analysis which implements 12 major
meta-analysis methods for differential expression (DE) analysis
to identify candidate markers associated with disease outcome.
Output results include differentially expressed gene lists with
corresponding raw P-values, q-values and various visualization
tools. Another module incorporated in this software is MetaPath,
a microarray meta-analysis in pathway enrichment detection
tool which is used to identify the pathways associated with
disease outcome. Others are MetaNetwork used for detecting
differential co-expression networks (DCN), MetaPredict for pre-
diction analysis, MetaClust for disease subtype discovery and
MetaPCA for dimension reduction and exploratory visualization
[29, 35].

Some R software packages for meta-analysis include rmeta
software which incorporates methods such as fixed and random
effects meta-analysis models for two-sample comparisons and
cumulative meta-analyses. It produces outputs which include
standard summary plots, funnel plots and computes summaries
and tests for association and heterogeneity [25]. MetABEL is an
R software for meta-analysis of genome-wide association scans
between quantitative or binary traits and SNPs [26] and catmap
(Case–Control and TDT Meta-Analysis Package) is an R software
package which performs meta-analyses on genetic case–control
data by combining case–control and family-based (TDT) stud-
ies. It conducts fixed-effects (with inverse variance weighting)
and random-effects meta-analyses on combined genetic data by
specifically implementing a fixed-effects model and a random-
effects model for combined studies [27]. Likewise, Metafor (meta-
analysis package for R) an R package is made up of comprehensive
functions used in meta-analysis. It includes functions to esti-
mate effect sizes or outcome measures and fit fixed, random
and mixed effect models to data, as well as performing meta-
regression analyses. It outputs meta-analytic plots including
forest and funnel plots [28].

Results
We used the GEO2R tool [46] to download four gene expression
datasets each for malaria and breast cancer case studies from
the Gene Expression Omnibus (GEO) repository. The GEO2R tool

http://www.well.ox.ac.uk/GWAMA
http://genetics.cs.ucla.edu/meta/
https://github.com/metaOmics/metaOmics
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Table 3. Results from assessing combining P-value meta-analysis methods using malaria study

Analysis #Significant Genes ACCURACY F1SCORE PRECISION TPR

Individual-analysis
GSE33811 562 0.4762 0.0571 0.3333 0.0313
GSE1124 3465 0.5333 0.3636 0.5263 0.2778
GSE7586 4739 0.5263 0.3077 0.5714 0.2105
GSE5418 6741 0.6000 0.4828 0.5833 0.4118
Meta-analysis
AWFisher 4290 0.5500 0.4906 0.5652 0.4333
Fisher 2319 0.6000∗ 0.4783 0.6875 0.3667
MaxP 939 0.5167 0.1714 0.6000 0.1000
MinP 2319 0.6000∗ 0.4286 0.7500∗ 0.3000
rOP 1268 0.5333 0.2632 0.6250 0.1667
Stouffer 1903 0.5167 0.3256 0.5385 0.2333
Weighted Z-score 6648∗ 0.5833 0.6154∗ 0.5714 0.6667∗

Table 4. Results from assessing combining P-value meta-analysis methods using breast cancer study

Analysis # Significant Genes ACCURACY F1SCORE TPR

Individual-analysis
GSE37139 5142 0.5294 0.4783 0.4231
GSE7904 16 253 0.4648 0.4722 0.4474
GSE36295 6448 0.5800 0.5116 0.4231
GSE3744 10 240 0.5323 0.4314 0.3438
Meta-analysis
AWFisher 10 087 0.4783 0.5862 0.7391
Fisher 7182 0.4783 0.5556 0.6522
MaxP 2995 0.5870 0.5128 0.4348
MinP 6926 0.4348 0.5000 0.5652
rOP 4288 0.6087∗ 0.5714 0.5217
Stouffer 6101 0.5000 0.5660 0.6522
Weighted Z-score 12 815∗ 0.5000 0.6462∗ 0.9130∗

using the GEOquery and limma R packages from the Bioconduc-
tor project was also employed to analyze each of the dataset to
produce P-values for individual differentially expressed genes.
For the two case studies, results from individual analysis of the
four datasets were combined using different combining P-value
meta-analysis methods. Furthermore, the performance of each
individual and meta-analysis results were assessed using evalu-
ation metrics from a confusion matrix, that is, true positive rate
(TPR), precision, accuracy and F1-score as shown in Table 3 and
Table 4 for malaria and breast cancer case studies, respectively.
Table 3 and Table 4 also include the total number of differentially
expressed genes identified in both individual and meta-analysis
by setting a threshold P-value of 0.05.

Assessing the methods using the malaria case study, we
deduced that the well-known Fisher and MinP methods per-
form better in the combining P-value category with an accu-
racy of 60% as shown in Table 3. However, the story was not
the same while assessing the methods using the breast cancer
case study. As we can see in Table 4, the rOP method has the
highest prediction accuracy of 60.87%, classifying it as the best
method. However, we noticed that the weighted z-score method
happens to perform well by having the highest total number
of significance genes in both case studies. Not only that, but
it also had the highest F1-score of 61.54 and 64.62% for both
malaria and breast cancer studies, respectively. F1 score seems
to be a good criterion to choose the best method when aiming
for a positive interpretation of biological result. Therefore, we
recommend the use of the weighted z-score method, followed

by Fisher and so on when considering meta-analysis of gene
expression datasets in combining P-value categories. However, it
is evident that there might be changes in this recommendation
with dataset complexity [8], for example, the maxP model perfor-
mance varies across different datasets. This is in agreement with
‘no free lunch’ theorems for optimization, which highlight the
danger of comparing models by their performance on a single
dataset [47], suggesting that no single model can produce the
best performance across all datasets.

Assessment of combining effect size methods is based on
prior knowledge from the literature. Han and Eskin [22], in their
paper, did a comparison of fixed effect model (FE), random effect
model (RE) and Han and Eskin’s Random Effect model (RE2).
Several analyses were done to justify the performance of these
methods (see ref [22] for details) and they concluded that the
FE model performs best by constantly achieving the highest
statistical significance at low heterogeneity, while the RE2 model
performs best when high heterogeneity exists between studies.
Also, it was clearly stated that the RE model does not produce
a more significant P-value than FE as expected when there is
heterogeneity between studies thereby forfeiting its main goal
[22]. Based on this, we highly recommend the use of the FE model
for meta-analysis of GWAS when there is little or no heterogene-
ity between studies and RE2 when high heterogeneity between
studies is observed. Furthermore, Han and Eskin (2012) [14] also
recommend the binary effect model (BE), a type of RE approach
that considers whether an effect is present or not between
studies, to produce increased numbers of identified associations
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Figure 3. Decision tree of meta-analysis methods with respect to specific datasets. Method abbreviations: FE - Fixed effect, RE - Random effect, RE2 - Han and Eskin’s

random effect, BE - Binary effect, rOP - rth ordered P-value, minP - Minimum P-value, maxP - Maximum P-value.

showing heterogeneity [10]. However, Morris (2011) [40] have
strongly recommended the use of Bayesian meta-analysis when
considering meta-analysis of transethnic GWAS [11]. Combining
rank methods are best used on differentially expressed datasets
[15, 31, 41]. Hong et al. [31] suggest that preference be given
to the RankProd/RankSum method when dealing with small
sample size or large between-study variation. Based on these
recommendations, Figure 3 provides a decision tree that guides
users on the choice of methods with respect to specific dataset.

Discussion
We evaluated and compared the combining P-value meta-
analysis methods, that is, Fisher, Stouffer, weighted z-score,
adaptive weighted Fisher, roP, minP and maxP methods, using
two case studies. These case studies consist of eight publicly
available gene expression datasets, including four Malaria and
four breast cancer datasets. The reason why we chose two
different case studies was to show how flexible these meta-
analysis methods are, and how well their performance can be
controlled under different levels of difficulty when combining
multiple datasets from different platforms. The performance of
these methods was assessed using evaluation metrics from a
confusion matrix.

The four publicly available datasets on malaria used to
evaluate meta-analysis methods include the Krupka et al. [48]
dataset (GSE33811), which uses the Affymetrix Human Gene 1.0 ST
Array platform with 10 samples of five Malawian patients with
severe and mild malaria; samples from the Affymetrix Human
Genome U133A Array platform of the Boldt et al. [49] dataset
(GSE1124), with 25 samples of African children of which there
are five asymptomatic Plasmodium falciparum infection (A); five
uncomplicated malaria (U); five severe malarial anemia (A); five
cerebral malaria (Ce) and five that are healthy. The Ockenhouse
et al. [50] dataset (GSE5418), which also utilizes the Affymetrix
Human Genome U133A Array platform with 71 samples from
patients with naturally acquired malaria infection compared
to those from volunteers in a challenge model vaccine trial;
and the Muehlenbachs et al. [51] dataset (GSE7586), which uses
the Affymetrix Human Genome U133 Plus 2.0 Array platform with

20 samples of women with 10 active and 10 negative placental
malaria (PM) status.

Likewise, four publicly available datasets were used for breast
cancer meta-analysis study. These datasets include the Ingles
et al. [52] dataset (GSE37139), which uses the Affymetrix Human
Gene 1.0 ST Array platform with 12 samples of MCF7 breast cancer
cells; the Richardson et al. [53] datasets comprising 62 samples
designed to compare expression of tumor to normal breast tissue
on the Affymetrix Human Genome U133 Plus 2.0 Array, with 43
tumor and 19 normal breast samples (GSE7904) and another 47
samples of human breast tumor cases (GSE3744); the Merdad et
al. [54] dataset (GSE36295), which utilizes the Affymetrix Human
Gene 1.0 ST Array platform with 50 samples corresponding to
45 samples of breast cancer tissues and five samples of healthy
breast tissues. Visualization of different datasets is represented
using box plots (Figures in Supplementary File). Although the
use cases stated above focus on human, mainly due to data
availability, these meta-analysis methods can be applied to any
organism, including plants [55].

Meta-analysis techniques have been widely used in several
applications, especially in clinical and biomedical contexts, such
as in experimental study, e.g. randomized controlled clinical
trials (RCTs) [56, 57], as well as in observational studies for
group comparisons (e.g. cohort and case–control studies) [58,
59]. As indicated previously, meta-analysis provides a systematic
integrative and quantitative framework combining independent
study outputs for the same biological question to draw more
effective and accurate inferences, thus playing an essential role
in evidence-based medicine [57]. In the context of RCTs, meta-
analysis technique produces more precise estimate of medi-
cal treatment effect and effective health intervention strate-
gies [56]. The two common meta-analysis biomedical use cases
are the post-GWAS [60] and expression level pattern [61] anal-
yses of multiple cohorts with the same or different pheno-
types to identify contextual biological markers related to con-
ditions under consideration with an increased statistical power
[60, 61].

Though existing meta-analysis methods [10, 15, 22, 31, 41, 62–
64] have been deployed in different applications, as highlighted
above, there is still a limited ability to assess and compare the
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performance of these different methods. Currently, a trial-and-
error approach is applied to produce better, more significant
results by fine-tuning features of the existing meta-analysis
methods. So, there is a need to implement a meta-analysis
integrative simulation framework, which assesses all existing
methods to enable end users to select effective models for
their applications. Furthermore, looking at the performance of
different methods (see Tables 3 and 4), no meta-analysis method
achieves a performance score higher than 75%, except for the
weighted z-score method achieving approximately 91% true pos-
itive rate for the breast cancer dataset, likely at the cost of high
false positives, considering the high number of significant genes
predicted. Thus, there is a need for improvement on existing
meta-analysis methods and tools by developing new models
which account for the limitations of the existing models.

Conclusion
This article comparatively reviews several existing meta-
analysis methods under three categories: Combining P-values,
Combining Effect Sizes and Combining Ranks methods. We
provide recommendations based on our results and findings
while assessing the performance of different methods in our
analysis and also from prior knowledge obtained from literature.
We therefore recommend Combining P-values methods to
researchers interested in carrying out meta-analysis of gene
expression datasets. However, when performing GWAS meta-
analysis, methods that fall under combining effect size category
are best to use, while methods for combining rank category best
suite meta-analysis of differentially expressed datasets.

Key Points
• Comprehensive summary and consistent classifica-

tion of existing meta-analysis models and tools.
• There are three categories meta-analysis methods:

Combining P-values, Combining Effect sizes and Com-
bining Ranks.

• Assessing existing meta-analysis models and dis-
cussing the performance of different models.

• Revealing that effect size combination best fit sample
sets, P-value combination best fit for sample data
summary statistics and combining rank best suit dif-
ferentially expressed genes.

• Guiding meta-analysis model and tool end-users
based on data type driven performance evaluation.
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