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Abstract

Cryopyrin associated periodic syndrome (CAPS) is a rare inherited autoinflammatory disorder 

characterized by systemic, cutaneous, musculoskeletal, and central nervous system inflammation. 

Gain-of-function mutations in NLRP3 in CAPS patients lead to activation of the cryopyrin 

inflammasome resulting in the inappropriate release of inflammatory cytokines including IL-1β 
and CAPS related inflammatory symptoms. Several mechanisms have been identified that 

are important for the normal regulation of the cryopyrin inflammasome in order to prevent 

uncontrolled inflammation. Investigators have taken advantage of some of these pathways to 

develop and apply novel targeted therapies, which have resulted in improved quality of life for 

patients with this orphan disease.
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Introduction

In 1940, Kile and Rusk described a multi-generational family with several affected 

members exhibiting recurrent episodes of urticarial-like rash, limb pain, and fever following 

generalized cold exposure [1]. Over the next 60 years, many other patients and families from 

Europe and North America were reported with a similar inflammatory phenotype referred 

to variably as cold hypersensitivity, familial cold urticaria (FCU), and finally familial cold 

autoinflammatory syndrome (FCAS), in an attempt to differentiate this chronic systemic 

inflammatory disease from the more common acquired cold urticarial [2]. In 1962, Muckle 

and Wells investigated a family with a similar clinical picture of recurrent episodes of 

rash, limb pain, and fever, but not associated with cold exposure. Many of these patients 

developed progressive sensorineural hearing loss and end stage renal disease secondary 

to AA amyloidosis [3]. Over the next few decades additional reports of Muckle-Wells 
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syndrome patients were published including some noting phenotypic overlap with FCAS. 

In 1980, Prieur described young patients with chronic severe urticarial-like rash, pain and 

fever with significant central nervous system involvement including developmental delay 

and seizures due to chronic sterile meningitis and increased intracranial pressure. These 

patients were also reported with distal femur arthropathy resulting in significant disability 

[4]. Over the next 20 years, patients with similar clinical features were reported and the 

disease was referred to as either chronic infantile neurologic cutaneous articular (CINCA) 

syndrome or neonatal onset multisystem inflammatory disease (NOMID) with rare mention 

of phenotypic overlap with MWS [5].

The identification of heterozygous mutations in the same novel gene (NLRP3) in patients 

from all 3 phenotypes established this as a spectrum of one monogenic disease [6]. 

Since NLRP3 codes for the protein cryopyrin, this disease continuum is now known as 

cryopyrin associated periodic syndrome (CAPS) or cryopyrinopathies. CAPS patients have 

been reported from all over the world with estimated prevalence ranging between 1–3 

per million [7]. The distribution of CAPS subtypes varies around the world as a majority 

of CAPS patients in North America are classified as FCAS due to large families with 

a founder mutation [8], while MWS is the most common phenotype reported in Europe. 

CINCA/NOMID patients are less common since most cases are de novo. In this review, we 

will discuss the clinical features, genetics, pathogenesis, and therapy of CAPS and examine 

the role and function of cryopyrin in human disease in order to help clinical immunologists 

and immune disease researchers gain a better understanding of this fascinating disease and 

important immune regulatory protein.

Clinical description of CAPS

While FCAS, MWS, and CINCA/NOMID were described as unique disease entities, it 

is clear that these disorders are part of a clinical continuum with several shared features 

that differ in severity which is a determinant of level of therapy. There are also some 

unique features that are worth distinguishing since they may affect prognosis and clinical 

management. All of the subtypes have cutaneous, musculoskeletal, ocular, and central 

nervous system involvement to varying degrees. As more patients have been described, 

there are clearly patients with clinical features that overlap more than one subtype [6], which 

is consistent with the concept of a single disease spectrum (Table 1).

Most CAPS patients present with symptoms early in life consistent with the inherited nature 

of the disease, although the observation that some patients develop symptoms at or even 

before birth and others have delayed onset for many years may suggest environmental 

influences including exposure to microbial organisms or antigens [9]. An urticaria-like 

rash is often the first indication of disease and the most prominent shared clinical sign 

in CAPS patients. Fever is a common clinical sign, although it is often not a primary 

clinical complaint, and the recorded body temperature may not meet actual criteria for 

fever. Most CAPS patients report myalgia, arthralgia, headache, and fatigue, although these 

symptoms are often difficult to quantify objectively. Conjunctivitis and keratitis, while less 

prevalent than rash, can be observed in patients from all 3 subtypes. As expected in a 

disease continuum, chronicity or severity of shared symptoms range from the most severe 
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in CINCA/NOMID to the least in FCAS, however, quality in life is decreased in all patients 

[10].

Generalized cold exposure as a trigger for symptoms is the most prominent clinical feature 

of FCAS and often is their chief complaint to medical providers. Patients report that 

exposure to temperatures below 72°F for more than 30 minutes such as air conditioned 

rooms is sufficient to induce noticeable symptoms within a few hours of exposure. FCAS 

patients also often report chills in association with fever [2]. Cold can be one of many 

symptom triggers for MWS patients, but it is not reported consistently. FCAS and MWS 

patients have daily baseline symptoms of fatigue and flu-like malaise. A diurnal pattern of 

symptoms worsening in the afternoon and evening is common in many FCAS and MWS 

patients [2, 11]. Symptomatic flares in FCAS episodes usually last less than a day and MWS 

flares may last 1–3 days. Amyloidosis was reported in up to 30% of one MWS cohort 

prior to definitive therapy [3], but is much less common in FCAS patients. Hearing loss 

is common in MWS and CINCA/NOMID patients, but rarely seen in the FCAS subtype. 

Ocular findings including uveitis and papilledema can be observed in CINCA/NOMID 

patients and rarely in MWS patients [12, 13]. Central nervous system symptoms observed in 

many CINCA/NOMID patients including developmental delay and seizures are secondary to 

sterile meningitis and increased intracranial pressure that has only rarely been documented 

in MWS patients. Arthropathy involving the distal femur and dysmorphic features such as 

frontal bossing are also fairly unique to a subset of CINCA/NOMID patients [14].

Laboratory and pathologic findings

Chronic leukocytosis is common in most CAPS patients with acute increases of blood 

neutrophilia during symptom flares. Increased serum IL-6 levels have also been observed 

during flares [15]. In contrast, modest to significant elevations of acute phase reactants 

such as C reactive protein and erythrocyte sedimentation rates are common at baseline and 

may not change significantly during a flare. Microcytic anemia and thrombocytosis may 

also occur due to chronic inflammation. Cerebrospinal fluid analysis often reveals chronic 

increased intracranial pressure and leukocytosis [16]. Skin biopsy shows dermal edema 

primarily with neutrophil infiltration in the dermis, especially in the perivascular regions 

and near sweat glands [15]. Bone radiologic examinations show calcified physeal lesions 

and osteoporosis, and pathologic analysis demonstrates disorganized cartilage without 

inflammation [14].

CAPS as an autoinflammatory syndrome

The unique and multi-systemic clinical and laboratory features of this disease continuum 

and low incidence of this orphan disease have resulted in many patients with misdiagnosis 

and significant delays in diagnosis [10]. Additionally, these patients often present to 

a wide variety of medical providers such as primary care physicians and different 

specialists including dermatologists, rheumatologists, ophthalmologists, otolaryngologists, 

neurologists, infectious disease specialists, allergists and clinical immunologists resulting 

in the lack of a medical home. This clinical paradox is similar to the experience of 

patients with a group of rare inherited syndromes known as the hereditary recurrent fever 
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disorders including familial Mediterranean fever, hyper IgD syndrome, and tumor necrosis 

factor receptor associated periodic syndrome. The identification of the genetic basis for 

these diseases led to the description of a new immune disease classification known as 

the autoinflammatory disorders to differentiate conditions that do not fit into the classical 

categories of immune dysregulation including immunodeficiency, allergy, or autoimmunity 

[17].

NLRP3 as a disease gene

The availability of large families with autosomal dominant inheritance of FCAS and 

MWS, combined with advances in human molecular genetics led to the identification 

of heterozygous mutations in NLRP3 (also known as CIAS1 or PYPAF1), a novel gene 

coding for a protein with initial unknown function referred to as cryopyrin [18–20]. Clinical 

similarities between MWS and NOMID prompted scientists to search for NLRP3 mutations 

in NOMID patients [21, 22]. While NLRP3 mutations were identified in these patients, 

many NOMID patients without significant CNS and cochlear inflammation and a few FCAS 

and MWS patients did not have identifiable mutations by standard Sanger sequencing. It 

was later determined that most of these “mutation negative” patients are somatic mosaics, 

often possessing a small percentage of mutant cells within the myeloid lineage resulting 

in difficult to detect mutations [23]. Somatic mosaicism is clinically relevant as it makes 

genetic diagnosis and counseling more challenging and could have implications for the use 

of more definitive cell-based therapies in the future [24]. Approximately 100 pathogenic 

NLRP3 mutations have been reported (Infevers accessed 3/4/19) in CAPS patients [25] 

with strong genotype-phenotype correlation along the disease continuum (Fig. 1). In 

addition, a few low penetrance variants in NLRP3 have also been reported in patients 

with typical or atypical CAPS phenotypes, but also in unaffected people with no significant 

symptomatology. [26]. These variants have been shown to have less in vitro functional 

consequences than classic CAPS mutations and have also been found to be risk alleles for 

more common diseases in genetic association studies [27].

Cryopyrin function

The success of the Human Genome Project allowed investigators to mine data for 

gene families based on structural domain similarities resulting in the discovery of a 

large group of innate immune sensor proteins known as nucleotide oligomerization 

domain (NOD)-like receptors (NLRs) [28]. NLRs contain PYRIN domains (like NLRP3) 

and/or caspase activation recruitment domains (CARDs), which promote self-assembly. In 

addition, NLRs possess central NOD domains where most disease mutations are located, 

suggesting an important functional role, and C-terminal Leucine-rich repeat domains. Some 

NLRs form the central structure of large intracellular multi-protein complexes known as 

inflammasomes that function to protect the cell from external and internal threats, but also 

regulate homeostasis [29]. Inflammasomes are comprised of adaptor molecules, interacting 

regulatory proteins, chaperone proteins, and enzymatic effector molecules (Fig. 2).

Apoptosis speck-like protein containing CARD (ASC) is a multi-domain activating adapter 

molecule for caspase-1, which is mobilized during inflammasome assembly [30]. ASC is 
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also referred to as PYCARD, representing the PYRIN domain at the N-terminus and CARD 

domain at the C-terminus [31–33]. The CARD domain facilitates caspase-1 binding and 

subsequent filament formation. ASC molecules congregate to form large masses near the 

nucleus resembling a ‘speck’ readily visualized via microscopy; thus, speck formation is 

a valuable indicator of inflammasome activation [34]. ASC specks can also be expelled 

from the cell and internalized by nearby macrophages, causing further propagation of 

inflammation. ASC specks can also continue to be functional in the extracellular space 

[35, 36].

Caspases are cysteine proteases that act as enzymatic effector molecules in the 

inflammasome complex. Notably, caspase-1 is central to the canonical, or classical, 

inflammasome pathway [37], while caspase-4 and caspase-5 drive the non-canonical 

inflammasome pathway [38]. The canonical inflammasome pathway is defined by the 

caspase-1 mediated production of interleukin-1β (IL-1β) and IL-18. Cleavage of caspase 

by either pathway results in cleavage of gasdermin-D resulting in pyroptosis, a unique 

inflammasome-specific cell death distinguishable from apoptosis and necrosis, marked by 

the combined release of caspase-1 and lactate dehydrogenase [39]. Gasdermin-D is also 

associated with cleavage of pro-forms of inflammatory cytokines and release of mature 

cytokines [37, 40] such as IL-1β and IL-18 [41]. Release of cytokines also function to 

further the inflammatory cascade by binding to IL-1 receptor or IL-18 receptor on the same, 

or neighboring cells and increasing expression of inflammasome component proteins or 

pro-cytokines.

Normal inflammasome activation is dependent on a two-signal process. In the absence of 

either signal, the cryopyrin inflammasome remains inactive. Signal 1 is a priming step 

required to initiate recruitment of necessary components for assembly. TLR activation by 

PAMPs signals transcriptional factor NFκ-B to upregulate expression of crucial components 

of the inflammasome and pro-cytokines. Signal 2 then coordinates protein assembly and 

activation of the inflammasome complex [29]. There are a wide variety of Signal 2 

triggers including a myriad of DAMPs such as nucleic acids (ATP), aggregate proteins 

(amyloid), or crystals (monosodium urate or cholesterol) [42, 43]. Extracellular ATP can 

activate P2X7 receptor and promote ion efflux [44, 45]. Crystals or protein aggregates can 

cause lysosomal damage releasing proteases (cathepsins) or cell death generating further 

inflammasome stimuli. Several hypotheses have been proposed to elucidate the inherent 

ability of cryopyrin to respond to multiple stimuli including ion efflux, and reactive oxygen 

species (ROS). Recent studies indicate a chief role of mitochondrial DNA or mitochondrial 

ROS in inflammasome activation [46].

Inappropriate inflammasome activation can lead to excessive inflammation and tissue 

damage illustrating the importance of selective triggers and tight regulation of 

inflammasomes. Regulation occurs at many levels, including transcriptional and post

translational processes influencing expression and modification of sensor proteins, or other 

key inflammasome-associated proteins. For example, NLRP3 is alternatively spliced which 

can affect protein function. Additionally, TTP and miR223 regulate transcription by binding 

upstream of NLRP3 [47, 48]. Cytokines can also act like a positive feedback loop by 

binding to receptors and influencing transcriptional regulation of inflammasome components 
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and pro-cytokines. Serine phosphorylation has also been implicated in regulating cryopyrin 

function [49, 50]. Some post-translational modifications can negatively regulate the 

inflammasome, such as S-nitrosylation by nitric oxide [51], or deubiquitination by E3 ligase, 

Ariadne homolog 2, or TRIM31 [52–54]. There are also endogenous cytokine receptor 

inhibitors that regulate downstream inflammation including IL-1 receptor antagonist 

(IL-1RA) and IL-18 binding protein which prevent cytokines from binding to their receptor 

[55].

CAPS disease pathogenesis

CAPS associated NLRP3 mutations are gain of function leading to a hyperactive cryopyrin 

inflammasome, increased myeloid cell derived pro-inflammatory cytokine release, and 

systemic and tissue inflammation leading to disease symptoms. This is supported by in 
vitro studies using cell lines expressing recombinant inflammasome proteins [33]. Mutant 

cryopyrin does not require a Signal 2 normally required for cryopyrin inflammasome 

assembly as observed in ex vivo studies using peripheral blood leukocytes isolated from 

CAPS patients and stimulated with LPS without ATP [56]. These cells demonstrate 

increased ASC speck formation, caspase-1 cleavage, IL-1β release, and pyroptosis. CAPS 

patient cells also demonstrate higher levels of reactive oxygen species due to elevated redox 

stress and ineffective anti-inflammatory mechanisms [57], and recently CAPS mutations 

have been shown to have increased cryopyrin phosphorylation leading to inflammasome 

overactivation [49]. While the mechanisms have not been elucidated, monocytes from 

FCAS, but not MWS or CINCA/NOMID patients produce IL-1β when cultured at 32°C 

without LPS [58]. The excellent response of CAPS patients to IL-1 targeted therapy supports 

a significant role for IL-1β in CAPS disease pathogenesis.

CAPS knockin mutant mouse models were generated with Nlrp3 mutations observed in 

FCAS, MWS, and CINCA/NOMID patients to further investigate mechanisms involved in 

CAPS pathogenesis. Bone marrow derived cells from these mice show similar indications of 

hyperactivation of the cryopyrin inflammasome with cytokine release and speck formation 

with addition of LPS alone, or exposure to cold temperature in cells from FCAS, but not 

MWS, or CINCA/NOMID mutant mice [59, 60]. The phenotype of the CAPS knockin 

mutant mice has many similarities to human CAPS in that the mice demonstrate systemic 

inflammation affecting the skin, eyes, joints, and central nervous system. Interestingly, the 

disease severity continuum is reversed in mice with FCAS mice being the most severe 

and CINCA/NOMID mice being the least affected [59, 61]. IL-1 targeted therapy in the 

mutant mice has not been as effective as observed in CAPS human patients [59]. Genetic 

studies utilizing various knockout mice in the inflammasome pathway show that the disease 

phenotype is dependent on ASC and caspase-1, partially dependent on IL-1β, IL-18, TNF, 

and pyroptosis, and independent of IL-6 and IL-17 [24, 59, 62–64]. The murine disease is 

primarily myeloid cell driven with some data supporting a pathogenic role for mast cells 

[65], and no significant role for lymphocytes [59].
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NLRP3 in other diseases

NLRP3 has been implicated in a wide variety of common diseases based on genetic 

association studies, gene expression analysis, or recombinant mouse models [29]. Cryopyrin 

activation is also shown to mediate the inflammatory response in tumor necrosis factor 

associated periodic syndrome (TRAPS) patients, another monogenic auto inflammatory 

disorder displaying fever, rash, ocular, and musculoskeletal symptoms. Initially, TNF 

receptor shedding was reported as the pathogenic mechanism [17], but later data including 

mutant knockin mouse studies supported a role for cryopyrin inflammasome activation 

through a number of potential mechanisms, including elevated mitochondrial reactive 

oxygen species generation [66, 67]. Effective IL-1 targeted therapy in TRAPS also points to 

a role for a dysfunctional cryopyrin inflammasome.

Targeting the NLRP3 pathway in CAPS

The discovery of mutations in NLRP3 in CAPS patients and the elucidation of cryopyrin 

function prompted investigators to attempt IL-1 targeted therapy. Anakinra, a recombinant 

form of IL-1RA, was initially studied in sepsis without success, but later approved in 

rheumatoid arthritis in 2001. It was therefore available for proof-of-concept trials in CAPS 

patients. Hawkins et al. treated 2 MWS patients with daily anakinra injections and showed 

that it prevented all CAPS related symptoms and reduced serum amyloid A to normal 

levels [68]. We treated 3 FCAS patients with two injections prior to an environmental 

challenge and demonstrated prevention of all FCAS associated symptoms, blunted blood 

leukocytosis, and reduction in serum IL-6 levels [15]. Additional investigator-initiated 

trials using daily anakinra in patients with FCAS and MWS confirmed these translational 

therapeutic successes [69, 70], but it was the remarkable efficacy in patients with CINCA/

NOMID [16], the most severe CAPS phenotype, that has had the most impact on patients, 

and later resulted in FDA and EMA approval (Table 2).

The success of anakinra in CAPS suggested that inhibiting IL-1 mediated inflammation 

alone was sufficient to prevent CAPS associated symptoms and this was supported by 

similar clinical success with additional IL-1 targeted drugs in development. Rilonacept, a 

dimeric IL-1 receptor fusion protein with a longer half-life, provided similar efficacy in 

FCAS and MWS patients with favorable weekly dosing. A successful clinical trial supported 

Rilonacept as the first FDA approved therapy in CAPS in 2008 [71]. Canakinumab, a 

monoclonal antibody against IL-1β demonstrated similar efficacy with every 2 month 

dosing and was approved for MWS and FCAS in 2009 [72]. Early on, physicians realized 

that higher dosing of each of these treatments was required in more severely affected 

patients, while lower dosing was sometimes effective in milder patients further supporting 

the clinical spectrum of CAPS. While IL-1 targeted therapy may ameliorate clinical 

abnormalities including progressive hearing loss, brain MRI findings, and early renal disease 

from amyloidosis, the clinical response in patients with stable deafness, cartilage or bone 

hypertrophy, or chronic renal failure is often poor. [9, 73] Longer studies with these 

therapies showed continued efficacy over 1– 2 years [74, 75], but clinical experience over 

the last decade has illustrated that some CAPS patients are less responsive over time, and 

require higher or more frequent dosing or switching of therapies[76, 77] All of the IL-1 
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targeted therapies are associated with increased frequency of non-opportunistic infections 

prompting early use of antibiotics [71, 72, 74, 75]. Vaccination to prevent common bacterial 

and viral infections is warranted, but needs to be balanced with reports of significant 

local reactions or symptomatic episodes following pneumococcal vaccines. Vertigo has 

been reported in some CAPS patients on canakinumab [72, 75]. Efficacy, safety, and cost 

concerns and the desire for effective oral medicines have prompted a search for alternative 

or adjunctive treatments including higher potency IL-1 blockers as well as small molecule 

inhibitors targeting downstream or upstream in the NLRP3 pathway.

IL-1 receptor blockers showed efficacy so targeting IL-1 receptor signaling with specific 

small molecule inhibitors is a logical approach [78], but has not progressed to clinical 

studies in CAPS patients. Since enzymes like caspases are often amenable to pharmacologic 

targeting, and caspase-1 inhibitors were in clinical development, specific caspase-1 

inhibitors were studied in CAPS ex vivo and in vivo models [79]. While the drugs 

demonstrated some efficacy in pre-clinical studies, it was challenging to achieve adequate 

serum drug levels and clinical efficacy. Recently, there has been tremendous interest in 

targeting the cryopyrin inflammasome directly due to the role of NLRP3 in so many 

common inflammatory and non-inflammatory diseases. Successful preclinical studies using 

MCC950 in a CAPS mouse model [80] suggest that similar drugs may provide a more 

reliable long-term therapy for CAPS patients in the near future. Current recommendations 

for monitoring organ inflammation and targeting symptom resolution may be referenced in 

other works focused on management of CAPS [81].

Conclusions

The journey from the initial description of FCAS in 1940 to the discovery of NLRP3 and 

function of the cryopyrin inflammasome, and finally to the application of effective targeted 

therapies in patients around the world is one of the best examples of translational medicine 

success. The field began with important detailed clinical descriptions and classification 

of patients with FCAS, MWS, and CINCA/NOMID by astute clinicians followed by 

methodical application of modern human genetics techniques. Crucial molecular studies 

that defined the structure and function of the cryopyrin inflammasome followed by pre

clinical and clinical studies using novel targeted therapies have made a significant impact 

on our understanding of the regulatory pathways of the innate immune system, but more 

importantly on the lives of patients with CAPS. Although current anti-IL-1 therapies 

have proven successful in CAPS, continued mechanistic and therapeutic investigations will 

further elucidate the normal and pathogenic functions of cryopyrin and are likely to provide 

more direct and effective treatments for these patients, but also for patients with more 

common diseases.
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Figure 1. NLRP3 mutations reported in CAPS
Most CAPS disease-associated mutations are located in exon 3, which codes for the 

NOD domain, and there are a few mutations in C terminal exons that code for the LRR 

domain. Infevers; an online database for autoinflammatory mutations - https://infevers.umai

montpellier.fr/) [25, 82–84] was accessed 3/4/19 and all potential CAPS associated 

mutations associated with a sub-phenotype were included. The presence of multiple 

mutations coding the same amino acid suggest mutational hotspots (indicated by interrupted 

line boxes). There is fairly consistent genotype-phenotype correlation indicated by colors: 

FCAS (blue), FCAS/MWS (purple), MWS (red), MWS/NOMID (brown), NOMID (green), 

and low penetrance mutations (black). All mutations are numbered according to the 

second methionine (although many mutation sequences utilize the first methionine which 

adds two amino acids to the reported variant). Familial cold autoinflammatory syndrome 

(FCAS), Muckle-Wells syndrome (MWS), Neonatal onset multisystemic inflammatory 

disease (NOMID), nucleotide oligomerization domain (NOD), Leucine rich repeat (LRR)
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Figure 2. Normal and mutant cryopyrin function
Normal activation of the cryopyrin inflammasome in monocytes and macrophages involves 

2 signals: Signal 1 involves toll-like receptor (TLR) activation resulting in NFκB 

mediated expression of inflammasome protein components and pro-cytokines. Signal 2 

involves various specific triggers such as nucleic acids, toxins, and crystals resulting 

in oligomerization of inflammasome protein components including cryopyrin, ASC, pro

caspase-1, NEK7, SGT1, and HSP90 into a multimeric ring like structure. Formation of 

the inflammation leads to cleavage of caspases, gasdermin-D, and subsequent cleavage 

pro-IL-1β and pro-IL-18 with release of mature and active cytokines (IL-1β and IL-18) 

as well as pyroptosis. IL-1β and IL-18 bind to their respective receptors on the same cell 

resulting in autoinflammation or other cells resulting in a cascade of inflammatory signaling. 

Inflammasomes may be released from the cells as ASC specks where they may continue 

to be functional or be taken up by other macrophages. Activation of mutant (yellow dots) 

cryopyrin inflammasome does not depend on signal 2 resulting inappropriate activation 

and inflammation. Several therapies (red targets) in the pathway are either available or in 

development.
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Table 1 –

Clinical features of CAPS

FCAS MWS CINCA/NOMID

Cutaneous Urticaria-like rash Urticaria-like rash Urticaria-like rash

Systemic Fever / Fatigue / Chills Fever / Fatigue Fever / Fatigue

Musculoskeletal Arthralgia / Myalgia Arthralgia / Myalgia / Arthritis Arthralgia / Myalgia / Distal femur 
overgrowth

Ocular Conjunctivitis / Keratitis Conjunctivitis/Keratitis/Uveitis Conjunctivitis / Keratitis / Uveitis / Papillitis

Auditory Sensorineural hearing loss Sensorineural hearing loss

Central nervous system Headache Headache Sterile meningitis, Elevated intracranial 
pressure

Morbidity Amyloidosis (rare) Amyloidosis Amyloidosis, developmental delay

Episode Pattern 12–24 hours 1–3 days Chronic with 1–3 day flares

Triggers Generalized cold / pneumovax Stress / exercise / infection / 
pneumovax

Stress / exercise / infection / pneumovax

Cryopyrin associated periodic syndrome (CAPS), Familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), Chronic 
infantile neurologic cutaneous articular (CINCA) syndrome or Neonatal onset multisystemic inflammatory disease (NOMID)
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Table 2 -

Currently Approved Therapies for CAPS

Anakinra Rilonacept Canakinumab

Pharmacology IL-1 receptor antagonist IL-1 receptor fusion protein IL-1β monoclonal antibody

Half- life ~4–6 hours ~8 days ~26 days

Approved Dosage (Ped) 100 mg (1–8 mg/kg) sq 160–320 mg (2.2–4.4 mg/kg) sq 150 – 300 mg (2–4 mg/kg) sq

Dosage Frequency 1 day 1 week 4–8 weeks

Side Effects Infection, site reaction Infection, site reaction Infection, vertigo

FDA approval (Age) CINCA/NOMID (8 mo) FCAS / MWS (12 yrs) FCAS / MWS (2 yrs)

EMA approval (Age) CAPS (8 mo) CAPS (2 yrs)

Cryopyrin associated periodic syndrome (CAPS), Familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), Chronic 
infantile neurologic cutaneous articular (CINCA) syndrome or Neonatal onset multisystemic inflammatory disease (NOMID), Pediatric dosing 
(Ped), age approved for treatment (Age), milligram (mg), kilogram (kg), subcutaneous (sq).
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