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Abstract
This study analyzed whether there are different patterns of mortality decline among 
low-mortality countries by identifying the role played by all the mortality compo-
nents. We implemented a cluster analysis using a functional data analysis (FDA) 
approach, which allowed us to consider age-specific mortality rather than summary 
measures, as it analyses curves rather than scalar data. Combined with a functional 
principal component analysis, it can identify what part of the curves is responsible 
for assigning one country to a specific cluster. FDA clustering was applied to the 
data from 32 countries in the Human Mortality Database from 1960 to 2018 to pro-
vide a comprehensive understanding of their patterns of mortality. The results show 
that the evolution of developed countries followed the same pattern of stages (with 
different timings): (1) a reduction of infant mortality, (2) an increase of premature 
mortality and (3) a shift and compression of deaths. Some countries were following 
this scheme and recovering the gap with precursors; others did not show signs of 
recovery. Eastern European countries were still at Stage (2), and it was not clear if 
and when they will enter Stage 3. All the country differences related to the different 
timings with which countries underwent the stages, as identified by the clusters.
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1  Introduction

In recent decades, best-practice life expectancy has increased with unexpected 
rapidity and exceeded the highs previously held by several countries; laggards 
have been catching up, and former leaders have been falling behind (Oeppen & 
Vaupel, 2002). At the same time, interest is growing in health inequalities among 
countries, which are relatable to historical health crises as in Eastern European 
countries (Meslé et al., 2002) or long-standing health problems as in the United 
States (Shkolnikov et  al., 2011). In most of the cases, the analysis of mortality 
trends is done by focusing on summary measures, such as life expectancy at birth 
e0 or life disparity e†

0
 . For example, Amin and Steinmetz (2019) linked life expec-

tancy with cardiovascular disease and cancer in individual states of the US by 
finding spatial clusters with higher values of e0 . Life expectancy at birth is also 
applied to evaluate the precision of mortality forecasts, even though Bohk-Ewald 
et  al. (2017) has suggested that lifespan disparity could also be used. Lifespan 
disparity has also been advocated as a useful indicator to analyse the evolution of 
inequality in age-at-death across countries (Vaupel et al., 2011; Van Raalte et al., 
2018). In other cases, scholars focus on specific components of mortality, disre-
garding the global pattern. For instance, Medford et al. (2019), analyzed lifespan 
after age 100 in Sweden and Denmark to show that the lifespans of Danish cen-
tenarians have been lengthening but not those of their Swedish counterparts. The 
shifting and compression dynamics of mortality at older ages have been exten-
sively investigated (Kannisto, 2001; Canudas-Romo, 2008; Thatcher et al., 2010; 
Ebeling et  al., 2018). As another example, Zanotto et  al. (2020) focused their 
analysis on premature mortality. Therefore, it appears that analysing mortality 
evolution of one or more countries means choosing among a wide range of mor-
tality indicators and focusing either on global mortality or a specific component. 
Meslé et al. (2002) already tried a clustering solution to group several European 
countries based on their age-specific death probabilities, highlighting clear dif-
ferences in life expectancy trends and in the age structure between Eastern and 
Western countries that were more important than the traditional South-North 
division. More recently, Debón et al. (2017) grouped EU countries through fuzzy 
c-means cluster analysis of mortality surfaces and found similar results. Moreo-
ver, they raised the issue of the selection of mortality indicators to characterize 
the clusters and proposed the use of non-parametric techniques (e.g., classifica-
tion and regression trees, or CART, and random forests) to rank indicators, based 
on their capacity to discriminate between-group inequalities.

Lee and Carter (1992) developed a model to forecast mortality based on the 
singular value decomposition of a matrix of the logged death rates by age and 
time, which identifies a single time-index of mortality changes and the mortal-
ity components or age-patterns. This model is the same that led Tuljapurkar 
et al. (2000) to suggest the existence of a universal pattern of mortality decline. 
Applying a cluster analysis on the Lee–Carter time-indices of many indicators 
and populations, Bergeron-Boucher et al. (2017) found similar patterns of mortal-
ity decline among non-Eastern-European countries but differences in the trends 
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between females (linear trend) and males (accelerated trend). Many extensions 
of the Lee–Carter model have been proposed, including for multi-populations 
(Booth & Tickle, 2008) to obtain coherent forecasts (Li & Lee, 2005; Russo-
lillo et al., 2011; Hyndman et al., 2013), as well as to deal with the limitation of 
assuming a constant rate of mortality improvement (Oeppen et al., 2008; Haber-
man & Renshaw, 2012; Li et al., 2013; Bohk-Ewald & Rau, 2017). Hatzopoulos 
and Haberman (2013) performed a fuzzy c-means cluster analysis based on the 
main time trends, which were estimated by means of a generalized linear model 
(GLM) model, to determine which countries had similar patterns and would be 
included in their coherent forecast model. The results divided the countries into 
different Eastern and Western clusters and support the idea of a single pattern of 
mortality decline across Western subpopulations. However, other works have sug-
gested less homogeneity. For instance, McMichael et  al. (2004) have show that 
there was an increased heterogeneity across countries, even though it should be 
noted that in their analysis both developed and poorer countries were considered.

In this work, we suggest the application of a functional data analysis (FDA) 
approach to mortality data, because it presents the advantage of considering 
smooth curves rather than scalar data. Such an approach (Ramsay & Silverman, 
2005) is increasingly gaining ground among scholars and has become popular in 
demographic modeling and forecasting (Hyndman & Shang, 2009) and explan-
atory analysis (Hyndman & Shang, 2010). The aim of this paper is to explore 
the changes of age-specific mortality in low-mortality countries in the last few 
decades and to provide a comparative setting. More specifically, we propose a 
functional clustering of mortality profiles (e.g., in terms of age-specific rates), 
which can be seen as curves over age that can be observed for every country and 
every year. We suggest that taking a functional perspective can be an informative 
approach, as it allows the clustering of complete mortality profiles without losing 
sight of the role played by single components and reducing some of the inherent 
randomness in the observed data. The changes in mortality profiles will deter-
mine a country’s exclusion from or inclusion into a specific cluster at any time 
point, and in this way, we will be able to see whether the countries are evolving in 
the same way (i.e., following the same sequence of clusters) or different patterns 
are found. In addition, functional principal component analysis will be applied for 
the characterization of each group, providing a continuous setting for their inter-
pretation and comparison.

The remainder of this paper is organized as follows. In Sect.  2, we explain 
our choice of mortality data from the Human Mortality Database (HMD) for 32 
countries over the time range 1960–2018. In Sect. 3, we explicitly describe the 
functional representation of the mortality data and the advantages of working 
with a smoothed version. Next, FDA-based clustering techniques and the theory 
of functional principal component analysis are exposed in detail. In Sect. 4, the 
results are presented. We construct the smoothed version of the age-at-death dis-
tributions, and group the resulting curves using different methods of functional 
clustering to compare the mortality experience of the different countries sepa-
rately for males and females. Only the results of one method are reported in the 
text, while the remaining ones can be found in the appendices. We then employ 
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the functional principal component analysis to characterize the clusters. Finally, 
in Sect. 5, we discuss the results and offer some concluding comments.

2 � Data

We chose data from the Human Mortality Database (2020), which ensures a high 
quality and quantity of data on mortality profiles of many European and some 
non-European countries for a wide range of years. Of the 40 countries available, 
we excluded those with time series that were considered too short (Chile, Croa-
tia, Greece, Israel, Slovenia, Korea, and Taiwan) and those with limited popula-
tion sizes (Luxembourg and Iceland). As for the period, we chose to consider 
data from 1960 (after the Second World War and related economic crises) to 
2018, which was the last year available for a majority of the countries. Consider-
ing that we needed to split the German data into East and West in order to exam-
ine it back to 1960, we had a final count of 32 countries.

We studied life-table death counts ( dx ), where the life-table radix (i.e., a pop-
ulation experiencing 100,000 births annually) was fixed at 100,000 at age zero 
for each year. This means that for each combination of country and year, we had 
a curve of mortality age pattern for ages from zero to 110. Usually, age-specific 
rates are used for mortality analysis. However, we chose to use the age distribu-
tion of deaths because one of the most acknowledged transformations of mortal-
ity age patterns in developed countries over the past few decades has been the 
shift of the adult modal age at death (see, e.g., Canudas-Romo, 2008; Bergeron-
Boucher et al., 2015; De Beer & Janssen, 2016) and the compression of deaths 
above the mode (Thatcher et al., 2010). These features are shown in Fig. 1 which 
presents mortality data for Australian males (a) and females (b) from 1960 to 
2018; smoothed curves are also shown in (c) and (d), which are discussed later. 
The age distributions of death have been coloured according to the division of 
the period into six decades, in spectral order (red, yellow, green, blue and violet) 
and ending in black. More recently, Zanotto et al. (2020) have shown that prema-
ture mortality has also evolved in the last few years, with different patterns for 
several countries. All these transformations are better visualized from the age 
distribution of deaths ( dx ) than from the age-specific rates ( mx ). This explains 
why new models that fit the dx are emerging (Oeppen et  al., 2008; Bergeron-
Boucher et al., 2017; Mazzuco et al., 2018; Basellini & Camarda, 2019; Shang 
& Haberman, 2020). Moreover, mortality rates ( mx ), survival probabilities ( lx ) 
and the age distribution of deaths ( dx ) are complementary mathematical func-
tions, and each one can be derived from the others (Heuveline et al., 2001). This 
means they convey the same information; therefore, choosing one or another 
does not affect the results of the cluster analysis. However, as mentioned pre-
viously, using dx will allow a better visualisation of the transformations of the 
mortality profiles of the selected countries.
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3 � Methods

Functional data analysis (FDA) refers to the statistical analysis of data that are in 
the form of functions and extends the classical multivariate methods. The mono-
graphs on functional data by Ramsay and Silverman (2005) develop the meth-
odology and applications, and the book by Ferraty and Vieu (2006) on nonpara-
metric models contains a review of the most recent contributions on this topic. 
In Sect.  3.1, we describe how to obtain a smoothed functional representation 
of the data. Section  3.2 introduces functional cluster analysis useful to group 
smoothed curves by country and year. Finally, Sect. 3.3 presents the theory of 
functional principal component analysis, which we employed to characterize and 
compare the clusters.

Fig. 1   Plots of the life-table death count from 1960 to 2018 in a single-year group for a males and b 
females. Curves are ordered chronologically, the oldest years are shown in red and the most recent years 
in black. Smoothing of the curve for Russia in 1960 is shown with a sequence of 111 knots for c males 
and a sequence of 31 knots for d females, respectively. Every curve is smoothed with its specific �

GCV
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3.1 � Functional Data

Considering the data in a functional form means that we assume the existence of a 
continuous function giving rise to the observed data, so that a pair of adjacent data 
values are necessarily linked together to some extent and are unlikely to be too dif-
ferent from each other. Let y(t1),… , y(tN) denote age-specific mortality data (i.e., 
mortality rates or life-table death counts) at ages t1,… , tN , which can be single years 
of age ( t1 = 0, t2 = 1,… ) but also 5-years-old age groups. A functional approach 
assumes that the discrete observations come from a continuous underlying function 
x(t) defined on t ∈ [0, T] . Formally, in the case of observations at the same instants 
on a common interval, functional data consists of a set of n curves denoted as xi(tj) , 
with tj ∈ [0, T] , j = 1,… ,N , i = 1, 2,… , n and

where the error term �ij contributes to the roughness of the raw data. The curves are 
assumed to be independent realisations drawn from the same continuous stochastic 
process X(t) belonging to L2[0, T] space. The first step in FDA is the reconstruction 
of the functional form from discrete data. To this aim, we will use a basis function 
system, which is a set of known functions that are independent on each other and 
that can arbitrarily approximate any function. Let us consider p known basis func-
tions �(t) = (�1(t),… ,�p(t)) . The basis function procedures represent the function 
X(t) by a linear expansion

where � = (�1,… , �p)
� are the basis function coefficients to be estimated by the ordi-

nary least squares method minimising the sum of squared residuals. We use B-spline 
functions as they are the most common choice for non-periodic functional data. In 
practice, the interval over which the function is to be approximated is divided into L 
subintervals separated by values �l , with l = 1,… , L − 1 , that are called knots. Over 
each subinterval, a spline is a polynomial of specified order m, and adjacent polyno-
mials join up smoothly at the knots.

We usually want the underlying functions xi(t) to be smooth in order to capture 
the structural component of the data and reduce the noise of the data. There exist 
many possible approaches to control the irregularity of the curve and obtain a better 
approximation. Regression splines use the number of knots as a regulation param-
eter; the more knots used, the smoother the curve. In many applications, the knots 
are chosen to be equally spaced or are placed at the quantiles of the distribution. 
However, one can also place more knots in regions known to contain high curva-
ture and fewer where there is less. More recently, adaptive knot selection procedures 
have been developed (Kaishev et al., 2016). In this work, we use smoothing splines, 
which introduce a roughness penalty term in the objective function. A natural meas-
ure of a function’s roughness is the integrated squared second derivative. Therefore, 
the penalised least square estimation criterion becomes

(1)yij = xi(tj) + �ij,

(2)X(t) =

p∑

j=1

�j�j(t),
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where xi(t) =
∑p

j=1
�ij�j(t) is the basis expansion of each curve, and yij with 

j = 1,… ,N are discrete observations for the ith curve. The smoothing parameter � 
controls the trade-off between the closeness of fit to the average of the data and the 
variability of the curve and is commonly chosen subjectively or selected through the 
generalized cross-validation criterion. In our application, we chose to have the same 
set of knots for all the curves. Indeed, using different sets of knots would have 
affected the cluster analysis. In particular, inclusion to a specific cluster could 
depend on a different specification of knots. We use a limited sequence of knots, as 
suggested by Ramsay and Silverman (2005) for situations where a large number of 
sampling points is involved. Weights could also be included in Eq. (3) when it is not 
reasonable to assume that the measurement errors are independent or that they have 
the same variance. The weights should, ideally, be equal to the reciprocal of the var-
iance-covariance matrix of the observations. We are not using weights, as we are 
applying the FDA to life table death counts. Thus, it is more reasonable to evaluate 
with equal weights given to each observation. Other smoothing methods have been 
developed in mortality analyses to improve forecasting. Hyndman and Ullah (2007) 
used penalized regression splines with a partial monotonic constraint to smooth the 
log mortality rates. Another widely used technique is the P-splines smoothing of 
Camarda et  al. (2012), which combines (fixed knots) B-splines with a roughness 
penalty.

Once the functional representation of the data is obtained, we cluster the resulting 
smoothed curves through their basis expansions, and the functional principal com-
ponent analysis will identify the major sources of variation in the data and help char-
acterize the clusters.

3.2 � Functional Cluster Analysis

Cluster analysis is used to group countries by year for both sexes according to the 
dissimilarities among the smoothed curves. Age-specific mortality curves are 
divided into clusters so that they are as similar as possible within the same cluster 
and dissimilar as possible in different clusters. Because of the nature of the data itself 
(belonging to an infinite dimensional space), clustering functional data are generally 
a difficult task. Some common problem are the lack of definition for the probability 
density of a functional random variable, the definition of distances between curves 
and the estimation from noisy data. To overcome these problems, several methods 
have been developed that can be mainly grouped into three approaches (Jacques & 
Preda, 2014): two-stage clustering, non-parametric clustering (also called distance-
based clustering) and model-based clustering.

A two-stage approach deals with the problem of the data dimension by first 
approximating the curves with a finite number of parameters (the filtering step) 
and then uses clustering algorithms for finite dimensional data (the clustering 
step). The filtering step can be performed either using the curves’ coefficients of 

(3)PSSE
�
(xi(t)|y)) =

N∑

j=1

[
yij − xi(t)

]2
+ �∫

[
D��(xi(t))

]2
dt,
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the basis functions or by their first principal components, and classical clustering 
algorithms can then be used on them (in the next section, we explain the use of 
functional principal component analysis as a reduction technique). The first con-
tribution to two-stage methods was from Abraham et al. (2003), in which k-means 
clustering is based on B-spline coefficients.

Distance-based methods for clustering generally consist of defining specific 
dissimilarities for functional data and then apply clustering algorithms with a 
hierarchical or k-means method. Indeed, considering distances when dealing with 
functional data can be too restrictive, and an alternative is to use a semimetric 
instead of a distance. Formally, a semimetric d in a functional space F is defined 
as an application on F × F that takes values in ℝ+ , such that autosimilarity, sym-
metry and the triangle inequality are fulfilled, but the identity property is not 
( d(Xi,Xi� ) = 0 ⇏ Xi = Xi� ,∀(Xi,Xi� ) ∈ F × F ). The families of semimetrics most 
widely used are based on derivatives and principal components (Ferraty & Vieu, 
2006). In the latter case, the proximities between the two curves are computed 
while considering a truncated version of their basis expansion, obtained through 
principal components in a reduced dimensional space. If we consider the discre-
tized curves xi and xi′ , the empirical version of the semimetric is

with q as the number of principal components, and �k representing the eigenfunc-
tion of the covariance matrix associated with the eigenvalues �k (a complete expla-
nation of the FPCA procedure is found in the following section). This semimetric 
corresponds to the distance between the q-dimensional vectors of the principal com-
ponent scores for the two curves. Therefore, the use of the semimetrics leads to a 
dimension reduction of the functional space, allowing the consideration of different 
curves in actuality as equal.

A model-based approach constructs homogeneous clusters by means of a den-
sity mixture model and allows the prediction of membership of each observa-
tion to one of the clusters. Conditional to the membership of a cluster, the obser-
vations are supposed to come from a common distribution with cluster-specific 
parameters. In the finite dimensional setting, the main tool to estimate the model 
is the multivariate probability density. In the case of functional data, the prob-
ability density is not defined, so we assume a density probability on the parame-
ters describing the curves. The first model-based clustering method for functional 
data was developed by James and Sugar (2003).

Let Z = (Z1,… , ZK) ∈ {0, 1}K be an unobserved random variable indicating 
the group membership of x(t): Zk is equal to 1 if X belongs to the kth group, and 0 
otherwise. The clustering task aims therefore to predict the value zi = (zi1,… , ziK) 
of Z for each observed curve xi(t) . Each curve xi can be summarized by its 
basis expansion coefficient vector �i , as defined in Eq. (2), whose distribution is 
assumed to be a mixture of Gaussians with density

(4)dFPCA
q

(xi, xi� ) =

√√√√
q∑

k=1

( J∑

j=1

(xi(tj) − xi� (tj))[�k]j

)2

,
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where � is the Gaussian density function and �k = P(Zk = 1) the prior probability of 
group k. Other distributions can be used, but in finite mixture models, Gaussian den-
sities are by far the most commonly used, as they can reasonably approximate a 
wide class of probability distributions. This model is referred to as the functional 
latent mixture (FLM) model by Bouveyron and Jacques (2011) because it can be 
reparametrized to represent the curves through their group-specific eigenspace pro-
jection. The spectral decomposition of the matrix Σk allows the modelling and inter-
pretation of the variance of the data of the kth group through the parameters 
ak1,… , akdk and the variance of the noise through parameters bk , where dk can be 
considered as the intrinsic dimension of the latent subspace of the kth group, and Qk 
is the matrix containing the basis expansion coefficients of the eigenfunctions 
( FLM[akjbkQkdk]

 ). In contrast to the two-stage methods, in which the estimation of 
these parameters is done previous to clustering, the two tasks are performed simulta-
neously in this approach. The funHDDC algorithm (Bouveyron & Jacques, 2014) 
models and clusters the curves through their projections in the group-specific sub-
spaces obtained by performing functional principal component analysis condition-
ally on the posterior probabilities of belonging to group k.

3.3 � Functional Principal Component Analysis

The principal component analysis is a statistical procedure mostly used for reduc-
ing the dimensionality of the data while losing as little information as possible. The 
use of principal component analysis to study mortality is not new and has been used 
with parameter estimation proposals in mortality forecasting (Lee & Carter, 1992; 
Booth et al., 2002; Renshaw & Haberman, 2006; Hyndman & Ullah, 2007). Func-
tional principal component analysis (FPCA) is the extension of the more classical 
multivariate PCA to functional data. In our work, we use FPCA for clustering pur-
poses but also for data projection and the interpretation of the curves.

As in the multivariate case, FPCA provides a way of looking at covariance struc-
ture that can be much more informative and can complement a direct examination of 
the variance-covariance function. The values of the variables in PCA are replaced 
by function values xi(t) in FPCA and the discrete index by the continuous index t. 
Given n functional observations xi(t) with 1 ≤ i ≤ n and x̄(t) as the estimate of the 
mean function, the estimated covariance function, analogous with the covariance 
matrix in the multivariate case, is defined as:

The spectral decomposition performs the task of finding the most important modes 
of variation in the covariance or correlation matrix of the curves. It provides a 

(5)p(�) =

K∑

k=1

�k�(�;�k,Σk),

(6)S(s, t) =
1

n − 1

n∑

i=1

(xi(s) − x̄(s))(xi(t) − x̄(t)).
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countable set of positive eigenvalues �1 ≥ �2 ≥ ⋯ associated with a basis expansion 
of orthonormal basis functions �l(t) with l = 1,… such that

In standard terminology, the basis functions �l(t) are the eigenfunctions or harmon-
ics; they define the most important modes of variation in the curves and are orthogo-
nal of each other. The eigenvalues measure the variability in the directions corre-
sponding to the eigenfunctions.

The projection of xi(t) in the direction of the eigenfunctions �l(t) provides us with 
the functional principal components, a set of zero-mean linearly uncorrelated random 
variables, defined on the same interval of the functional data, with variance �l . As xi(t) 
and �l(t) are functions, summations of variables in the multivariate context are replaced 
by integrations over t to define an inner product. Thus, the principal component scores 
of the ith curve are defined as

The decomposition of Karhunen-Loève allows the expression of the curve through 
its functional principal component expansion

Therefore, the FPCA provides us with a group of basis functions �1(t),… ,�l(t) and 
returns functional data as a linear combination of the new basis functions, where 
the coefficient of the �l(t) is the estimated score of the l-th principal component 
of the corresponding curve. The decomposition of Karhunen-Loève facilitates the 
dimension reduction in that if the first q terms (for a large enough q) provide a good 
approximation to the infinite sum, the information contained in the curve xi(t) is 
essentially synthesized by the q-dimensional vector c = (ci1,… , ciq) , and one can 
work with this approximation.

FPCA is useful for the dimension reduction of the curves in all the clustering 
approaches applied to the low-mortality countries. In addition, the eigenfunctions allow 
the identification of the main directions of variability in the complete mortality profile 
with respect to the mean curve, and the corresponding scores for every curve can be 
used to characterize the countries in the clusters in a reduced dimensional space.

4 � Results

4.1 � From Discrete Data to Smooth Curves

Although in functional analysis there is no general requirement for the data to be 
smooth, we find in some cases particularly noisy data makes smoothing necessary. 

(7)S(s, t) =

∞∑

l=1

�l�l(s)�l(t).

(8)ci,l = ∫ xi(t)�l(t)dt.

(9)xi(t) =

∞∑

l=1

ci,l�l(t).
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In the current study, this problem affected most of the curves of the Eastern coun-
tries at the beginning of the period and was attributable to the quality of the data. 
We thus used a basis expansion of B-splines to obtain a smoothed representation 
of the data by means of the R package fda (Ramsay et al., 2011). We chose to use 
the roughness penalty method described in Sect. 3.1 because it allows continuous 
control over the smoothness. We employed the same set of knots for every curve so 
that the estimation of the splines coefficients was performed on the same age inter-
vals. This is more appropriate for the functional cluster analysis and FPCA that will 
be applied in the following on the basis coefficients. In order to maintain the data 
structure, two sequences of knots over the age range [0, 110] have been evaluated: a 
sequence of 111 equally distributed knots (i.e., one for every age); and a sequence of 
31 knots, one every three months over the age interval [0, 2] and one every 5 years 
over the age interval [2, 110]. The latter has been preferred to the former, not only 
as it is more parsimonious, but also because it is preferable in terms of the goodness 
of fit. As an example, as shown in Fig.  1, both solutions of knot sequences were 
applied to the curves of Russian males (c) and females (d) in 1960. The compari-
son reveals that 31 knots unequally distributed better followed the steep decrease of 
infant mortality in the first two years and respected the unicity of the mode distribu-
tion. In this example, the smoothing parameters were selected through the general-
ized cross-validation (GCV) criterion. GCV is a mean-squared error based measure, 
twice discounted by a term taking into account the number of parameters and the 
magnitude of the smoothing parameter. In the following analyses, two alternatives 
for the smoothing parameter have been applied to the curves: a common smoothing 
parameter ( �COM

GCV
= 0.0025 ) and a different smoothing parameter for each curve. As 

the results of the two alternatives did not show any relevant differences, we will pre-
sent only the ones obtained with a curve-specific �.

4.2 � Analysing Mortality Evolutions Through Functional Clustering

The analyses of this section focus on the classification of mortality curves to under-
stand the patterns or trajectories for the selected period and developed countries. 
Functional analyses were performed separately for males and females, due to the 
fact that in the past, these populations experienced different mortality trends. The 
three methods of functional clustering described in Sect. 3 have been carried out: 
two-stage on the coefficients of basis expansion of the curves, model-based with 
the FLM model and distance-based through a semimetric using FPCA. The model-
based method was performed with the package funHDDC (Bouveyron & Jacques, 
2014), whereas for the distance-based approach through a semimetric, we used the 
package fda.usc (Febrero Bande & Oviedo de  la Fuente, 2012), which extends 
the functionalities of the fda package.1 We will show the model-based method 
for men and the distance-based method for women, while the other methods are 

1  The R code used is available on github, so the results are fully replicable.
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presented in the appendices. This choice stems from the different patterns shown by 
the men and women mortality cluster solutions and are explained in the following.

For the model-based clustering with the men’s data, we chose the reduced model 
FLM[akjbQkdk] with a common b parameter for groups as the observations were 
obtained in the same data acquisition process, and it was natural to assume a com-
mon behavior of the noise outside the latent subspaces. The number of clusters was 
selected according to the Bayesian information criterion (BIC) defined with a posi-
tive log-likelihood and to model the complexity (i.e., the number of parameters). As 
a local maximum occurred at K = 5 and the increase in model complexity is greater 
after K = 5 (Table 1), we chose the partition with five clusters. The trend of BIC 
values as well as the stability of cluster dimensions was verified by initializing the 
classes of the funHDDC algorithm with the k-means function and setting different 
seeds.

The mortality curves and corresponding mean curves within the clusters, Fig. 2a, 
b, allow one to distinguish very clearly those with a similar shape but different levels 
of infant mortality and those with a higher accidental and premature mortality. Clus-
ter 1 contains the curves with high infant mortality (4% on average), and Cluster 3 
the ones with a similar shape but lower infant mortality (2% on average). Cluster 2 
expresses a high level of premature mortality and a lower number of deaths around 
the modal age at death compared to other clusters. The shift toward older ages and 
the compression above the modal age at death is also clearly visible. Clusters 4 
and 5 show a gradual shift, and the number of deaths increases around the modal 
age at death. Figure 2c shows how mortality curves were classified in the clusters 
and allows one to follow the evolution of countries (rows) from 1960 to 2018 (col-
umns). The Northern, Western, Southern and extra-European countries experienced 
a decrease in infant mortality, followed by a shift of the curves and an increase in the 
number of deaths around the modal age at death over the whole period. The Nordic 
countries—which are well-known precursors of epidemiological transition—were 
already at Cluster 4 at the beginning of the period. Finland is an exception to this 
rule, but this comes as no surprise; this is a peculiar Finnish pattern of mortality 
(with an extremely high incidence of external causes of death) that has been already 
observed (Saarela & Finnäs, 2008). It should also be noted that Finland and Den-
mark joined the last cluster much later than Sweden and Norway. The Netherlands 
had a pattern similar to the Nordic countries, while Switzerland, France, Japan and 

Table 1   Model-based 
clustering for men: the BIC 
values and model complexity 
( set.seed = 5555 ) for the choice 
of the number of clusters

No. of Clusters BIC Complexity

K = 2 − 2,348,123.08 229
K = 3 − 1,294,815.85 328
K = 4 − 277,431.79 395
K = 5 − 22,057.17 493
K = 6 − 243,277.24 656
K = 7 − 183,021.71 723
K = 8 − 79,862.68 851
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Western Germany were a bit behind at the beginning (Cluster 2) but had a faster 
transition to Cluster 5. The Southern European countries (Italy, Spain and Portu-
gal) started even farther back (Cluster 1) but also underwent a rapid transformation, 
which brought Italy and Spain to Cluster 5 at the same time as Sweden and Norway. 
Such a transition was slower in the United Kingdom, Ireland, Portugal and East Ger-
many. The analyses also identified the higher infant mortality of Southern countries 
in the first twenty years (Cluster 1). In the second half of the period, the disparities 
seemed to be reduced, and all the countries followed the shifting and compression 
process of the mortality curves previously described (all ending in Cluster 5). Also, 
the Central countries reduced their high infant mortality in the first decade of the 
period (Clusters 1 and 3), but then had a delay of about 20 years with respect to the 
previous countries (reaching Cluster 4 only in the 2000s). The Czech Republic and 
Poland seemed to benefit from a more favourable situation, while Bulgaria, Hun-
gary and Slovakia showed a slight shift and compression of curves only in the last 
decade of the period. Hungary was also characterized by a long period of increased 

Fig. 2   Results of the model-based clustering on the men’s mortality data: a mortality curves, b mean 
curves and c the composition of the five clusters (9.26%, 16.26%, 23.42%, 26.17%, and 24.88% of the 
units)
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premature mortality (belonging to Cluster 2 in the 1980s and 1990s). The former 
USSR countries were (not unexpectedly) those with the highest delay in the transi-
tion, and some of them were still stuck in Cluster 2, suggesting high levels of prema-
ture mortality.

A hierarchical cluster analysis was performed on the women’s data according to 
a distance-based approach with a semimetric using the functional principal compo-
nents. Our decision to keep the first six components was due to the necessity of an 
approximation of the curves that accounted for all the components of mortality (for 
more details, see Appendix 1). The partition in five clusters was the more parsimo-
nious, allowing one to distinguish the decrease in infant mortality, the shift of the 
curves to the right and the increase in the number of deaths around the modal age at 
death.

As we can see from Fig. 3, Cluster 1 contains the curves with high infant mortal-
ity (4% on average); in Cluster 2, the curves have the same shape but lower infant 

Fig. 3   Results of distance-based clustering on the women’s mortality data: a mortality curves, b mean 
curves and c the composition of the five clusters (4.90%, 44.43%, 21.27%, 13.89% and 15.51% of the 
units)
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mortality (2% on average). Clusters 3, 4 and 5 identify the curves characterized by a 
shift to the right and a compression around the modal age at death. Over the period, 
the Northern, Western, Southern and extra-European countries experienced a con-
tinuous shift and compression of the curves of mortality toward the older ages (Clus-
ters 3, 4 and 5). However, disparities across the countries seemed to persist until 
the end of the period, as the transition to the clusters occurred in different years. 
For instance, Norway, Sweden, Switzerland, France, Spain and Japan anticipated the 
shifting process in the 1970s (Cluster 3), during the 1980s (Cluster 4) and at the 
beginning of the 1990s (Cluster 5). Some sex-specific dynamics can also be noticed 
like the stagnation of Denmark between the 1980s and 1990s that was attributable 
to a worsening of health conditions linked to smoking behavior (Lindahl-Jacobsen 
et  al., 2016). Indeed, Denmark lagged far behind in the second part of the period 
and was the last country passing to Cluster 5 in 2004. Concerning Central and East-
ern Europe, we can observe a long stationary period (Cluster 2) followed by a shift 
and compression of the curves during the last decade (Clusters 3 and 4). The Czech 
Republic, Poland and the Baltic countries seemed to be slightly advanced (ending in 
Cluster 4).

To sum up, the analyses for the data on both the men and women showed a simi-
lar evolution for the Northern, Western, Southern and extra-European countries that 
was characterized by the shift of curves to older ages and by the concentration of 
adult mortality around the modal age at death. For these four areas, we can thereby 
conclude the existence of a common pattern of evolution. In the case of the men’s 
data, all the countries belonged to the same group at the end of the period, support-
ing the hypothesis of an increasing homogeneity. The situation was more hetero-
geneous for the Central and Eastern countries because they did not experience the 
same evolution and, at the end of the period, they did not arrive at the same cluster. 
The comparison of the analyses of the men’s and women’s data revealed two dif-
ferent scenarios for the Eastern countries, characterizing the increase of premature 
mortality after 1990 as an entirely male phenomenon. The other methods of clus-
tering show similar evolutions based on the same components of mortality and are 
presented in Appendix 2.

4.3 � Focus with Functional Principal Components Analysis

FPCA represents a useful tool for synthesising the variability of data and visualising 
the curves in a reduced dimensional space. Thanks to this technique, we were able to 
highlight the different features of the clusters and to interpret the associated patterns 
for some selected countries. In order to interpret the eigenfunctions (harmonics), we 
will represent the variation around the mean, which is a typical representation in 
FDA (Ramsay & Silverman, 2005). Moreover, the principal subspace faciltates the 
comparison by plotting for each individual the scores of the two principal compo-
nents for some representative countries.

From the FPCA for the men’s data, it emerged that most of the variability 
was explained by the first two principal components (82% for the first principal 
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component and 13% for the second principal component). Figure 4a, b show a solid 
curve for each of the first two principal components, which is the overall smoothed 
mean for the men and the functions obtained by adding (+) to and subtract-
ing (−) from the mean function an appropriate multiple of the eigenfunctions, 
X̄(t) ± 2 ⋅

√
𝜆i𝜙i(t) ), with the �i eigenvalue of the ith component. Thus, the (+)/(−) 

curves represent the variation around the mean. Looking at Fig. 4a, we can see that 
the first eigenfunction has the effect of shifting and compressing the overall mean 
over the entire age range, because adding the first eigenfunction to the mean shifts 
the (+) curve to the left, and subtracting the first eigenfunction from the mean shifts 
it to the right and compresses the (−) curve. The curve of a country-year with a large 
negative score of the first principal component behaves more similarly to the (−) 
curve, while the curve of a country-year with a large positive score of the first prin-
cipal component behaves more similarly to the (+) curve. Looking at Fig. 4b, we can 

Fig. 4   Results of the FPCA on the men’s mortality data: a, b group means and effect of the components 
and c first principal subspace with selected countries. The colours indicate the group memberships pro-
vided by the model-based clustering
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see that the second eigenfunction has the effect to shape premature mortality (ages 
20–65) and adult mortality (ages 65–85), because adding the second eigenfunction 
to the mean reduces the premature mortality and increases adult mortality, and sub-
tracting the second eigenfunction from the mean increases the premature mortality 
and reduces the adult mortality. Again, a large negative/positive score of the sec-
ond principal component makes the curve of a country-year behave similarly to the 
(−)/(+) curve. The fact that premature mortality and adult mortality are opposed 
is apparent as the (−) and (+) curves cross at approximately 65 years and move in 
opposite directions with respect to the mean curve. As we are dealing with a distri-
bution, deaths occurring at younger ages avert deaths at older ages. Therefore, we 
can summarize that the first component is representative of the shift and compres-
sion of death distributions observed in the latest decades, while the second compo-
nent is related to premature mortality. This is an interesting result, as it confirms that 
the shift and compression of mortality schedules are intertwined (Bergeron-Boucher 
et al., 2015), that the premature mortality component is independent of the shift and 
compression and 13% of the variability in the men’s mortality schedules are attribut-
able to it.

Now that the interpretation of the components is clear, the mapping of the coun-
tries on the first two components will allow the description and comparison of the 
curves on the basis of the phenomena of shift, compression and amount of prema-
ture mortality. In Fig. 4c, the scores of the curves on the two first principal compo-
nents are illustrated for seven representative countries (Denmark, Sweden, Japan, 
France, the Czech Republic, the United States and Russia) and coloured based on 
the membership to the five clusters obtained from the model-based clustering. We 
selected time intervals of 10 years for ease of interpretation (see Appendix 3 for the 
plot of all the considered years). The first principal subspace shows similar trajecto-
ries on the first component for Denmark, Sweden, Japan, France, the Czech Repub-
lic and the United States. Indeed, the decrease of the scores from positive to negative 
values discriminates these countries throughout the whole period and reflects the 
gradual shift and compression of mortality curves with respect to the mean curve, 
see Fig. 4a. Sweden was the only country that was always characterized by negative 
values, indicating behavior near the (−) curve and thus, an above-average shift and 
compression already at the beginning of the period. On the other hand, the Czech 
Republic started from the highest positive values of the first component and had a 
huge delay in the shift and compression, reaching the mean curve (vertical axis) only 
in 2000. In 2010, the Czech Republic was comparable to Sweden in 1990, equiva-
lent to a delay of 20 years. Despite the general shift and compression (except from 
Russia), all the countries presented different levels of the second principal compo-
nent. Sweden can again be seen as a reference country, as it was characterized by 
the highest values and, thus, by the lowest premature mortality, whereas the United 
States presented the lowest values and was, thus, characterized by more extended 
curves. Only Russia remained for the whole period in quadrant IV and experienced 
a completely different trajectory. The scores of the first and second principal com-
ponent evolved in the opposite direction compared to the other countries revealing 
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a shift to the left and an expansion of the curves. The lowest point was reached in 
2000, after which the trend reversed.

Therefore, the FPCA confirms the results of the previous cluster analyses and 
brings the advantage of characterizing the clusters with both components simul-
taneously. For example, at the beginning of the period, the Czech Republic was 
classified in the same cluster as Russia because of the positive large score on the 
first component, although it was very similar to the Western countries on the sec-
ond component, see Fig. 4c. Figure 5a represents the curves of the Czech Republic 
and Russia in 1990 showing their similar position but different levels of premature 
mortality. Likewise, the comparison of France and Sweden at the end of the period 
(Cluster 5) reveals the same shift and compression but a higher premature mortal-
ity before the age of 65 in France, see Fig. 5b. In this respect, Zanotto et al. (2020) 
hypothesised that the behavior on the left slope was not attributable to an increase in 

Fig. 5   Comparison of smoothed curves in the same cluster: a men, the Czech Republic and Russia in 
Cluster 2; b men, Sweden and France in Cluster 5; and c women, Denmark and Sweden in Cluster 3
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the incidence of some causes of deaths but rather the strong shift and compression 
could have isolated premature mortality.

Concerning the women’s data, the FPCA revealed that most of the variability 
was explained by the first component (92%), with the second principal compo-
nent being less relevant (6%). Figure  6a shows that the first eigenfunction has 
the effect of shifting and compressing the mean function from age 40 through-
out adulthood and senescence, because adding the first eigenfunction to the mean 
shifts the (+) curve to the left, and subtracting the first eigenfunction from the 
mean shifts it to the right and compresses the (−) curve. A large negative/posi-
tive score of the second principal component makes the curve of a country-year 
behave similarly to the (−)/(+) curve. The effect of the second eigenfunction (b) 
is not so straightforward and seems to be a proxy of the compression around the 
modal age at death. Indeed, adding the second eigenfunction to the mean reduces 
the number of deaths around the modal age at death, while subtracting the second 

Fig. 6   Results of the FPCA on the women’s mortality data: a, b group means and the effect of the com-
ponents and c the first principal subspace with selected countries. The colours indicate the group mem-
berships provided by the distance-based clustering
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eigenfunction from the mean increases the number of deaths around the modal 
age at death.

On the first principal subspace, Fig.  6c, the first axis expresses the shift and 
compression of the curves and discriminates the countries over the period. All the 
countries experienced the shift and compression of the curves toward older ages 
although with different timings. The decrease of the scores was more pronounced 
for Japan, which started from large positive values and reached the largest nega-
tive values of the first component at the end of the period. As all countries had 
data up to 2010, it can be said that, in this year, the curves of France and Japan 
were the most shifted and compressed at older ages. Regarding the Central and 
Eastern countries, the Czech Republic stagnated until 1990 but then seemed to 
follow the pattern already described. Russia showed a slight improvement from 
2010 and reached the mean curve (vertical axis) in 2014.

Once again, the FPCA allowed the characterisation of the clusters, and we will 
focus on the trends in Cluster 3. The stagnation of Denmark (Lindahl-Jacobsen 
et  al., 2016) appeared from the higher scores on the second principal component 
between the 1980s and 2000 compared to other countries. Indeed, the curves of 
Sweden and Denmark with the same shift and compression reveal that the lower 
number of deaths around the modal age was linked to the increase in premature 
mortality in Denmark, see Fig. 5c.

5 � Concluding Remarks

In this study, we inspected the evolution of mortality schedules in HMD countries 
by means of a functional clustering method, which allowed us to consider mortality 
patterns as functions and avoid analysing only a component of mortality (e.g., infant 
or old-age mortality) or a summary measure like life expectancy, which is a mixture 
of all mortality components but without a clear distinction of their contribution to 
longevity progresses.

Three different methods of functional clustering have been considered: a two-
stage method based on spline coefficients, a distance-based method through princi-
pal components (FPCA) and a model-based one. The latter method seemed to bet-
ter reflect the men’s mortality evolutions in terms of changes in the real data, but 
the FPCA was also useful in determining what were the most relevant components 
that drove the transformations we observed in the last sixty years in HMD coun-
tries. The results showed that the two components accounted for 95% of the vari-
ability in the men’s mortality schedules: 82% for a component that can be explained 
in terms of the shift and compression of mortality and 13% for a second component 
that accounts for premature mortality. This demonstrates that shift and compression 
processes were mutually dependent, while premature mortality was an additional 
independent component, which accounted for a much lower (13%) but not irrelevant 
share of variability.

The results from the clustering provided us with many insights, although none 
of them came as a surprise. First, the results confirmed that homogenisation was 
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taking place among most of the considered countries, as many of them followed the 
same evolution through the clusters. However, the men’s and women’s patterns were 
quite different, because for the men, most of the countries were included in the same 
cluster in the latest years, and countries from Eastern Europe not only lagged behind 
with respect to Cluster 5 but also did not show signs of a recovering process. The 
women’s situation was a bit different because of the homogeneity of the Northern, 
Western and Southern European countries, and the extra-European ones were less 
pronounced (Denmark, the United Kingdom, the United States and East Germany 
did not reach the highest longevity cluster). However, the Central and Eastern Euro-
pean countries looked much closer like their precursors. The difference between the 
men’s and women’s data was also characterized by the higher importance that pre-
mature mortality had for the former. Therefore, if the longevity of Eastern Euro-
pean men was still stagnating, that is partly attributable to the premature mortal-
ity, which is notably high in that area. The results also clearly show the stagnation 
periods that Denmark and the United States underwent at different times, which was 
much more visible in the women’s data. This stagnation prevented these two coun-
tries from joining the highest longevity group. Considering the latest evolution of 
United States longevity (Woolf & Schoomaker, 2019), the lag is going to persist (or 
even increase) for this country, while Denmark seems to be catching up, as can also 
be seen from Fig. 6.

This work, however, was also meant to show the potential of functional data anal-
ysis demographic studies, in which the leading forces of population growth (fertility, 
mortality and migration) are often measured in terms of age-specific rates or prob-
abilities that reveal several components. Thus, similar analyses can be implemented 
on fertility and migration age patterns. Moreover, FDA allows other kinds of anal-
yses: regression (both on scalar and functional covariates) and hypothesis testing. 
Therefore, we advocate an increasing implementation of such an approach to popu-
lation studies. For example, we suggest that a further evolution of this work could 
consider the time dependence of curves in the same countries. Here, every year has 
been considered independently, and the time evolution of countries has been ana-
lyzed by inspecting when each country had moved from one cluster to another. 
Another approach could be that of combining a time-series approach (for instance, 
by means of a vector autoregressive model) with the functional approach presented 
here. In this way, countries can be clustered in terms of the evolution of their curves.

Appendix 1

The decomposition property of Karhunen-Loève turns out to be useful for the 
evaluation of the appropriate number of principal components to reconstruct the 
smoothed curves. In Fig. 7, we show the effect of adding the principal components 
one at a time to the women’s mean curve for Japan in 2010. Clearly, the first six 
components are needed to obtain the smoothed curve.
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Appendix 2

The other methods of clustering for the men’s and women’s data are presented in 
this appendix and show similar evolutions based on the same components of mortal-
ity. Some differences can be noted for the women’s data with respect to the distance-
based method, as the two-stage and model-based cluster analyses emphasised infant 
mortality. Concerning the men’s data, distance-based clustering identified more pre-
cisely the curves with a higher premature mortality; they were restricted to Eastern 
countries after the 1990s. In addition, two-stage and distance-based clustering of the 
men’s data highlighted a shift and compression of curves for Baltic countries not 
detected by the model-based clustering.

See Figs. 8, 9, 10, 11.

Fig. 7   Distance-based clustering for the women’s data: reconstruction of a smoothed curve according to 
the Karhunen-Loève decomposition property for the choice of the appropriate number of functional prin-
cipal components
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Fig. 8   Two-stage clustering for the men’s data: a mortality curves, b mean curves and c composition of 
the five clusters



792	 A.-E. Léger, S. Mazzuco 

1 3

Fig. 9   Distance-based clustering for the men’s data: a mortality curves, b mean curves and c composi-
tion of the five clusters
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Fig. 10   Two-stage clustering for the women’s data: a mortality curves, b mean curves and c composition 
of the five clusters
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Appendix 3

The figures show that the results obtained for seven selected countries for the men’s 
and women’s data were confirmed by looking at the principal subspaces with all 
the countries. The first axis discriminates the majority of countries throughout the 
whole period from quadrant I to quadrant II; the decrease of the scores reflects the 
shift of mortality curves toward older ages, although with different timings. The sec-
ond axis indicates the levels of premature mortality for men.

See Figs. 12 and 13.

Fig. 11   Model-based clustering for the women’s data: a mortality curves, b mean curves and c composi-
tion of the five clusters
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Fig. 12   Results of the FPCA for the men’s data—the first principal subspace with all the countries and 
intervals of 5 years. The colours indicate the group memberships provided by the model-based clustering

Fig. 13   Results of the FPCA for the women’s data—the first principal subspace with all the countries 
and intervals of 5  years. The colours indicate the group memberships provided by the distance-based 
clustering
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