Skip to main content
. 2021 Nov 8;12:6441. doi: 10.1038/s41467-021-26501-7

Table 1.

The minimum mixture size required to give precision of ±0.05 around a prevalence of 0.1 with increasing AUC.

Method/AUC 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Excess 3200 3100 3100
Q25: – Q25: – Q25: – Q25: – Q25:3000 Q25:2900 Q25:3000
Q75: – Q75: – Q75: – Q75: – Q75:3400 Q75:3300 Q75:3200
87/100 62/100 42/100 19/100 13/100 2/100 3/100
Means 26,500 11,500 6200 3700 2500 1700 1100
Q25:25,850 Q25:11,100 Q25:6000 Q25:3600 Q25:2400 Q25:1600 Q25:1100
Q75:27,300 Q75:11,700 Q75:6375 Q75:3900 Q75:2525 Q75:1700 Q75:1200
4/100 1/100 1/100 0/100 3/100 4/100 1/100
EMD 25,500 10,800 5700 3400 2200 1500 1000
Q25:24,600 Q25:10,400 Q25:5550 Q25:3300 Q25:2100 Q25:1400 Q25:1000
Q75:26,300 Q75:11,200 Q75:6000 Q75:3600 Q75:2300 Q75:1500 Q75:1000
0/100 0/100 0/100 1/100 0/100 2/100 0/100
KDE 38,250 17,000 9000 5500 3400 2100 1300
Q25:37,000 Q25:16,000 Q25:8500 Q25:5300 Q25:3300 Q25:2100 Q25:1300
Q75:39,500 Q75:18,000 Q75:9125 Q75:5700 Q75:3500 Q75:2200 Q75:1400
54/100 17/100 15/100 4/100 3/100 0/100 0/100

The table shows the median minimum mixture size, 25% quantile, 75% quantile, and the number of misses (coverage probability)—when the confidence interval at the minimum mixture size did not contain the true prevalence value (pC=0.1); the minimum mixture size is based on 100 estimation runs (see Methods—Varying mixture size). The estimates based on the Excess method do not converge to pC=0.1 with increasing sample size for AUC = {0.6, 0.65, 0.7, 0.75}. The number of misses quickly increases to 100, showing that the estimates converge to a value much smaller than 0.1. The estimates based on the KDE method converge to pC=0.1 for AUC = 0.6. For further details of the computations see “Methods”.