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Genomic signatures define three subtypes of EGFR-
mutant stage Il-1ll non-small-cell lung cancer with
distinct adjuvant therapy outcomes
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The ADJUVANT study reported the comparative superiority of adjuvant gefitinib over che-
motherapy in disease-free survival of resected EGFR-mutant stage II-IlIA non-small cell lung
cancer (NSCLC). However, not all patients experienced favorable clinical outcomes with
tyrosine kinase inhibitors (TKI), raising the necessity for further biomarker assessment. In
this work, by comprehensive genomic profiling of 171 tumor tissues from the ADJUVANT
trial, five predictive biomarkers are identified (TP53 exon4/5 mutations, RB1 alterations, and
copy number gains of NKX2-1, CDK4, and MYC). Then we integrate them into the Multiple-
gene INdex to Evaluate the Relative benefit of Various Adjuvant therapies (MINERVA) score,
which categorizes patients into three subgroups with relative disease-free survival and overall
survival benefits from either adjuvant gefitinib or chemotherapy (Highly TKI-Preferable, TKI-
Preferable, and Chemotherapy-Preferable groups). This study demonstrates that predictive
genomic signatures could potentially stratify resected EGFR-mutant NSCLC patients and
provide precise guidance towards future personalized adjuvant therapy.
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isplatin-based adjuvant chemotherapy currently con-

stitutes the standard-of-care after curative surgery for

stage IIA-IIIB resected non-small cell lung cancer
(NSCLC)!:2. However, the 5-year survival rate still remains unsa-
tisfactory, with alarming levels of grade 3 toxicity observed in more
than 60% of the patients®. Hence, alternative adjuvant regimens with
epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors
(TKI) have been studied through several prospective trials®. The
randomized phase III ADJUVANT study has actually presented
significant prolonged disease-free survival (DFS) in EGFR-mutant
NSCLC, after adjuvant gefitinib, as compared to the DES after che-
motherapy with vinorelbine and cisplatin (VP)®. Two phase 2 trials,
SELECT and EVAN, have shown improved 2-year DFS with erlo-
tinib. Early revelations of the ADAURA trial also presented
remarkable improvements of DFS with the third generation EGFR-
TKI, osimertinib’—%. However, approximately 19% to 40% of TKI-
treated patients still relapse after these trials®$, suggesting the
inadequacy of EGFR-sensitizing mutants alone as a biomarker for
adjuvant treatment selection.

The mixed clinical responses of NSCLC with targeted therapy can
be attributed to molecular heterogeneity caused by different clonal
populations, aggregated in a particular tumor, undergoing stage-
specific evolution. Resulting selective pressure then further induces
subclonal mutations, and promotes tumor expansion!%-13, The most
prevalent co-mutations, such as alterations in the TP53, RBI and
NKX2-1, usually cooperate to promote a local growth advantage, and
support clonal expansion throughout tumor development!®1114, In
advanced EGFR mutant NSCLC, tumors with concurrent TP53 or
RBI mutations then further disrupted genome stability and exerted
higher risks for histological transformation and TKI resistance!”. In
addition to gene level alterations, co-mutations on the exon levels can
also affect patient outcomes!®.

As early-stage NSCLC also shows a high degree of intratumor
heterogeneity with divergent evolutionary lineages!’, the established
norm of estimating only a single driver oncogene through rando-
mized trials for adjuvant targeted therapies fails to address the
underlying complications of intratumor molecular heterogeneity. In
this regard, the development of next-generation sequencing (NGS)
technology has accelerated the analysis and integration of huge bulks
of genomic signatures, thereby increased the focus on developing
multi-gene predictive models for therapeutic decisions'®1°. Cur-
rently, in most single-armed cohort studies, biomarkers were ana-
lyzed for their prognostic effects by comparing survival differences
between mutant and wildtype patients. However, the more challen-
ging question is whether these biomarkers result in distinct outcomes
under different treatments to ultimately guide therapeutic decisions.
Therefore, it is important to distinguish predictive markers from the
prognostic ones at first. The frequently used term “predict the
prognosis” in many biomarker studies may confuse readers of the
accurate definition for these two types of biomarkers. Specifically, a
predictive biomarker differentiates treatment-specific survival benefits
in biomarker-positive or biomarker-negative patients?) and further
improves patients’ treatment outcomes, while a prognostic biomarker
discriminates good or poor survival of patients regardless of treat-
ment. For example, aberrations in the tumor suppressor TP53 gene
are known to correlate with worse prognosis comparing to TP53
wildtype cancers!®21,

Moreover, to reduce the complications in choosing the appropriate
statistical tests, a standard and reliable analytical method has been
endorsed by Rothwell?2 and applied in numerous studies?32%. As
suggested, testing subgroup-treatment effect interaction is a pre-
requisite in reporting the predictive significance other than subjective
observations of the survival curves. Subsequently, a linear dis-
criminant using summation of all predictive values over the set of
selected biomarkers is usually adopted for composite score
development?>.

In this study, we conduct a thorough explorative analysis of
cancer-related genes through NGS of tumor tissues from the
EGFR-mutant patients of the ADJUVANT trial, in an attempt to
address important co-mutations and identify key predictive bio-
markers for adjuvant treatment. We also integrate them into a
robust predictive score that can categorize patients into sub-
groups with distinct survival benefits under either adjuvant gefi-
tinib, or chemotherapy for precision care.

Results

Identification of predictive biomarkers from differential DFS.
Total 171 patients from the ADJUVANT trial with available
baseline surgical specimens have been enrolled for genomic
profiling (Fig. 1). The basic characteristics of the patients included
in this exploratory cohort have been summarized in Supple-
mentary Table 1. Comprehensive genomic profiling of 422
cancer-related genes revealed comparable frequencies of the
highest mutated genes between the two treatment groups (Sup-
plementary Fig. 1). EGFR 19del (49% vs. 45%), L858R (47% vs.
53%), and copy number gain (CN gain, 17% vs. 26%) were
equally distributed in the adjuvant gefitinib and VP groups. Other
co-mutations, including TP53 (70% vs 64%), MCL1 (30% vs
16%), RBI (25% vs 15%), NKX2-1 (20% in both), CDKN2A (16%
vs 19%), PIK3CA (14% vs 17%), MDM2 (14% vs 9%), and
CTNNBI (7% vs 18%) also presented similar frequencies between
the two cohorts. Of note, total 76/171 (44%) patients carried TP53
DNA binding domain missense mutations (exons 4-8). However,
co-drivers frequently found in advanced diseases, e.g. BRAF
mutations, amplifications of ERBB2, or MET'3:1426, were not as
prevalent in our early-stage cohort.

We adopted the popular approach of testing DFS-based gene-
by-treatment interaction effects to identify predictive genetic
biomarkers for guiding treatment selection*22’. Under this test,
predictive biomarkers would show different treatment effect for
biomarker-positive patients compared to the biomarker-negative
population (Supplementary Fig. 2)?0. We evaluated the predictive
power of each mutated gene, and identified the following five
predictive markers with significant treatment interactions (Table 1
and Methods): RBI alterations [interaction hazard ratio (iHR)
4.07, 95% confidence interval (CI) 1.56-10.58, P = 0.004], NKX2-
1 CN gain [iHR 0.26 (95% CI 0.10-0.68), P = 0.006], CDK4 CN
gain [iHR 0.14 (95% CI 0.03-0.77), P =0.024], TP53 exon4/5
missense mutations [iHR 0.33 (95% CI 0.12-0.93), P =10.035],
and MYC CN gain (iHR 0.10 (95% CI 0.01-0.98), P = 0.048).
Here, negative iHR indicated relative better survival with adjuvant
TKI while positive iHR indicated relative benefit with adjuvant
chemotherapy. Importantly, the treatment interactions remained
significant for these five predictors even after adjusting for clinical
parameters (Supplementary Table 2). The negative adjuvant TKI
predictor, RBI alterations, combined RBI mutations and RBI CN
loss, since they were functionally similar and both presented
marginal significance of treatment interaction due to small
sample size of each category (Supplementary Table 3). Besides, as
missense mutations on different TP53 exons might show distinct
prognostic or predictive effects'®28, these exons were analyzed
separately. Like RBI alterations, both TP53 exon 4 and 5 missense
mutations (but not exons 6-8) showed marginal significance for
treatment interactions and were therefore combined as a single
predictive factor. Further, for prognostic analysis, we found that
TP53 exon4/5 missense mutations [multivariate HR 2.69 (95% CI
1.60-4.52), P<0.001] and TP53 nonsense mutations [multi-
variate HR 1.69 (95% CI 1.08-2.65, P=0.022)] were both
significantly correlated with worse outcomes irrespective of
treatment arms, in concordance with TP53 as a factor for
negative prognosis (Supplementary Figs. 2 and 3a, b). Other
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Fig. 1 Schematic diagram of patient screening, sample collection, and methodology for developing the clinical predictive model. Formalin-fixed paraffin-
embedded (FFPE) samples of patients treated with adjuvant gefitinib or intravenous vinorelbine plus cisplatin (VP) in the ADJUVANT trial were collected
for NGS-sequencing. Genomic alterations were analyzed for being predictive or prognostic biomarkers for adjuvant treatment. Predictive markers were
selected to develop the Multiple-gene INdex to Evaluate the Relative benefit of Various Adjuvant therapies (MINERVA) score and validated through ten-
fold cross validation (CV) or leave-one-out CV (LOOCV) procedures and an independent cohort.

genetic aberrations that were significantly associated with
prognosis were summarized in Supplementary Figure 3 and
Supplementary Table 4.

Integrated MINERVA score via genomic signature. Each of the
five biomarkers individually can predict the treatment outcomes

for patient subgroups harboring each specific genetic alteration,
although, a multigene signature integrating all mutational events at
patient level is essential for estimating a patient’s overall response
to the molecular heterogeneity of early-stage NSCLC. We, there-
fore, constructed a MINERVA score to quantitatively assess
individual tumors and their corresponding treatment responses by
summing z scores from individual treatment-by-interaction test of
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Predictive markers (treatment-by-gene interaction)

Table 1 Predictive values of different genomic aberrations derived according to disease-free survival (DFS).

Mutation subgroup Recurrence events/no. of patients iHR? (95% CIb) z-score P Valued
RBT alterations 23/33 4.07 (1.56-10.58) 2.88 0.004
NKX2-1 CN€ gain 23/34 0.26 (0.10-0.68) —2.72 0.006
CDK4 CN€ gain 7/12 0.14 (0.03-0.77) —2.26 0.024
TP53 exon4/5 missense mutations 20/29 0.33 (0.12-0.93) =21 0.035
MYC CN€ gain 7/15 0.10 (0.01-0.98) —1.98 0.048

2 iHR, interaction hazard ratio between treatments and gene alterations.
bC|, confidence interval.

€CN, copy number.

dTwo-sided P-values of the wald test.

the five selected genes. Many studies have previously reviewed the
theoretical justification of creating such a composite variable and
applied the method to combine multiple gene features?>29-31, The
resultant MINERVA scores of all the 171 tumors ranged from
—7.09 to 2.88 with lower score representing better response to
adjuvant TKI. Of note, this composite score alone also significantly
interacted with treatment (P = 4.29 x 10A—6), indicating its role as
a stronger predictor of adjuvant treatment than any individual
markers. To further stratify patient benefits, the genomic makeup
behind each score and optimum separation of survival were
considered. First, 81 tumors (47.4%) that did not carry any
alterations in the predictive genes (score = 0) were grouped
together. We also included 6 patients with both NKX2-1 and RBI
alterations in this group, who were scored 0.16. Under the gene-
by-treatment test, NKX2-1 (z-score, —2.72) and RBI (z-score,
2.88) were the strongest predictors for adjuvant therapies but in
opposite directions (Table 1). By slightly relaxing the cutoff to
include these six patients, we tolerated potential noise of the
interaction statistics introduced by the current cohort size. Further,
to stratify patients for particular treatment benefits, we evaluated
cutoffs of MINERVA score at *1, +0.5, and 0 and chose to cate-
gorize the patients into three subgroups at —0.5 and 0.5 as they
resulted in the best survival differences (Supplementary Fig. 4b and
Methods). In the pre-categorized population, gefitinib significantly
prolonged the median DFS, and increased the 2-year DEFS rate,
similar to the intention-to-treat (ITT) and modified ITT
populations® (Fig. 2a). Remarkably, after categorization by
MINERVA, the three subgroups demonstrated distinct treatment
responses and underlying molecular profiles (Fig. 2b, c). The
Highly TKI-Preferable group [HTP, N =60, 35% (score < —0.5)]
expressed significant superiority with adjuvant gefitinib [HR 0.21
(95% CI 0.10-0.44)], and was enriched with copy number gain of
NKX2-1, CDK4, and MYC, and TP53 exon 4/5 missense muta-
tions. The TKI-Preferable group [TP, N=87, 51% (score —0.5 to
0.5)] showed improved DFS among the pre-categorized and ITT
populations [HR 0.61 (95% CI 0.35-1.07)]. Besides, this subgroup
was characterized by the absence of most predictive biomarkers,
except for sporadic co-existence of NKX2-1 and RBI alterations,
with contrasting effects due to opposing iHRs (Table 1). Moreover,
a small subset of patients, the Chemo-Preferable Group [CP,
N =24, 14% (score = 0.5)], despite having EGFR-positive tumors,
showed greater response and enhanced DFS [HR 3.06 (95% CI
0.99-9.53)] under VP treatment, and harbored RBI alterations
(Fig. 2¢).

In the TP group, the Kaplan-Meier estimate depicted similar
curvatures as those observed in the pre-stratified and ITT
populations® (Fig. 2a, e), indicating that adjuvant gefitinib
achieved a superior DFS. Importantly, the survival curves of the
post-categorized HTP and CP populations did not converge at
any point (Fig. 2d, f). In HTP, the Kaplan-Meier curves separated
widely as early as six months, with a slow descent of the adjuvant

gefitinib arm (median DFS, 34.5 months; P < 0.001). Conversely, a
drastic drop of the VP arm towards a median DFS of 9.1 months
was observed with all recurrence by 36 months. Therefore, the
relative benefit of gefitinib was represented by a 6.4-fold increase
in the 2-year DFS rate [70.3% (95% CI, 55.8-88.7) vs 11.0%
(3.1-38.7)] and a 25.4-month longer median DFS (Fig. 2d). In the
CP group, Kaplan-Meier curves diverged at 18 months with an
immediate sharp decline of the gefitinib arm towards a median of
19.3 months. Meanwhile, 70% of the VP arm continued to benefit
after 24 months (median DFS, 34.2 months, P=0.041). The
superiority of adjuvant VP was reflected by a 1.7-fold increase in
the 2-year DFS rate [69.2% (48.2-99.5)], including a 14.9-month
longer median DFS, compared to the 41.6% 2-year DFS rate for
gefitinib (95% CI 19.9-86.8) (Fig. 2f).

Stratification of overall survival benefit by MINERVA score.
Overall survival (OS) is generally considered as the standard
endpoint for clinical trials. Although adjuvant gefitinib has shown
significantly improved DFS relative to adjuvant VP, the DFS
benefits in the ITT population did not translate into a significant
difference in OS of the ADJUVANT trial®2, probably due to
the combined influences of downstream treatment crossovers
and the genetic heterogeneity among the patient population.
Hence, we further used MINERVA in an attempt to achieve
stratification of OS.

As expected, OS of the 171 pre-categorized patients involved in
this study showed no difference between the two treatment
groups (median, 76.9 months in the gefitinib group vs
67.1 months in the VP group; HR 0.87 (95% CI 0.57-1.35),
P=0.54) (Fig. 3a and Supplementary Fig. 5). Promisingly,
MINERVA successfully demonstrated the stratification of OS
benefit as well. In HTP, gefitinib treatment led to significantly
longer OS [median, not reached in the gefitinib group vs
48.7 months in the VP group; HR 0.43 (95% CI 0.21-0.88),
P =0.018] with a clear and early separation of the Kaplan-Meier
curves (Fig. 3b, c). Conversely, adjuvant VP treatment substan-
tially improved OS in the CP group after 18 months [median,
36.4 months in the gefitinib group vs not reached in the VP
group; HR 2.47 (95% CI 0.76-8.02), P = 0.12] (Fig. 3b, e). OS in
TP mirrored that of the pre- categorized cohort, suggesting no
differences between the treatments (Fig. 3a, d). Likewise, the 2-, 3-
and 5-year survival rates of the categorized subgroups demon-
strated similar trends, with the survival differences between the
two treatments in both HTP and CP groups widened over time
(Supplementary Fig. 6). The 5-year OS rates of gefitinib-treated
HTP patients and VP-treated CP patients were 67.3% (95% CI
52.4-86.4) and 61.5% (95% CI 40.0-94.6), respectively, both of
which were significantly higher than those attained in the pre-
categorized cohort [gefitinib, 55.7% (95% CI 46.2-67.0); VP,
51.5% (95% CI 41.2-64.3)].
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Fig. 2 Disease-free Survival (DFS) as per MINERVA subgroups. a Kaplan-Meier curves estimate DFS of the pre-categorized cohort which received
adjuvant gefitinib or VP treatment (N = 171). Two-sided P value was calculated using the log-rank test. b Forest plot showing the treatment-by-interaction
hazard ratio (iHR) of DFS with the cox regression model in subgroups (HTP, highly TKI-preferable group; TP, TKI-preferable group; CP, chemo-preferable
group) as classified by MINERVA score. Error bars indicate 95% confidence intervals of the iHRs. ¢ Clinical characteristics and genetic alteration spectrums
of five predictive biomarkers in three MINERVA subgroups. d-f Kaplan-Meier curves of DFS for patients treated by adjuvant gefitinib or VP in three
MINERVA subgroups. Black dotted lines indicate median DFS. Blue doted lines indicate 2-year survival rates (24 months). Two-sided P values were derived
from the log-rank test. Exact statistical significance of DFS difference in the HTP group was 2.47 x 10~>,

Validation of MINERVA score. We employed both ten-fold
cross validation as well as LOOCV methods (as internal valida-
tion procedures) to evaluate the robustness of our MINERVA
score. For each fold of cross validation, a subset of markers was
selected based on interaction P < 0.05, which were then used to
build mock MINERVA scores for internal validation. A relatively
superior survival with adjuvant gefitinib treatment was observed
in both HTP and TP subgroups, with an average of 3.5- and 1.9-
fold increase in the 2-year DFS rate, respectively (Fig. 4a). The
median DFS in these two subsets also increased by an average of
20 and 15 months, respectively (Fig. 4b), while the 2-year
gefitinib-to-VP DEFS ratio was less than one, and the median DFS
difference negative for all repeats in the CP group, suggesting

greater survival benefit by adjuvant VP in this population. Among
the 100 mock MINERVA score generated, 75% demonstrated
significant treatment interaction with P values < 0.05, while 86%
demonstrated interaction P values < 0.1 (Fig. 4c). We further
validated the functionality of the original MINERVA score by
LOOCYV method. Adjuvant VP treatment in the HTP group was
associated with markedly reduced DFS and OS (Fig. 4d, g).
Meanwhile, adjuvant gefitinib treatment in the CP group was
evidently inferior, similar to previously estimated results in Figs. 2
and 3.

We further validated MINERVA in an independent cohort
with similar clinical context (EGFR-mutant, Stage IIIA-N2
NSCLC) (see Methods). We performed the same NGS profiling
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Fig. 3 Overall survival (OS) benefit stratification by MINERVA. a Kaplan-Meier estimates of OS for the pre-categorized cohort included in this study
(N=171). Two-sided P value was calculated using log-rank test. b Forest plot showing hazard ratio (HR) of OS in MINERV A subgroups. Error bars indicate
95% confidence intervals. c-e Kaplan-Meier curves estimate OS in each subgroup by treatments. Dotted lines in black indicate median OS. Dotted lines in
blue indicate 5-year survival rate (60 months). Two-sided P values were derived from the log-rank test.

of twenty-nine patients from the EMERGING-CTONG1103 trial
recruited in our center (Guangdong Provincial People’s Hospital)
and scored them according to MINERVA. Importantly, treatment
interaction test indicated that the MINERVA score alone was a
strong predictive biomarker to guide treatment selection in both
exploratory and validation cohorts (ADJUVANT cohort,
P=429x%x10~"—6; EMERGING cohort, P=0.00032) (Supple-
mentary Fig. 7b). Patients were then classified into HTP, TP and
CP groups using score cutoffs at 0.5 and —0.5. We observed
similar stratification of patient outcomes as the described above
(Supplementary Fig. 7c-e). Specifically, TKI-treated patients
showed significantly better progression-free survival (PES)
than the chemotherapy-treated in the HTP group (P =0.039;
erlotinib, median PFS 23.8 months, chemotherapy, median PFS
4.5 months) (Supplementary Fig. 7c). Also, comparable PFS
benefit was seen with erlotinib in the TP group, in the validation
cohort and the entire EMERGING population (Supplementary
Fig. 7a, d)33. In the CP group, we observed shorter PFS with TKI
(median PFS 11.8 months vs 17.7 months TKI-treated in the
whole validation cohort) and potential sensitivity to chemother-
apy despite the limited sample size (Supplementary Fig. 7e).

Discussion

To date, several prospective clinical trials, including our ADJU-
VANT trial, have presented the superiority of adjuvant TKI in
early-stage EGFR-mutant NSCLC. The ADJUVANT trial had
reached a median OS of 75.5 months by the database lock date,
which is one of the best survival outcomes ever recorded for this
patient population34. However, gefitinib’s DFS superiority started
declining after 36 months, and did not ultimately translate into

OS benefit, raising concerns over achieving clinical cure by
adjuvant TKI?. The heterogeneity in time-to-recurrence and OS
observed within the ADJUVANT cohorts suggested high inter-
tumor molecular heterogeneity in early-stage EGFR-mutant
NSCLC!!, necessitating additional predictive biomarkers to
redefine personalized adjuvant therapy.

In this biomarker exploration of adjuvant TKI in resected
NSCLC, we selected five genes that could independently predict
the relative benefit between adjuvant TKI and chemotherapy. The
multigene MINERVA score then integrated these biomarkers and
effectively compensated for individuals’ molecular heterogeneity.
Notably, the three risk groups separated using this score coun-
teracted the controversial impermanence of DFS benefit with
exciting stratification of OS benefits as well. For each risk groups,
we also found characteristic enrichment of biomarkers, possibly
explaining their differential responses to adjuvant treatments.

In the CP group, RBI-altered/ EGFR-mutant patients showed
better survival with adjuvant VP rather than gefitinib. In con-
sistent with our observation, a number of studies have reported
particularly poor EGFR-TKI response in RBI altered patients.
For example, Kim et al. reported a significantly shorter
median PFS of only 1.9 months in RBI-mutant patients in con-
trast to 11.7 months in RBI wildtype patients’®. In advanced
NSCLC, TKI-resistant RBI-inactivated/EGFR-mutated adeno-
carcinoma clones have been found to transdifferentiate into
small-cell lung cancer (SCLC) and become more responsive to
chemotherapy37-38. One of the potential mechanisms of SCLC
transformation might be the disruption in expression of cell-
state-determining factors due to RBI inactivation!>3%. The
resulting lineage plasticity then converts the therapy-dependent
cancer cells to those that express neuroendocrine lineage markers,
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by (@) mean ratio of 2-year disease-free survival (DFS) probability comparing gefitinib to VP from 100 repeats, and (b) mean difference in median DFS
between gefitinib and VP treated patients from 100 repeats. Error bars indicate standard error of 100 repeats in each subgroup. ¢ Curve showing the

cumulative percentage of mock MINERVA models from 100 repeated 10-fold cross validation and corresponding p-values derived from the MINERV A-by-
treatment interaction tests. Red dotted lines indicate percentage of repeats with interaction P < 0.05 or <0.1 (two-sided, wald test). d-f Kaplan-Meier

estimates of DFS in three mock MINERVA subgroups derived by leave-one-out cross validation. P values were derived from the two-sided log-rank test. g-i
Kaplan-Meier estimates of OS in three mock MINERVA subgroups. P values were derived from the two-sided log-rank test. Source data used to generate

this figure are provided as a Source Data file.

making them refractory to targeted treatments?®4l. RBI often
demonstrates mutual exclusivity with cell cycle pathway genes,
and reflects chemosensitivity in rapidly progressing tumors*2,
which is in line with our CP population. In hope to eradicate this
subclone, researchers have developed an upfront trial in which
patients with advanced stage were assigned to receive TKI and
small-cell directed chemotherapy (platinum plus etoposide)
alternately (NCT03567642). Further research is required to
explore whether TKI insensitivity of RB1-inactive/EGFR-mutant
patients in the adjuvant setting also arise from early histological
transformation events.

Despite the small VP-favoring population, patients in the HTP
subgroup presented significant benefits from adjuvant gefitinib
therapy. Genomic analysis showed the enrichment of other four
biomarkers, among which copy number gain of NKX2-1 received
nearly equal weightage as RBI, but in an opposite predictive
direction that favors the choice of gefitinib. NKX2-1 copy number
gain is a widely prevalent oncogene found in up to 30% of EGFR-
mutant patientsl®, NKX2-1 amplification has been more

frequently observed in TKI-treated patients with extended
progression-free survival (=24 months) and was reported to
predict favorable TKI response!443. These findings were con-
sistent with its enrichment in the HTP population with relative
gefitinib benefit. Previous studies mainly reported favorable
prognosis with NKX2-1 expression in mixed onco-driver, tumor
stages and pathological backgrounds***>, while our study
demonstrated the predictive value of NKX2-1 copy number gain
to favor adjuvant TKI treatment in a more defined population.
TP53 as a tumor suppressor occurred in more than 50% of
NSCLC, with mutations of complicated functional properties!®.
Unlike most tumor suppressor genes, missense mutations in
the critical DNA binding domain (exons 4 to 8) are the most
common variants in TP53, which are associated with the lower
disease control rate and poorer survival outcomes with TKI treat-
ment in contrast to TP53 wildtypes in EGFR-mutant NSCLC!646,
Apart from poor prognosis associated with loss-of-function TP53
mutations, studies have also revealed varied prognostic effects of
missense mutations on different TP53 exons, suggesting possible
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functional divergence?847-50, Interestingly, these missense variants
could also be predictive for worse adjuvant chemotherapy outcomes
compared to observation in resected NSCLC?!. Along these lines, in
this study, the predictive power of TP53 variants was also assessed by
exons. In the multigene model, the positive predictivity of TP53
exons 4/5 missense mutations suggested that patients harboring these
TP53 mutations would relatively benefit more from gefitinib than
VP. We did not consider exons 6-8 because they lacked predictive
significance for adjuvant therapies under the treatment-interaction
test. In concert with the consensus on TP53’s negative prognostic
effect, we did observe significantly lesser outcomes in TP53-positive
patients despite the treatment they received. MYC amplification was
found in approximately 10% NSCLC!?. Here, we demonstrated that
it was predictive for better outcome with adjuvant TKI than che-
motherapy. In consistent with our finding, a previous report also
showed that MYC amplification was associated with better response
to gefitinib>2. On the other hand, amplification and overexpression of
MYC was often found to correlate with chemoresistance in lung
cancers®. CDK4 also frequently overexpressed in lung cancers™,
although it was not found to particularly affect gefitinib outcome
according to a thorough literature search, as demonstrated by an
indifferent efficacy (p=0.813) in patients with or without CDK4
gain®®. CDK4 was a key member of the cyclin-dependent kinase
family that phosphorylates RB1 and facilities the cell cycle activities. It
has been reported in many other cancers that CDK4 amplification
could drive resistance to chemotherapy, including osteosarcoma and
breast cancer®®>7. Its role in predicting better adjuvant TKI response
than chemotherapy might be worthy of future investigation.

The development of a multi-gene clinical predictor requires a well-
designed prospective validation with appropriate assumptions and
sample size structured to address the underlying molecular hetero-
geneity. However, this is challenging as there were no equivalent
public or clinical datasets of adjuvant TKI-treated patients with
regular follow-up of survival outcome available at the time of this
study, and any prospective validation trials might span over another
decade to reach maturity. In this regard, we tested the validity of our
score in another prospective clinical trial conducted by the Chinese
Thoracic Oncology Group (CTONG), the EMERGING-
CTONG1103 trial, a multicenter phase II neoadjuvant study that
enrolled patients with EGFR-mutant stage IITA-N2 NSCLC?3. As
neoadjuvant treatment mainly contributed to the overall response
rate, patients’ survival benefits were achieved primarily from adjuvant
treatment. We considered the EMERGING study to be the most
appropriate cohort by now to partly resemble the ADJUVANT
dataset. Both cohorts examined EGFR-mutant patients in the early-
stage context, indicating similar baseline genomic makeup that might
influence treatment response!!>8, Here, we saw similar separation of
TKI or chemotherapy benefit and predictive value of the score as a
composite variable. Results from this cohort verified the potential
generalization of MINERVA-guided treatment strategies in early-
stage EGFR-mutant patients. Despite inspiring results from this
independent validation cohort, we acknowledged the fundamental
differences in trial designs. We were cautious when interpreting the
results as we cannot completely isolate the influence from neoadju-
vant treatment in EMRGING-CTONG1103. Besides, only a small
cohort was collected for validation and further validation in larger
populations in the adjuvant setting is needed. Due to these concerns,
we are providing results of this independent validation in the sup-
plementary data. Moreover, development of this score was based on a
relatively small training cohort, which may introduce biased bio-
marker selection, or an overfitted model. Therefore, it is important to
exploit stringent statistical procedures to minimize cherry-picking
during post hoc analyses. Cross-validating all the steps of model
construction allowed us to evaluate whether the current algorithm
could be uniformly applied to the entire cohort. Besides, only baseline
specimen was examined in our study, while dynamic minimal

residual disease (MRD) detection might provide additional infor-
mation for the application of precise adjuvant TKI. However, con-
sensus opinion on MRD’s definition and detection technologies
needed to be settled first.

Other limitations include insufficient tissue availability for
retrospective genomic analysis of all the enrolled participants.
However, both clinical characteristics and survival outcomes of
the pre-categorized patients in this study were matched with
those of the ITT population from the ADJUVANT trial.

In summary, this exploratory retrospective analysis of the
ADJUVANT trial has unraveled the genetic constructs of EGFR
co-mutations in stage II and IIT resected NSCLC. Further, the
interplay between identified predictive markers and clinical out-
comes has been carefully examined, and incorporated into a
multi-gene predictive score to aid the adjuvant paradigm. Our
evidential MINERVA score presents a fresh perspective for future
studies to examine its clinical validity, thereby guiding the
development of more personalized adjuvant therapies, and their
transition from bench to bedside.

Methods

Adjuvant treated patients. All patients had Stage II-IITA (N1-N2), EGFR-mutant
NSCLC, underwent complete surgical resection and were randomized in the
ADJUVANT/CTONG1104 trial (NCT01405079)°. All except 27 patients initiated
either adjuvant gefitinib or intravenous vinorelbine plus cisplatin between Sep-
tember 2011 and April 2014. The independent validation cohort included patients
from the EMERGING-CTONGI1103 trial, which was a multicenter phase II
neoadjuvant study of patients with previously untreated EGFR-mutant stage IITA-
N2 NSCLC. Total 72 patients were randomly assigned between December 5, 2011,
and December 13, 2017 to receive neoadjuvant erlotinib for 42 days or two cycles of
gemcitabine/cisplatin and up to 12 months of adjuvant erlotinib or chemotherapy
after surgery (one withdrew before treatment). For both clinical trials, EGFR-
activating mutations were evaluated using amplification-refractory mutation sys-
tem PCR at time of enrollment. All patients provided written informed consent for
participating in the ADJUVANT/CTONG1104 or the EMERGING-CTONG1103
trial, and this predefined biomarker study was included in the consent forms for
both studies.

Clinical efficacy assessment. Per protocol, patients were assessed for DFS by
chest CT scan and abdominal ultrasound every 3 months, brain MRI every

6 months, bone scan every 12 months from baseline until disease relapse or death
(whichever comes first) for up to 3 years. The survival after 3 years will be followed
up semi-annually with telephone. Secondary endpoints, including OS, 3-year DFS
rate, 5-year DFS rate, and 5-year OS rate, were also evaluated. Patients who were
alive or lost to follow-up were censored on the last day they confirmed survival.
The baseline demographics, clinical characteristics, and the primary end point data
of ADJUVANT-CTONGI1104, including the DFS, were collected from the previous
publication®. OS was updated either by phone interview, or on-site follow-up of the
enrolled patients2. For independent validation cohort, clinical data, including PFS
and OS, were obtained from our previous publication of EMERGING-
CTONGI1103 and patients underwent the same schedule of long-term follow-up as
the ADJUVANT trial33. The ADJUVANT-CTONG1104 trial was approved by the
research ethics boards of Guangdong Provincial People’s Hospital and all other
participating hospitals (including Fudan University Affiliated Zhongshan Hospital,
Shanghai, China; Zhejiang Cancer Hospital, Hangzhou, China; Hunan Cancer
Hospital, Changsha, China; The Affiliated Hospital of Medical College Qingdao
University, Qingdao, China; Liaoning Cancer Hospital, Shenyang, China; Fujian
Medical University Union Hospital, Fuzhou, China; Jilin Provincial Tumor Hos-
pital, Changchun, China; Jiangsu Cancer Hospital, Nanjing, China; The People’s
Hospital of Peking University, Beijing, China; Shanghai Pulmonary Hospital,
Tongji University, Shanghai, China; Tangdu Hospital, Xi’an, China; Peking Uni-
versity First Hospital, Beijing, China; Fujian Cancer Hospital, Fuzhou, China;
Beijing Chest Hospital, Beijing, China; The First Hospital of China Medical Uni-
versity, Shenyang, China; Beijing Cancer Hospital, Beijing, China; Harbin Medical
University Cancer Hospital, Harbin, China; West China Hospital of Sichuan
University, Chengdu, China; Sichuan Cancer Hospital, Chengdu, China; The
Northern Jiangsu People’s Hospital, Yangzhou, China; The First Affiliated Hospital
of Suzhou University, Suzhou, China), and the EMERGING-CTONG1103 trial was
approved by the research ethics boards of Guangdong Provincial People’s Hospital
and participating hospitals (Peking University Cancer Hospital and Institute,
Beijing, China; Fujian Medical University Union Hospital, Fuzhou, China; First
Affiliated Hospital of Dalian Medical University, Dalian, China; Peking University
People’s Hospital, Beijing, China; Zhejiang Cancer Hospital, Hangzhou, China;
Zhongshan Hospital, Shanghai, China; Guangzhou Liuhuagiao Hospital,
Guangzhou, China; Jilin Provincial Tumor Hospital, Changchun, China; Jiangsu
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Cancer Institute and Hospital, Nanjing, China; Tianjin Medical University Cancer
Institute and Hospital, Tianjin, China; First Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China). Both trials were conducted in accordance with the ethical
principles of the Declaration of Helsinki.

Sample details. From the ADJUVANT/CTONG1104 trial, 175 patients treated by
either adjuvant arms had sufficient and qualified archived formalin-fixed paraffin-
embedded (FFPE) tumor tissue specimens obtained from 25 centers. A minimum of
five FFPE slides or 250 ng genomic DNA was required. Of these, 171 patients positive
for EGFR by NGS were subjected to further biomarker analyses (including 95 from the
gefitinib group and 76 from the VP group). For the independent validation cohort from
the EMERGING-CTONG1103 trial, 37 patients were recruited at our center (Guang-
dong Provincial People’s Hospital), whose archived pre-treatment needle-aspiration
FFPE samples we have access to. Of these, 29 patients had enough samples for NGS
testing and were therefore included in this biomarker analysis (including 15 from the
erlotinib arm and 14 from the chemotherapy arm).

DNA extraction and sequencing library preparation. Samples were sent to the
CAP/CLIA (College of American Pathologists and Clinical Laboratory Improve-
ments Amendments) accredited central laboratory at Nanjing Geneseeq Technol-
ogy Inc. (Nanjing, China) for genomic DNA extraction and hybridization capture-
based targeted NGS of 422 cancer-relevant genes. Protocols from previous pub-
lication were followed for both experimental procedures as well as sequence data
analysis®®. In detail, five to eight 10 um FFPE sections were first de-paraffinized
with xylene and then used for genomic DNA (gDNA) extraction by QlAamp DNA
FFPE Tissue Kit (Qiagen) following the manufacturer’s instructions. The extracted
gDNA samples were quantified on Qubit 3.0 fluorometer (Thermo Fisher Scien-
tific) and its purity was measured on Nanodrop 2000 (Thermo Fisher Scientific),
following by fragmentation to a size around 350 bp by using Covaris

M220 sonication system (Covaris) and then purified by size selection with Agen-
court AMPure XP beads (Beckman Coulter).

Fragmented gDNA were used to prepare DNA libraries with KAPA hyper
library preparation kit (KAPA Biosystems) according to the manufacturer’s
protocol. Libraries were then subjected to PCR amplification and purification with
Agencourt AMPure XP beads before targeted enrichment.

Libraries with different sample indices were first pooled together to a total DNA
amount of 2 ug and then subjected for targeted enrichment with IDT xGen
Lockdown Reagents and a customized enrichment panel (Integrated DNA
Technologies) covering the exonic regions of 422 genes and the introns of 16 fusion
genes. The captured library was further amplified with Illumina p5 (5" AAT GAT
ACG GCG ACC ACC GA 3" and p7 (5" CAA GCA GAA GAC GGC ATA CGA
GAT 3’) primers in KAPA Hifi HotStart ReadyMix (KAPA Biosystems,
Wilmington, MA) and purified with Agencourt AMPure XP beads. Sequencing
libraries were quantified by gPCR with KAPA Library Quantification kit (KAPA
Biosystems) and its size distribution was examined on Bioanalyzer 2100 (Agilent
Technologies). The final libraries were sequenced on Illumina Hiseq 4000 platform
for 150 bp paired-end sequencing according to the manufacturer’s instructions. All
experimental procedures were performed using validated assays.

Sequencing data analysis. Raw sequencing data was analyzed by a validated
automation pipeline. In brief, raw data were first subjected to bcl2fastq for
demultiplexing and then Trimmomatic® for FASTQ file quality control to remove
low quality (base phred score below 30) and N bases. Reads were aligned to the
reference human genome hg19 by Burrows-Wheller Aligner (BWA-mem,
v0.7.12)¢1, PCR duplicates were removed by Picard. Genome Analysis Toolkit
(GATK 3.4.0) was employed to apply the local realignment around indels and
recalibrate base quality score. Single-nucleotide variations (SNVs) and insertion/
deletion mutations were called using VarScan2 with the following parameters: (1)
for mutations with more than 20 recurrences in COSMIC, minimum variant allele
frequency (VAF) = 0.01 with at least three minimum variant supporting reads; (2)
for others, minimum VAF = 0.02 with at least five minimum variant supporting
reads; in addition, all variants also need to meet the standards of minimum read
depth = 20, minimum base quality = 25, variant supporting reads mapped to both
strands, and strand bias no greater than 10%.

CNV detection was using a self-developed pipeline, which has been validated in
38 samples against their droplet digital polymerase chain reaction (ddPCR) results
as “gold standard”. The system noise in copy number data was reduced by principal
component analysis of 100 normal samples sequenced in the same batch.

Variant filtering and annotation. Single-nucleotide polymorphism (SNPs) and
small insertions/deletions (indels) were annotated by ANNOVAR against the fol-
lowing databases: dbSNP (v138), 1000Genome, EXAC, COSMIC (v70), ClinVAR,
and SIFT. Mutations that were presented in >1% population frequency in the 1000
Genomes Project or 65000 exomes project (ExAC) were removed. The resulted
mutation lists were filtered through an internally collected list of recurrent
sequencing errors on the same sequencing platform, which is summarized from the
sequencing results of 200 normal samples with a minimum average sequencing
depth of 700x. Specifically, if a variant was detected (i.e. 23 mutant reads and >1%

VAF) in >20% of the normal samples, it was considered a likely artifact and was
removed. Mutations occurred within the repeat masked regions were also removed.

Selection of predictive gene features. We followed a well-established method to
select predictive biomarkers and develop the composite score2>2%-30, We first
performed an interaction test between treatment and each candidate gene sepa-
rately. Specifically, for a particular gene feature, we assume a standard multivariate
Cox proportional hazards model:

hi(t) = ho(exp{y,7; + v,8; + ¥37ig; } m

where A (1) is the baseline hazard and y are the regression parameters, gi the
mutation status of the gene feature, r; denotes the treatment assignment for patient
i, such that r; = 0 indicates that the patient received chemotherapy and r;=1
indicates that gefitinib was administered, and the product r;g; represents the
interaction term of treatment and mutation status of the gene.

Selection of biomarker is based on the Wald test statistic for testing a null
interaction effect, ;= 0. A standardized test statistic, z, that approximately follows
the standard normal distribution under the null interaction effect was calculated
by:

iHR @
z=——
se(iHR)
where iHR stands for interaction-hazard ratio derived from the interaction term of

Eq. (1).

After standardization, a negative or positive z value represents that alteration in
a gene is associated with better outcome with adjuvant gefitinib or TKI,
respectively. A set of features with significance level of this test statistics less than
0.05 was used to generate the multi-gene score. All selected markers were also
evaluated for whether they were confounded by any clinical variables through
multivariate analysis, with the following controlled: age, sex, smoking history,
clinical stage, and lymph node stage (N stage). A treatment-adjusted Cox’s model,
without the interaction term, was used to test for prognostic biomarkers as a
reference that were not involved in the score development.

Development of the MINERVA score. We adapted a well-recognized linear
discriminant model to compile all predictive biomarkers into a composite
MINERVA (Multiple-gene INdex to Evaluate the Relative benefit of Various
Adjuvant therapies) score to address underlying molecular heterogeneity. This is
usually done by summing weighted averaging of individual variables, which could
avoid interference from any large variance in one of the original predictors and
control Type I error rate for limited sample sizes?>2%-31. The resultant composite
score captures all meaningful information and can be additive for the predictive
effect. Here, this was done by summing the standardized z-scores of the original
iHRs. The score for each patient was calculated using the following equation:

MINERVA; = g;(; ZeDig 3)

where G is the set of selected genes g, z, is the standardized test statistic of the
interaction test for gene g, i is the ith patient, while p; ¢ is the mutation status of g in
the ith patient where p;g=1if the genetic feature is altered and p; .= 0 otherwise.

Therefore, based on interaction z-scores of the five predictive markers, we could
calculate the score using the following function:

MINERVA = 2.88 % RBI + (—2.72) % NKX2-1 +
(—2.26) * CDK4 + (—2.11) % TP53 + (—1.98) * MYC.

Smaller values of MINERVA correspond to greater chance of benefiting from
TKI than from chemotherapy as an adjuvant treatment. Based on combination of
predictive genes of each score and the best separation of survival stratification, the
patients could be effectively categorized into three subgroups with scores of <—0.5,
—0.5 to 0.5, and >0.5, with distinct DFS outcomes. The relative survival benefit was
compared using a 2-year DFS probability ratio and median DFS difference between
gefitinib and VP arms®2.

Validation of the MINERVA score. Ten-fold cross validation (CV) was used to
evaluate the performance of our predictive model. Inside each fold, gene-by-
treatment interaction effect was assessed by cox proportional hazard model based on
90% of the samples and predictive markers with interaction p < 0.05 were selected.
Mock MINERVA scores were then calculated for the remaining 10% samples using
the selected subset of markers. A complete set of scores can be computed through
ten repeated 10-fold CV and patients were assigned to one of the three MINERVA
subgroups accordingly (HTP <—0.5, TP —0.5-0.5, or CP > 0.5) to compare survival
outcomes. Predictive effect of the MINERVA scores as a composite variable was then
evaluated with interaction P-value. This process was repeated 100 times. Relative
adjuvant treatment benefit within each subgroup was compared using 2-year DFS
probability and median DFS difference between gefitinib and VP arms.

Next, we performed leave-one-out cross validation (LOOCV) to obtain
individual scores. Each patient was omitted once in alternation and then scored by
models constructed on the remaining 170 patients (using the same marker
selection criteria). The patient was then assigned to one of subgroups with the same

| (2021)12:6450 | https://doi.org/10.1038/s41467-021-26806-7 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

score cutoffs. The entire procedure was repeated until each patient was left out
once, scored and assigned. Kaplan-Meier curves were estimated for each subgroup
to evaluate relative benefit of adjuvant gefitinib to VP therapy using 2-year DES
ratio, median DFS difference and the log-rank P values.

For independent validation, genomic profiles of twenty-nine patients from the
EMERGING were obtained. Each patient was scored according to their makeup of
the five MINERVA genes and assigned into HTP, TP or CP as described above.
Survival difference of TKI- and chemotherapy-treated patients were compared
using Kaplan-Meier estimates, median PFS and log-rank P-values, which were
used to assess generalization of the MINERVA score. Treatment-interaction test
with MINERVA scores in this cohort was also performed to validate its
predictive value.

Statistical analysis. Univariate and multivariate analyses of the association of
biomarkers, treatment interaction, and clinical factors with DFS were performed
with the Cox proportional hazard regression model. Kaplan-Meier curves of DFS
and OS were estimated for each subgroup, and statistically compared using the log-
rank test. A two-sided P-value < 0.5 was considered statistically significant. All
statistical analyses were performed using R software (version 3.5.0).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw sequencing data generated in this study is deposited in the Genome Sequence
Archive in fastq format under the accession link HRA001462 and the variants data are
deposited in the European Genome-Phenome Archive (EGA) database in vcf format
under the accession link EGAS00001005632. The data are available under restricted
access due to data privacy laws. Access can be obtained by contacting corresponding
authors of this study at syylwu@live.cn. The processed data matrices have been deposited
in GitHub in the repository https://github.com/cancer-oncogenomics/minerva-adjuvant-
nscle. The source data generated from cross validation procedures in this study are
provided with this paper. Source data are provided with this paper.

Code availability

The R code utilized in this study has been deposited in GitHub in the repository available
at https://github.com/cancer-oncogenomics/minerva-adjuvant-nsclc®® (https://doi.org/
10.5281/zenodo0.524251).
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