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Abstract

It is increasingly appreciated that cancer cell heterogeneity and plasticity constitute major barriers 

to effective clinical treatments and long-term therapeutic efficacy. Research in the past two 

decades suggest that virtually all treatment-naive human cancers harbor subsets of cancer cells 

that possess many of the cardinal features of normal stem cells. Such stem-like cancer cells, 

operationally defined as cancer stem cells (CSCs), are frequently quiescent and dynamically 

change and evolve during tumor progression and therapeutic interventions. Intrinsic tumor cell 

heterogeneity is reflected in a different aspect in that tumors also harbor a population of 

slow-cycling cells (SCCs) that are not in the proliferative cell cycle and thus are intrinsically 

refractory to anti-mitotic drugs. In this Perspective, we focus our discussions on SCCs in cancer 

and on various methodologies that can be employed to enrich and purify SCCs, compare the 

similarities and differences between SCCs, CSCs and cancer cells undergoing EMT, and present 

evidence for the involvement of SCCs in surviving anti-neoplastic treatments, mediating tumor 

relapse, maintaining tumor dormancy and mediating metastatic dissemination. Our discussions 

make it clear that an in-depth understanding of the biological properties of SCCs in cancer will 

be instrumental to developing new therapeutic strategies to prevent tumor relapse and distant 

metastasis.
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1. INTRODUCTION: The cell cycle and slow-cycling cells (SCCs)

A fundamental hallmark of cancer is uncontrolled cell proliferation and loss of sensitivity to 

anti-proliferative signals. Once transformed (by genetic mutations together with epigenetic 

alterations), the founder tumor cell, or the cell-of-origin of tumor [1], establishes a clonal 

growth that gradually develops into a clinically incipient tumor, which then undergoes 

spatiotemporal evolution accompanying tumor progression and therapeutic treatments [2,3]. 

Therefore, deregulation in cell cycle control represents a critical driver of tumor formation 

and progression.

The cell cycle in normal mammalian cells consists of 4 well-defined phases, G1, S, G2 

and M [4–12] (Figure 1). Cells in the G1, S and G2 phases are often said to be in the 

interphase whereas cells undergoing mitotic divisions in the M-phase (Figure 1A). The G1 

cell-cycle phase could be further divided into the early and late G1 phases, demarcated by 

the Restriction (R) point [5,8,9] (Figure 1A–B). It is generally thought that once cells have 

passed the R point, they are irreversibly committed to entering the full cell cycle and ending 

with cell division. Regardless, cells in any of these 4 cell-cycle phases (G1, S, G2 and M) 

are often termed cycling cells or cells in the (cell) cycle. In contrast, some cells in the 

bulk population may reside in a non-cycling, resting and quiescent phase termed G0 (Figure 

1A–C), and cells could enter G0 right after mitosis (Figure 1C) or, stochastically, from 

early G1 (Figure 1A–B). In general, the G1 phase is the longest whereas M phase, which 

consists of prophase, metaphase, anaphase, telophase and cytokinesis, the shortest (Figure 

1C). Embryonic stem cells (ESCs) are well known to have very short G1 phase and undergo 

rapid symmetrical cell division generating more ESCs. On the other hand, a somatic stem 

cell (SC) may undergo asymmetric cell division (ACD) to generate a larger differentiated 

daughter cell while retaining a smaller SC (Figure 1A).

Cell-cycle progression along the phases is regulated by cyclin/cyclin-dependent kinases 

(CDK) in response to the availability of mitogens, growth factors and nutrients in the 

extracellular environment (Figure 1B). The current thinking is that mitogenic signaling 

from growth factors would increase cyclin D1 synthesis and activate CDK4/6, which in 

turn hypo-phosphorylates the Rb tumor suppressor at one of the 14 sites and pushes the 

cells out of G0 and into early G1 [5,11,12] (Figure 1B). Therefore, cells at the G0 have un-

phosphorylated Rb whereas cells at early G1 have one of the 14 mono-phosphorylated Rb 

isoforms [5,11,12] (Figure 1B). Cyclin E/CDK2 then hyper-phosphorylates Rb at all 14 sites 

and subsequently release E2F1, pushing cells over the R point to enter late G1 and leading 

to ‘irreversible’ cell-cycle commitment [4,5,9,11,12] (Figure 1B). Consequently, the CDK2 

activity has been proposed to demarcate quiescent (i.e., G0 and early G1) vs. proliferative 

state of normal mammalian cells [4–12]. The S-phase is where cells replicate their DNA; 

consequently, nucleotide analog-based DNA incorporation has been commonly utilized to 

assay the proliferative proportion of cells in the S-phase (see below). Upon DNA replication, 

cells would finish cell cycle by entering the G2 phase, driven by cyclin A/CDK1/2, and, 

eventually, the M (mitosis) phase, driven by cyclin B/CDK1 activity (Figure 1C). Upon 

completion of chromosome duplication and segregation in M-phase, the mitotic (parent) 

cell will undergo cytokinesis (Figure 1C) generating two daughter cells that are either 

identical (not shown) or have different fates (Figure 1A). The well-delineated cell-cycle 
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progression in normal cells frequently becomes deregulated in transformed and cancer cells 

due to, e.g., genetic mutations or deletions of key cell-cycle regulators such as Rb. It can 

be easily conceived that Rb mutation/deletion would abrogate the R point control leading to 

constitutive cell-cycle entry and increased cancer cell proliferation (Figure 1B).

G0 is a somewhat ‘cryptic’ phase as cells are not in the cell cycle (i.e., resting) but remain 

metabolically active and have un-phosphorylated Rb ‘signature’ (Figure 1B). There are 

two main types (states) of G0: irreversible (or permanent) and reversible (Figure 2). The 

prototypical example of permanently G0-arrested cells are the terminally differentiated cells 

in post-mitotic adult human tissues and organs, e.g., the brain, heart, and skeletal muscle, 

in which the parenchymal cells like neurons are irreversibly arrested in the quiescent G0 

phase (Figure 2). Another type of permanently G0-arrested cells are senescent cells, which 

can be physiological due to telomere shortening or prematurely induced by, e.g., oncogene 

activation, DNA damage, and oxidative and culture stresses (Figure 2). In contrast to these 

irreversibly G0-arrested, differentiated or senescent cells, many cells may be transiently 

arrested in the G0 (or early G1) phase. For instance, some adult tissues such as the skin, 

small intestine and blood have fast turnover and constantly renew themselves; however, even 

in these fast-renewing tissues, there are primitive stem and early progenitor cells that are 

in a dormant and reversible G0 state [13] (Figure 2). These quiescent stem/progenitor cells 

can enter the cell cycle in response to tissue damage and loss of differentiated functional 

cells, and are thus slow-cycling cells or SCCs (Figure 2). Apparently, the slow-cycling stem/

progenitor cells are to be distinguished from terminally differentiated cells (such as neurons) 

and senescent cells, both of which are permanently arrested in G0 (Figure 2). Finally, some 

special cell types such as hepatocytes and endothelial cells are well known to be largely 

quiescent (Figure 2).

Interestingly, it has been observed for decades that human tumors, which resemble a 

disorganized organ with an overall fast turnover, also harbor subpopulations of SCCs 

[13–19] despite uncontrolled cell proliferation at the population level. These SCCs in 

cancer (Figure 2) are defined as nonproliferating quiescent/dormant cancer cells that are 

TRANSIENTLY arrested at the G0 or early G1 cell-cycle phase but can re-enter the 

proliferative cell cycle, stochastically or in response to mitogenic stimuli. In this review, we 

adhere to this definition and, frequently and interchangeably, use “slow-cycling,” “dormant,” 

“quiescent” and “label-retaining” to describe the SCCs in cancer.

2. Experimental approaches used to identify, isolate and study SCCs

2.1) . Nucleotide-based pulse and chase.

Before we discuss SCCs in cancer, we first describe several commonly used experimental 

methods to identify and purify SCCs (Figure 3). As mentioned earlier, cells incorporate 

nucleotides for DNA replication during the S-phase. Thus, nucleotide analogs such as BrdU 

(5-bromo-2’-deoxyuridine) and EdU (5-ethynyl-2’-deoxyuridine), or tritiated thymidine 

[3HT], can be used to pulse normal and cancer cells, in vitro or in vivo, for a short period 

of time (e.g., 20 min – 2 h depending on the overall growth kinetics of the culture) followed 

by cell fixation and staining using antibodies against BrdU or EdU. Cells that took up [3HT] 

can be identified by radiography. The fraction of BrdU+, EdU+ or [3HT]+ cells represents 
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the % S-phase cells (Figure 3A; left). The nucleotide incorporation assays can be adapted 

to identify SCCs by continuously pulsing the cultures or tissues over a long period of time 

such that virtually all (or the majority of) cells become labeled; then such long-term pulsed 

cultures will be followed by a chase (i.e., washing off of the nucleotides) for different 

intervals of time (Figure 3A; right). Rapid-cycling cells (RCCs) would dilute out the label 

upon a short time of chase whereas SCCs will continue to retain the label even upon a 

long-term (LT) chase (Figure 3A; right). As a result, SCCs are also frequently called label-

retaining cells or LRCs (Figure 3A; right). In principle, the LRCs identified upon chases 

for different time intervals should represent distinct SCC populations with different degrees 

of quiescence; in other words, short-term (ST) LRCs will identify relatively quiescent 

progenitor cells whereas LT-LRCs should identify the small population of deeply dormant 

(stem) cells arrested in G0 or early G1 (Figure 1; Figure 2). The nucleotide analog-based 

pulse/chase strategy was among the oldest method used to identify SCCs in studies of 

spermatogenesis in rat testis [20]. BrdU-based pulse/chase strategy was later adapted by 

Cotsarelis et al to study the slow-cycling epidermal SCs located in the hair follicles and the 

epidermis below sebaceous glands [21], and by Potten et al to study slow-cycling intestinal 

stem cells [22].

Since 2003, our group has been employing prostate cancer (PCa) as a model to meticulously 

dissect cancer cell heterogeneity and plasticity [1,13,23–60], and our studies have led 

to the identification of several best defined PCa stem cell (PCSC) populations, e.g., the 

CD44+/hi [24–26,30,40,42,45] and PSA−/lo [33,40,42] PCSC populations. Importantly, most 

cells in the PCSC populations are slow-cycling (see below). In fact, our studies employing 

nucleotide analog-based pulse-chase strategy have provided direct evidence for SCCs in PCa 

spheres and prostate tumors in vivo (Figure 4; Figure 5). For instance, the LAPC4 spheres 

that had been chased for 1–5 days (d) had ~25% of LRCs, which began to decrease with a 

10d chase, and ~1% LT-LRCs were observed after a 33d chase (Figure 4A). In contrast, the 

LNCaP cell spheres showed a prominent chase-dependent decrease in the number of LRCs 

such that by 25d and 46d after chase, only ~8% and 0.5% of the cells, respectively, retained 

BrdU (Figure 4B). Spheres derived from human glioma (U373), breast cancer (MCF7) and 

melanoma (WM562) cells also contained LRCs that can be identified upon different periods 

of BrdU chase (Figure 4A). We performed in vivo LRC experiments in 3 human PCa 

xenograft tumors, i.e., Du145, LAPC4, and LAPC9, in which we i.p injected 100 μl BrdU 

solution (20 mM stock; 4x/48 h) into NOD/SCID mice bearing these xenograft tumors. 

Tumors were then chased in mice for 20–68d until harvest. As shown in Figure 4C, we 

identified ~0.01 – 0.1% LRCs in all three tumors. A similar in vivo BrdU-based pulse-chase 

experiment in the autochthonous TRAMP tumors also identified 0.1% of LT-LRCs in the 

dorsal prostate (DP) and 0.1–1% of LT-LRCs in the ventral prostate (VP) of the TRAMP 

mice 3 months after chase (Figure 5). These studies demonstrate the presence of SCCs in 

both human PCa and a genetic mouse model of prostate tumor.

The obvious shortfall of the nucleotide analog-based pulse-chase strategy is its inability to 

allow purification of LIVE LRCs for transcriptomic profiling and functional studies. This is 

because to visualize the incorporated nucleotide analogs such as BrdU, cells/tissues need to 

be fixed and permeabilized for antibody labelling and along the way, the LRCs are killed.
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2.2) Dye-based labeling and chase: Lipid and protein labeling

Live slow-cycling cells, on the other hand, can be enriched and purified via fluorescent 

dyes that preferentially bind membrane or intracellular proteins (e.g., CellTrace or CFSE) or 

membrane lipids (e.g., PKH and DiD) (Figure 3B). Among the first fluorescent dyes used 

to characterize cells with unique cycling parameters, PKH-based membrane labelling dye 

was first developed by Paul Horan in 1989 [61] and subsequently used by many to label 

and track cells with differing proliferative capacities [62,63] or with different proliferative 

kinetics [64–66] and to label extracellular vesicles [67,68]. Among the lipid-labeling dyes, 

PKH26 is the most commonly used. In general, PKH dyes are composed of a fluorescent 

carbocyanine polar head group and a hydrophobic tail that can be stably incorporated in the 

membrane lipid bilayer through non-covalent interactions. Once incorporated, PKH dyes are 

distributed throughout the membrane periphery by lateral distribution. PKH dyes, when used 

at non-toxic concentrations, provide rapid homogeneous staining in a salt-free environment 

but do not affect cell viability nor alter cell biological functions. When incubated for a long 

time, PKH dyes can label intracellular compartments through membrane lipid exchange. 

As the PKH dyes generally do not leak into the neighboring cells, dye dilution only takes 

place during cell division during which daughter cells inherit the membrane label from the 

mother cells. Thus, each cell division, in theory, would be accompanied by loss of half 

of the fluorescence, and dye dilution kinetics can be graphically presented as a function 

of cell proliferation. Slow-cycling stem-like cells rarely undergo cell division and can 

thus be isolated as PKH26-retaining LRCs, similar to BrdU-retaining cells but with native 

fluorescence permitting non-destructive cell identification and isolation via flow cytometry.

Cells can also be protein-labeled using CellTrace dyes such as CFSE (carboxy fluorescein 

succinyl diester) dyes (Figure 3B). Unlike PKH26, CellTrace dyes are initially colorless 

but, when diffused inside the cells, become metabolized by intracellular esterase to form 

a fluorescent product that interacts with membrane peptide via an amide bond. Like PKH 

dyes, the CSFE dye is compatible for both microscopic and flow cytometric analyses, at 

least for up to 1 week or so. Once incorporated into the cellular (membrane) proteins, CFSE 

can produce trackable fluorescent signal in the daughter cells for several rounds of cell 

divisions. Currently, CellTrace dyes may comprise five different fluorophores: blue, violet, 

green, yellow, and red (Figure 3B), which, in principle, can be combined with other stains 

for multiplexing.

The fluorescent dye-based labeling strategies have some limitations. For example, 

the two classes of cell-labeling dyes (Figure 3B) may identify and preferentially 

enrich different subpopulations of LRCs. Also, multiplexing using the two classes 

of fluorescent dyes, together with other fluorescence-based staining protocol(s), may 

entail significant optimization. In addition, using membrane-labeled cells for downstream 

immunofluorescence analysis along with other intracellular markers could be problematic as 

requisite permeabilization may cause dye leakage. Since none of the membrane labels are 

soluble in water-based solvents, PKH dyes are supplied in ethanol and CellTrace dyes are 

dissolved in DMSO. These solvents (i.e., ethanol, DMSO) could potentially be toxic to the 

cells.
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2.3) Labeling and chase via H2B-GFP turnover

All of the aforementioned dyes may confound cell viability by virtue of either the diluent, 

dye loading stress (e.g., osmotic stress) or potentially the label itself. A dye alternative 

free of cell viability and behavioral impacts would thus be highly desirable. Histone 2B 

(H2B) is part of the histone octamer that has a long turnover with a half-life of 4–6 weeks. 

Taking advantage of the slow-cycling nature of H2B, Wahl and colleagues were the first 

to make a H2B-GFP fusion to study chromosome dynamics in mammalian cells [69]. 

Subsequently, the H2B-GFP based cell labeling and chase (Figure 3C) have been adapted to 

study label-retaining slow-cycling cells in multiple tissues and organs in vitro and in vivo 
as well as SCCs in cancer. For example, Puig et al [70] recently created a Doxycycline 

(DOX) inducible H2B-eGFP lentiviral reporter that can be integrated within the genome 

through lentiviral-mediated infection. Following transduction, cells can be induced by DOX 

to mark those that have incorporated the GFP-tagged H2B. During subsequent chase when 

the cells are grown in DOX-free medium, H2B-GFP will be partitioned between mother and 

daughter cells and thus reduced by 50% with every cell division. SCCs do not undergo rapid 

proliferation and will thus retain more fluorescence and can be isolated/sorted using FACS. 

In the follow-up experiments, authors identified TET2 dioxygenase, which is important for 

DNA demethylation at the cytosine residue, as a regulator of SCCs that mediate therapy 

resistance and tumor maintenance in melanoma, GBM and colorectal cancer models [70].

Several considerations need to be taken into account when using lentiviral-based H2B-GFP 

reporter system for enriching and isolating SCCs. First of all, the expression of H2B-GFP 

is obviously affected by the doses and time of DOX treatment; therefore, pilot studies are 

required for each cell model. Secondly, only the average multiplicity of infection (MOI) at 

the population level can be estimated and absolute lentiviral particle integration per cell is 

unattainable. Thirdly, H2B-GFP labelling may not be uniform across the cell population as 

the chromosomal environment and ploidy may affect lentiviral integration and H2B-GFP 

expression. Finally, precisely because SCCs proliferatively quiescent, they may not initially 

incorporate the H2B-GFP thus leading to the inability to study deeply dormant SCCs.

One significant advantage of the H2B-GFP system is its utility in in vivo models. We have 

recently adapted a DOX-repressible variant of the H2B-GFP labeling system to identify 

and study slow-cycling luminal epithelial cells in the mouse prostate (Figure 6; [54]). This 

system involves generating a double transgenic (or bigenic) mouse model by crossing the 

ARR2Pb-TetR.VP16 line with the TRE-mCMV/H2B-GFP reporter line (Figure 6C). The 

resultant bigenic mouse prostate will be fully labeled by H2B-GFP due to the binding of 

TetR.VP16 to the TRE (Figure 6A–C). As the tetracycline-repressible VP16 transactivator 

(TetR.VP16) is under the control of ARR2Pb promoter, most GFP-labeled cells in the 

unchased prostate, as expected, are luminal epithelial cells although a subset of the basal 

cells (2–8%) also become labeled (Figure 6D) [54]. Upon addition of DOX in the chow 

or drinking water, DOX will bind to and repress the TetR.VP16 thus turning off H2B-GFP 

transgene expression and initiating the chase (Figure 6C; right). Fast proliferating cells will 

be rapidly chased out of GFP whereas SCCs will retain GFP. We generally start chasing 

the male mice at 6–8 weeks and the initial luminal cell-labeling efficacy is around 80% 

for the VP and dorsolateral prostate (DLP) whereas the labeling efficiency for the anterior 
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prostate (AP) seems much lower around 40–50% [54] (Figure 6D). As expected, upon chase, 

the mouse prostate showed chase time-dependent decreases in overall fluorescence intensity 

and the abundance of GFP+ cells [54] (Figure 6A). GFP+ luminal cells in the VP dropped 

from 80% to <20% upon a 9-week chase, to 2–6% in all prostate lobes upon a 12-week 

chase, and to undetectable by 14-week chase [54] (Figure 6E). Utilizing the 12-week chased 

GFP+ cells as the LT-LRCs for a large battery of functional studies, we have shown that 

these slow-cycling luminal epithelial cells possess the stem/progenitor cell gene expression 

profile and biological properties [54]. Significantly, these SCCs are intrinsically resistant to 

castration [54], likely due to their dormant nature and to the fact that many of these LT-SCCs 

are negative for AR [54] (Figure 6E)

2.4) Cell-cycle phase reporters

An alternative method for isolating SCCs in the G1 cell-cycle phase is the utilization of 

the Fluorescent Ubiquitination-based Cell-Cycle Indicator or FUCCI (Figure 3D), developed 

initially by Sakaue-Sawano and colleagues in 2008 [71] and subsequently adapted and 

further developed by many groups for studying cell-cycle dynamics in vitro and in vivo 
[72–76]. The FUCCI system utilizes the expression of two cell-cycle restricted proteins: 

the Cdt1 protein, which is tagged with the monomeric Kusabira Orange (mKO2-hCdt1) and 

marks the cells with red fluorescence when they accumulate during the G1 phase; and the 

Geminin protein, which is tagged by monomeric Azami Green (mAG-hGem) and marks 

the cells green when they accumulate during the late S/G2/M phase (Figure 3D). Both 

Geminin and Cdt1 are regulated by ubiquitination in a cell-cycle dependent manner. Thus, 

the Anaphase Promoting Factor (APC), along with its regulator Cdh1, forms the APC/CCdh1 

complex that leads to the ubiquitin-mediated degradation of Geminin, thereby inhibiting 

GFP expression during the G1 phase and the G1 cells will be identified as red (Figure 

3D). In contrast, the S phase kinase associated protein 2 (Skp2) complexed with SCF is 

responsible for degrading Cdt1-mKO2 and cells in the G2/M phase will be labeled by the 

green fluorescence (Figure 3D). Cells in transition between G1 and G2/M, i.e., the S-phase 

cells, will be labeled as yellow (Figure 3D). Thus, in the FUCCI system, the APC/CCdh1 

complex regulates SCFSkp2, and the latter also regulates APC/CCdh1 through a feedback 

mechanism.

The two-part FUCCI system is potentially advantageous over the above-mentioned pulse-

chase strategy that traditionally only allows the identification and isolation of one cell 

population, i.e., SCCs, whereas FUCCI system can facilitate the tracking and purification 

in real time of both proliferating (S/G2/M) and nonproliferating (G1) cells (Figure 3D). 

Applying the FUCCI system in melanoma models, Puig et al [70] showed that the SCCs 

tend to localize at the center of the melanoma whereas the fast-cycling cells are distributed 

more towards the periphery of the tumor mass. On the other hand, FUCCI system does 

have its own limitations. Because the FUCCI expression vectors utilize lentiviral delivery, 

like H2B-GFP, the reporter expression will depend on the MOI of the vectors and the 

genomic locus and context of the vector insertion. Additionally, the two cell-cycle indicators 

in the FUCCI system, i.e., Cdt1 and Geminin, are normally expressed in a gradient, rather 

than a bimodal, fashion. Therefore, their ‘activation’ may not be completely regulated in 

a cell-cycle dependent manner, and chances of false positives could be high. Importantly, 
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FUCCI does not permit discrimination of cells in G1 vs G0 eliminating the potential of 

FUCCI alone to identify authentic SCCs.

2.5) Gene promoter-driven reporters

Endogenous and exogenously introduced gene promoters have long been utilized to study 

and/or trace the development of a (stem) cell population in vitro and in vivo [1], and the 

basic principle has been adapted to study cancer cell populations including CSCs and SCCs 

(Figure 3E). As discussed earlier, cell-cycle progression is driven forward by cyclin/CDKs 

(Figure 1C). For example, CDK2 activity demarcates cells in quiescence vs. in proliferative 

cycle and CDK2 activation drives cells into the S-phase, after which cells would generally 

finish the cell cycle (Figure 1B–C). Consequently, CDK2 activity-based reporters could 

potentially separate cells in the cycle vs. cells in deep G1 or G0. Indeed, CDK2 promoter-

based reporters have been used to fractionate bulk cells with CDK2lo cells representing G0 

cells [4,10], including senescent cells permanently arrested in G0 phase (Figure 2). On the 

other hand, cell-cycle progression is also negatively regulated by the two families of CDK 

inhibitors (CDKIs), i.e., the INK4 family (p15, p16, p18 and p14ARF), which acts at the 

beginning of cell-cycle entry into the G1 phase, and the Cip/Kip family (p21, p27, and p57), 

which impedes the progression throughout the cell cycle. Therefore, the promoters of p21 

and p27 have been employed to drive reporters such as GFP to enrich and purify quiescent 

cells. The best example is p16INK4A, which is significantly upregulated in G0 and deep G1 

cells. As a result, reporters such as GFP and β-galactosidase (β-gal) have been knocked into 

the endogenous p16INK4A gene locus to identify and purify p16+ (i.e., β-gal+) senescent 

cells arrested in G0 [77–79].

Gene promoter-driven reporters have also been adapted in different flavors to identify and 

purify SCCs or CSCs. For example, if a new gene has been uncovered to be a critical 

regulator of SCCs, that gene promoter could potentially be used to drive a reporter in a 

lentivector to infect the bulk cells and identify/enrich the slow-cycling cell subpopulation 

(Figure 3E). Such is the case with the KDM5B (JARID1B) promoter, which is used to 

identify and study the transient population of SCCs in melanoma [80,81]. Our lab has 

adapted the concept of gene promoter-driven reporters to enrich and isolate live PCSCs. 

Specifically, we employed a lentiviral reporter system in which the gene promoter of PSA 
(Prostate Specific Antigen), a differentiation marker of prostate and PCa cells, was used 

to drive GFP or dsRed expression. By employing this reporter system and performing a 

series of biological studies, we have demonstrated that the phenotypically undifferentiated, 

i.e., PSA−/lo, PCa cell population harbors long-term self-renewing PCSCs that are largely 

dormant and intrinsically refractory to castration and chemotherapeutic drugs [33, 40, 42]. 

In contrast, the differentiated PSA+/hi cell population has more limited tumor-propagating 

capabilities and is sensitive to antiandrogens, anti-mitotic drugs as well as radiation and 

prooxidants.

3. SCCs, CSCs and EMT-like cancer cells: Similarities and distinctions

Most normal primitive SCs localized in their natural niches, e.g., long-term hematopoietic 

SCs (HSC) in the bone marrow, are quiescent, and they only enter the proliferative cell cycle 
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when needed. This suggests that in normal SCs, stemness and quiescence may go hand-in-

hand. CSCs, or stem-like cancer cells that possess some or many normal SC properties 

(e.g., self-renewal, differentiation, proliferative potential), have been reported in virtually 

all human cancers [1,13,23–60, 82–100]. Likewise, mitotically quiescent SCCs have now 

been reported in most cancer types including, among others, melanoma [80,81,101], lung 

cancer [102,103], glioblastoma [104–108], breast cancer [109–112], multiple myeloma 

[113], leukemia [114], and colorectal [115,116], pancreatic [117], skin [118,119] and 

gastric [120] cancers. PCa cells that have disseminated into the bone marrow are also 

known to be dormant [121–128], although very little is known about SCCs in primary 

prostate tumors and castration-resistant PCa (CRPC) disseminated into the other sites, 

especially visceral organs. Finally, cancer cells manifest inherently high cellular plasticity 

such that a subpopulation of cancer cells in the tumor may be constantly undergoing 

epithelial-to-mesenchymal transition or EMT [129–131]. Notably, EMT represents a process 

during which some cancer cells are still going through the process (sometimes called 

EMT’ing cells) whereas others have completed EMT and become fully ‘transformed’ into a 

mesenchymal lineage (i.e., full-EMT cells).

The relationship between SCCs, CSCs and EMT-like cells can be technically intricate, 

oftentimes semantic, and potentially confusing (Table 1). First and foremost, they are 

defined differently (Table 1). CSCs are most often phenotypically defined by hypothesis-

driven unique marker expression profile (e.g., CD44hi, BMI-1hi, PSA−/lo) and functionally 

defined by their enhanced tumor-initiating and, importantly, long-term tumor-propagating 

properties [1,13,26,34,55]. In contrast, SCCs are always defined by their fundamental nature 

of being quiescent whereas EMT-like cells by their prototypical fibroblast morphology 

coupled with loss of epithelial phenotypes, markers and regulators (Table 1). While EMT-

like cells generally assume a mesenchymal cell morphology, both SCCs and CSCs could be 

either mesenchymal or epithelial (Table 1). Indeed, in both prostate and breast cancers, the 

ALDHhi CSCs are epithelial and proliferative whereas the CD44hi CSCs are mesenchymal, 

invasive and quiescent [40,132,133]. This points highlights another difference between 

the three cell types: whereas both SCCs and EMT-like cells are dormant, CSCs can be 

either dormant or highly proliferative (Table 1). Consequently, in tumor xenotransplantation 

experiments under limiting-dilution conditions, SCCs and EMT-like cancer cells may 

‘paradoxically’ display low tumor-initiating (tumor-regenerating) activities, in contrast to 

most CSCs [1] (Table 1).

To some degree and in certain circumstances, all three cancer cell types could well be 

describing the same population of cells in different cellular (epigenetic) states (Table 1). 

For instance, some (but NOT all) SCCs may possess phenotypic and functional properties 

of CSCs and, vice versa, some (but NOT all) CSCs may be dormant and slow-cycling. 

Thus, SCCs in many tumors have been shown to possess CSC-related properties, e.g., 

niche dependence, enhanced tumor-propagating ability, therapy resistance, and promotion of 

tumor relapse and metastasis [13,16–19,116,117]. Vice versa, many functionally validated 

CSCs are quiescent [e.g., 13,24,33,92]. The best examples are the CD44+/hi [24,26] and 

PSA−/lo [33,40] PCSC populations that we have extensively studied (Figure 7). For example, 

using the BrdU-based pulse/chase strategy, we found that the LAPC4 spheres harbor chase 

time-dependent LRCs (Figure 4A; Figure 7A). Upon 10, 25, and 33 days of chase, there 
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were approximately 17%, 4% and 1% LRCs, respectively, in the LAPC4 spheres (Figure 

4A; Figure 7A). Strikingly, most CD44+/hi PCSCs in the spheres colocalize with the 

LRCs chased for 10 and 25 days, and the CD44+/hi LRCs actually decreased by 33 days 

after chase (Figure 7B; [24]), suggesting that the CD44+/hi PCSCs in the LAPC4 PCa 

model have an intermediate level of quiescence. Similarly, most CD44+/hi cells in Du145 

holoclones, which we have shown to harbor long-term self-renewing PCSCs [27], are 

nonproliferating, i.e., BrdU-negative, upon a short-term (4 h) BrdU pulse (Figure 7C; [26]), 

again suggesting that the CD44+/hi PCSCs in the Du145 model are relatively quiescent. 

Analogously, the PSA−/lo PCa cell population harbors long-term tumor-propagating cells 

and, of clinical significance, PSA−/lo (but not PSA+) PCa cells preferentially survive ADT 

and can initiate robust tumor regeneration in androgen-ablated hosts [33,40]. Importantly, 

time-lapse video-microscopy analysis of single cells has revealed that most PSA+ PCa cells 

undergo rapid symmetrical cell divisions generating an all-PSA+ cell clone in relatively 

a short time [33,40] (Figure 7D, top). In contrast, 5–8% of the PSA−/lo PCa cells have 

hardcore PCSC properties in that they undergo ACD generating both a PSA+ and a PSA−/lo 

daughter cell in their first division [33,40] (Figure 7D, bottom). Strikingly, in such PSA−/lo 

PCSC-derived ACD clones, the differentiated PSA+ daughter cell would embark on rapid 

subsequent cell divisions such that most cells in the endpoint clones are PSA+ with only 

one PSA−/lo PCSC [33,40] (Figure 7D). Consequently, at the population level, the PSA−/lo 

PCa cells have significantly longer cell-cycle transit times (Figure 7E) and less population 

doublings (Figure 7F) than PSA+ PCa cells [33,40], suggesting that the PSA−/lo PCSC 

population is largely quiescent. Notably, the PSA−/lo PCSCs are not enriched in EMT genes 

[33,40]. These discussions on the CD44+/hi and PSA−/lo PCSC populations vividly illustrate 

the intricate relationship between marker-defined CSCs, cellular quiescence (proliferation 

status) and the mesenchymal state (Table 1).

On the other hand, although SCCs, CSCs and EMT-like cells may each represent 

(overlapping) cellular states in a population continuum, the underlying mechanisms defining 

their cellular states may be different (Table 1). For example, not all CSC populations are 

dormant, as illustrated by the proliferative ALDHhi CSCs in many solid tumors including 

prostate and breast cancers [1,13,40,132,133] (Table 1). The co-existence of quiescent and 

proliferative CSC subpopulations in many tumors may be analogous to the existence of 

both quiescent AND cycling normal SC populations in some tissues such as the small 

intestine [13]. In principle, CSCs in treatment-naïve primary tumors, much like stem cells 

in normal tissues and organs, should be hierarchical, meaning that CSCs are on top of the 

cancer cell hierarchy having the ability to differentiate into more mature daughter cancer 

cell progeny (Table 1). In contrast, SCCs in unperturbed primary tumors may represent a 

random and stochastic, rather than hierarchical, cell population, meaning that SCCs at any 

moment may stochastically enter the proliferative cycle and, vice versa, cycling cells at 

any moment may enter the quiescent state (Table 1). And it is currently unclear whether 

SCCs and EMT-like cells in various cancers can undergo ACD generating phenotypically 

‘differentiated’ progeny, which is a cardinal property of normal tissue SCs.

In spite of many nuanced differences between SCCs, CSCs and EMT-like cells, they 

all play critical roles in regulating tumor cell subpopulation dynamics and contributing 

to the generation of tumor cell heterogeneity along tumor evolution and accompanying 
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therapeutic treatments. All three cell populations pre-exist in treatment-naïve tumors (or 

cultures) and can become greatly enriched (i.e., selected for) by therapeutic interventions 

(Table 1). Importantly, the SCCs, CSCs and EMT-like cancer cells have all been evinced 

to be intrinsically therapy-resistant and thus implicated in tumor relapse, and to be highly 

invasive and implicated in dissemination and metastasis (Table 1; see below for SCCs). 

SCCs, CSC and EMT-like cells are epigenetically regulated cancer cell populations and their 

cellular states are all dictated and significantly influenced by the neighboring cellular milieu 

and tumor microenvironment or TME [e.g., 13, 16,18,19,55,85,86–94,98–100,132,133] 

(Table 1). Consequently, the manifestation of the biological properties of SCCs, CSCs 

and EMT-like cells could be cell-autonomous (or cell-intrinsic) and/or be regulated by 

cell-extrinsic factors including non-CSCs and non-SCCs as well as various (non-cancer) 

cells and soluble/diffusible molecules in the TME (Table 1). Thus, many of the reported 

cell-intrinsic molecular regulators of SCCs, exemplified by LRIG1 [59], NR2F1 [129], 

TET2 [70], KDM5B [80,81], SOX9 [134] and TGFβ [135], as well as the proinflammatory/

immune-suppressive TME [e.g., 98,136–138], are all well-known regulators of CSCs and 

EMT inducers (Table 1; also see below)..

4. SCCs in therapy resistance, tumor recurrence, and distant metastasis

The involvement of SCCs in mediating tumor dormancy, therapy resistance, tumor relapse 

and cancer cell dissemination and metastasis has been extensively discussed in a series 

of excellent reviews [14–19]; therefore, here we only briefly expound on this topic. The 

concept that SCCs represent a transient, epigenetically regulated cell population [102] 

is best illustrated by the KDM5Bhi melanoma cells, which are slow-cycling, possess 

some CSC properties, and, importantly, are shown to be required for long-term tumor 

maintenance [80]. In theory, if KDM5B is simply an enforcer of melanoma cell quiescence, 

knocking down KDM5B, a histone demethylase and transcriptional epigenetic regulator, 

should lead to increased tumor cell proliferation and tumor growth. Surprisingly, however, 

KDM5B knockdown attenuated tumorigenicity in a passage-dependent manner [80]. Further 

biological studies indicate that KDM5B+ SCCs are not maintained in a hierarchial fashion 

but instead seem to function as a cellular reservoir for maintaining the inexhaustible 

replicative potential of the bulk tumor [80]. These results highlight the overlapping but 

not identical nature of SCCs and CSCs (Table 1).

In the context of SCCs mediating therapy resistance, Hata et al generated several therapy-

resistant slow-cycling clones of PC9 non-small cell lung cancer cells by exposing them 

to increasing drug concentrations [103]. Surprisingly, while some clones rapidly (i.e., 

2–3 weeks) developed resistance, other clones took much longer time, i.e., 40 weeks, 

to develop therapy resistance. Next-generation sequencing together with DNA barcoding 

analysis comparing early-resistant (GR2) to late-resistant (GR3) clones revealed that GR2 

clones were derived from pre-existing parental population wheras the GR3 clones acquired 

therapy resistance by modulating signalling, including BCL-2 and MAPK, pathways [103]. 

As a result, GR3 clones were sensitive to BCL2 inhibitors whereas GR2 clones were 

insensitive [103]. Walens et al also identified two therapy-resistant cell populations in 

triple negative breast cancer (TNBC): pre-existent and the therapy-induced populations [6]. 

Interestingly, the pre-existent population does not readily switch the cell-cycle pattern from 
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slow-cycling to rapid-cycling following drug withdrawal. Rather, this population might 

function as a therapy-resistant reservoir and influence the neighboring microenvironment 

through the activation of IL-6-mediated paracrine signaling and STAT3 phosphorylation [6]. 

Such studies [6,103] make it clear that therapy-resistant SCCs preexist in treatment-naïve 

tumors (Table 1), and therapeutic treatments may further induce a de novo subset of therapy-

refractory SCCs through cellular reprogramming. Pre-existent SCCs may mechanistically 

function in two different ways to mediate therapy resistance and tumor relapse: as the 

intrinsically resistant ‘seeds’ for the population survival and via microenvironment-mediated 

paracrine signaling to help induce the de novo therapy-resistant SCC population.

SCCs, presumably due to their non-proliferative and mesenchymal features, are highly 

invasive and likely represent the metastatic seeds [e.g., 101,106,111,112,116] (Table 1). On 

the flip side, there is also substantial evidence that disseminated tumor cells (DTC), which 

frequently manifest CSC phenotypes and properties and are thus called metastatic stem cells 

[136–138], in the secondary organs are mostly quiescent, and the best example perhaps 

is the metastatic PCa cells disseminated to the bone marrow. Early work from Taichman 

and co-workers showed that, strikingly, the bone-homing metastatic PCSCs usurp the 

normal HSC niche for their initial residence in which they live a mitotically quiescent life 

[121]. Subsequent work from the group implicated the TYRO3/AXL/MER (TAM) receptor 

kinase family and their ligand Gas6, TGF-β2 and TBK1 in mediating and maintaining 

the quiescence of the disseminated PCa cells [123–127]. Their recent work suggests that, 

intriguingly, the dormant DTCs in the bone marrow in PCa patients might be re-awoken by 

signaling from the sympathetic nervous system [128].

An important question has been on how disseminating and disseminated SCCs escape 

immune surveillance and sustain long-term survival. Some normal tissue stem cells are 

‘immune-privileged’ and not susceptible to immune-mediated recognition and rejection 

[55,94]. For example, T cell therapy is highly effective against Lgr5+ stem cells in the 

gut, ovaries, and mammary gland where the epithelial layer is continuously replenished by 

the underlying SCs [94]. However, SCs residing at the hair follicles and muscle tissues 

rarely undergo proliferation and thus remain unaffected by T cell therapy [94]. CSCs in 

many tumors are also intrinsically immunodeficient [55,94] and CSCs in some other tumors 

are protected from immune surveillance by the TME factors such as tenascin-C [87] and 

TME cells such as mesenchymal stem cells [88,89] and cancer-associated fibroblasts or 

CAFs [98–100,136]. Similar mechanisms might be in operation to keep SCCs from immune 

attack [92,109,136,138]. For example, many surviving breast cancer patients, upon curative 

treatments, live with the so-called minimal residual disease (MRD) for decades. In such 

patients, disseminated breast cancer cells remain in the dormant state via downregulating the 

expression of cell surface glycoprotein ULBP1, which acts as a ligand and an activator 

of natural killer (NK) cells, thus allowing the SCCs to escape from innate immune 

system [109]. SCCs may also utilize T cell exhaustion as a potential anti-immune defense 

mechanism for survival [93]. For instance, in small cell lung carcinoma, the LRCs utilize 

the TGF-β pathway to express CD80, which is a cell surface ligand for the key immune 

checkpoint factor CTLA4. CD80 and CTLA4 interactions exhaust the cytotoxic activity of T 

cells allowing the survival of slow-cycling cancer cells [93].
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5. Concluding remarks

It has been increasingly appreciated that human tumors are highly heterogeneous and plastic 

harboring many cancer cell subsets including SCCs, which undergo dynamic evolution 

driven by epigenetic mechanisms during tumor progression. SCCs may share many 

biological properties ascribed to CSCs (and EMT-like cells) but also have features distinct 

from CSCs (Table 1). Like CSCs, SCCs may evade immune surveillance and preferentially 

survive anti-cancer treatments, thus mediating therapy failure, tumor relapse and metastasis. 

Unlike CSCs, SCCs are defined by their fundamental trait, i.e., quiescence, and SCCs may 

not be hierarchical but instead represent a transient cell population stochastically entering 

and exiting the G0/early G1 phase [e.g., 80] (Table 1). Regardless, it has become clear that 

definitive cancer cure would entail the elimination of both CSCs and SCCs, the overlapping 

evil ‘twin sisters’ that underlie the MRD and metastatic recurrence. To eradicate CSCs, we’ll 

have to understand the core regulators of stemness and design strategies to specifically target 

these malignant, long-term tumor-maintaining and metastasis-propagating cells (Table 1). To 

make SCCs clinically irrelevant, we could perhaps consider, a priori, strategies to keep them 

in a permanently quiescent (i.e., irreversible G0) state or to selectively mobilize them out of 

the quiescent state followed by anti-mitotic bombardment. One way or another, more work 

is needed to uncover the core regulators of quiescence in slow-cycling cancer cells.
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Fig. 1. 
Cell cycle and cell-cycle phases in normal cells. (A) Schematic depicting the 4 cell-cycle 

phases (G1, S, G2 and M). Depicted also is the mitotic division that has generated two 

different daughter cells as a result of asymmetric cell division (ACD). Cells upon mitosis 

may enter the early G1 or G0 phase. R indicates the Restriction point that separates the 

early vs. late G1. (B) The level of Rb phosphorylation dictates the G0, early G1, and late 

G1 phase (based on [5]). Cells in the G0 have un-phosphorylated Rb. In response to growth 

factor-initiated mitogenic signaling, the cyclin D/CDK4 complex may mono-phosphorylate 

the Rb at one of the 14 sites and push the cells into the early G1 phase. The cyclin 

E/CDK2 then hyper-phosphorylate the Rb in all 14 sites thus pushing the cells over the R 

point and irreversibly committing cells to the rest of the cell cycle (see Text). (C) A more 

detailed presentation of the 4 cell-cycle phases driven by cyclin/CDK activities as well as the 

quiescent G0 phase. M-phase represents the shortest cell-cycle phase in which the dividing 

cell goes through prophase, metaphase, anaphase and telophase, and ends with cytokinesis.
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Fig. 2. 
G0 phase. Shown are two different G0 phases, reversible and irreversible. See Text for 

details.
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Fig. 3. 
Experimental strategies to identify and purify SCCs. (A) Nucleotide analog-based pulse-

chase strategy to identify cells in the S-phase (left) or the slow-cycling, long-term label-

retaining cells (LRCs; right). This method does not allow purification of live cells for 

functional studies. (B) Dye retention-based methods to enrich and purify live SCCs (in 

cancer). (C) Identification and purification of SCCs based on H2B-GFP dilution. (D) FUCCI 

system used to separate cells in different cell-cycle phases including SCCs in G0. (E) 

Fluorescent reporters used to identify/purify SCCs using SCC-specific gene promoters.
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Fig. 4. 
Human cancer cell spheres and prostate cancer xenografts harbor LT-LRCs (SCCs). (A-B) 

Human cancer cell spheres harbor LT-LRCs (i.e., SCCs) with distinct levels of quiescence. 

Human PCa (LAPC4 and LNCaP), glioblastoma (U373), breast cancer (MCF7) and 

melanoma (YVM562) cell-derived spheres were pulsed with 10 μM BrdU for 43 h, after 

which BrdU was washing off and sphere cultures chased for the days (d) indicated. The 

endpoint spheres were harvested and embedded in paraffin, and sections used in BrdU 

staining. At least 6 sections were analyzed and a total of 1,500 – 3,000 cells counted under 

Basu et al. Page 26

Semin Cancer Biol. Author manuscript; available in PMC 2022 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an epifluorescence microscope for each cell type. The BrdU+ (i.e., label-retaining) cells 

were presented as bar graphs (mean ± S.D). (C) Human PCa xenografts have raie SCCs 

(LT-LRCs) in vivo. To identify LRCs in xenograft prostate tumors, 100 pi of BrdU solution 

(20 mM stock) was i.p injected (4x over 43 h) into the NOD/SCID mice bearing Du145, 

LAPC4, or LAPC9 xenograft tumors. Tumors were then “chased” for 45, 68 or 20 days 

(d), respectively, until harvest. Tumors were embedded in paraffin and serial sections of 5 

pm were cut and used in immunohistochemical staining of BrdU. At least 6 sections were 

analyzed and counted for each tumor type and the BrdU ‘ cells scored under a microscope.
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Fig. 5. 
Autochthonous TRAMP tumors harbor LT-LRCs. Eight-week old TRAMP tumors in 

C57/FVB mice were continuously pulsed with 20 mg/ml BrdU using the slow-releasing 

Alzet pumps for 19 days (i.e., from Dec. 22 of 2005 to Jan. 10 of 2006) and then the pumps 

were removed (i.e., termination of pulse; indicated by *). Prostates chased for 1 day, 6 or 8 

weeks (wks), or 3 or 6 months were harvested and embedded in paraffin. Serial sections of 

5 μm were cut and used in BrdU IHC staining. At least 5 sections were analyzed and BrdU+ 

cells counted. Shown are the average BrdU+ cells in the dorsal prostate (DP) and ventral 

prostate (VP), respectively.
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Fig. 6. 
Adapting the inducible H2B-GFP labeling/chasing system to identify and study slow-cycling 

luminal progenitor cells in the mouse prostate. (A) Chase time-dependent decrease in 

GFP fluorescence intensity and in GFP+ cells. Shown on top are micro-dissected mouse 

prostate alveolar-ductal tree structure in relation to the urethra (U). Distal (secretory) 

alveoli and proximal (Prox) ducts close to the urethra are indicated. Shown below are 

the corresponding GFP images in non-chased (left; 20-week), 6-week chased (middle) and 

12-week chased prostates. Note that the no-chase and 6-week chase images were adapted 

from [54] with permission. (B) The non-chased prostate in (A; the arrow) is shown in 

higher magnifications, to illustrate the homogeneous GFP labeling in the proximal, distal 

and medial regions of the mouse prostate. (C) Schematic of the model (see Text). (D) 

Analysis of a 12-week non-chased anterior prostate shows that the GFP+ cells are largely 

K8+ luminal epithelial cells. (E) Analysis of a 12-week chased ventral prostate reveals 

significantly reduced numbers of GFP+ cells, which are mostly AR−.
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Fig. 7. 
Human PCSCs are generally slow-cycling. (A-B) The CD44+ PCSCs have intermediate 

slow-cycling properties. The LAPC4 spheres were either pulsed with BrdU for 2 or 16 h 

without chase or pulsed for 48 h and then chased for up to 33 days. The BrdU-retaining 

cells, i.e., LRCs, were quantified (A). In B, the CD44 and BrdU double-positive cells were 

quantified from serial sections obtained from at least 12 spheres. The bars are the mean ± 

SEM obtained from three independent experiments. Data were from [24] with permission. 

(C) CD44+/hi PCa cells are relatively quiescent. Shown are two Du 145 cell holoclones 

pulsed with BrdU for 4 h followed by BrdU (red) and CD44 (green) staining. As can be 

seen, most CD44+/hi Du145 cells in the holoclones are BrdU-negative. Taken from [26] with 

permission. (D) The PSA−/lo PCSCs are quiescent compared to differentiated PSA+ PCa 

cells. Shown are time-lapse images of one PSA+ (green) LNCaP cell recorded for 180 h 

and one PSA−/lo LNCaP cell recorded for 230 h (taken from [33] with permission). (E-F) 

PSA−/lo LNCaP cells have much longer cell-cycle transit time (E) and lower population 

doublings (F) compared to the corresponding PSA+ LNCaP cells. Adapted from [40] with 

permission.
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Table 1.

SCCs, CSCs and EMT-like cells: Common traits and distinct features*

Properties SCCs CSCs EMT-like cells

Definition Quiescence & dormancy

- Generally by markers
- Great tumor-initiating potential
- Long-term tumor-propagating 
capability

- Cells may be undergoing (EMT’ing 
cells) or may have finished EMT.
- Lost epithelial markers

Cell 
phenotype(s)

Can be epithelial or mesenchymal. Can be epithelial or mesenchymal Mesenchymal

Proliferation/
Quiesc ence Non-proliferative, quiescent Possess enormous proliferative potential 

BUT can be proliferating or quiescent. Non-proliferative, quiescent

Tumor-initiating 
(-regenerating) 
capability

May be low because SCCs are 
quiescent.

May be high for epithelial-type 
(ALDHhi) CSCs but low for 
mesenchymal-type (CD44hi) CSCs.

May be low because EMT-like cells 
are mostly non-proliferative.

Therapy 
resistance

Inherently resistant to multiple 
therapies

- Many CSCs are intrinsically resistant 
to various therapies.
- Proliferative (e.g., ALDHhi) CSCs are 
sensitive to anti-mitotic therapies.

- Full EMT cells are chemoresistant.
- EMT’ing cells may be sensitive to 
inhibitors that target the RhoGTPases.

Invasiveness Some SCCs are invasive. Some CSCs are invasive. Very invasive

Metastasis

- Have been implicated in 
mediating distant dissemination & 
metastasis.
- SCCs may stay in the dormant 
state for months, years or even 
decades.

- The mesenchymal type of CSCs may 
be highly invasive and metastatic.
- The epithelial type (e.g., ALDHhi) of 
CSCs may not be metastatic.

Cells undergoing EMT are important 
in the intravasation, extravasation 
and initial colonization phases of 
metastasis. But for the clinically overt 
macrometastases to establish, cells 
must undergo MET.

Inter-
relationship

- May only partially overlap with 
CSCs, both phenotypically and 
functionally.
- May be EMT-like or epithelial-
like.
- Pre-exist in tumors but can be 
selected for by therapies.
- Representing a cellular state (i.e., 
random entry into G0/early G1 
quiescent state)

- Not all CSCs are slow-cycling.
- May be EMT-like or epithelial-like.
- Pre-exist in tumors but can be selected 
for by therapies.
- Representing a cellular state (i.e., SC-
like epigenetic state and having the 
ability to differentiate into a clonal 
progeny)

- May partially overlap with SCCs and 
mesenchymal-type CSCs.
- Pre-exist in tumors but can be 
selected for by therapies.
- Representing a cellular state
(i.e., migratory & quiescent in
G0/early G1)

Regulation by 
TME

Yes Yes Yes

Major intrinsic 
signaling 
mechanism(s)

- Regulators of cellular quiescence
- High negative cell-cycle 
regulators such as p16 and p21
- Low positive cell-cycle 
regulators such as CDK2
- Others: p38, TET2, KDM5B, 
NR2F1, etc

- Regulated by stemness factors and 
developmental pathways
- Examples include NOTCH, HH, FGF 
and WNT
- May possess typical SC epigenetic 
landmarks such as EZH2/PRC

- Driven by ‘master’ EMT regulators 
such as ZEB, SNAIL, SLUG and 
TGF-β
- May also be induced by 
developmental signals such as FGF 
and WNT

*
Commonly shared properties in 2 or 3 cell types are marked in blue while distinct features unique to each population are indicated in black.
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