Skip to main content
. 2021 Nov 9;72:103326. doi: 10.1016/j.bspc.2021.103326

Table 9.

Comparing the accuracies of the proposed algorithm and the existing models.

Models Accuracy (%) Architecture Imaging Type Number of Images(Covid-19, Non-Covid-19)
Jaiswal et al. [27] 96.25 DenseNet-201 CT (1262, 1230)
Hall et al. [28] 89.2 ResNet-50 CXR (135, 320)
Sethy and Behr [29] 95.38 ResNet-50 + SVM CXR (25, 25)
Hemdan et al. [30] 90.0 COVIDX-Net CXR (25, 25)
Xu et al. [32] 86.7 ResNet + Location Attention CT (219, 224)
Apostolopoulos and Mpesiana. [33] 96.78 MobileNet V2 CXR (224, 700)
Hu et al. [37] 91.21 ShuffleNet V2 CT (521, 397)
Zheng et al. [53] 90.8 DeCoVNet CT (313, 229)
Ozturk et al. [54] 98.08 DarkCovidNet CXR (125, 500)
Wang et al. [55] 82.9 M−Inception CT (195, 258)
Our method 98.50 DenseNet-201 CXR (360, 4200)