Table 15. Comparison of proposed SBi-LSTM with deep learning approaches.
Model | Accuracy | Class | Precision | Recall | F1 |
---|---|---|---|---|---|
CNN | 0.62 | −1 | 0.62 | 0.75 | 0.68 |
0 | 0.64 | 0.46 | 0.54 | ||
1 | 0.58 | 0.55 | 0.57 | ||
LSTM | 0.81 | −1 | 0.85 | 0.88 | 0.86 |
0 | 0.82 | 0.64 | 0.72 | ||
1 | 0.75 | 0.88 | 0.81 | ||
CNN+LSTM | 0.62 | −1 | 0.63 | 0.73 | 0.68 |
0 | 0.65 | 0.46 | 0.54 | ||
1 | 0.56 | 0.60 | 0.58 | ||
GRU | 0.81 | −1 | 0.84 | 0.88 | 0.86 |
0 | 0.83 | 0.66 | 0.73 | ||
1 | 0.74 | 0.80 | 0.77 | ||
Proposed | 0.92 | −1 | 0.94 | 0.96 | 0.95 |
0 | 0.89 | 0.89 | 0.89 | ||
1 | 0.91 | 0.88 | 0.90 |