Table 2. (a) Alexnet layers architecture and (b) number of selected features after CFS.
| (a) Layer type | Size | Kernels size | Number of features |
|---|---|---|---|
| Image input | 227 × 227 × 3 | 150,528 | |
| Convolution layer#1 | 11 × 11 × 3 | 96 | 253,440 |
| Activation function | |||
| Channel normalization | |||
| Pooling | |||
| Convolution layer#2 | 5 × 5 × 48 | 256 | 186,624 |
| Activation function | |||
| Convolution layer#3 | 3 × 3 × 256 | 384 | 64,896 |
| Activation function | |||
| Channel normalization | |||
| Pooling | |||
| Convolution layer#4 | 3 × 3 × 192 | 384 | 64,896 |
| Activation function | |||
| Convolution layer#5 | 3 × 3 × 192 | 256 | 43,264 |
| Activation function | |||
| Pooling | |||
| Fully connected layer | 4,096 | ||
| Activation function | |||
| Dropout | |||
| Fully connected layer | 4,096 | ||
| Activation function | |||
| Dropout | |||
| Fully connected layer | 1,000 |