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Abstract 

Background:  Accurate segmentation and recognition algorithm of lung nodules has 
great important value of reference for early diagnosis of lung cancer. An algorithm is 
proposed for 3D CT sequence images in this paper based on 3D Res U-Net segmen-
tation network and 3D ResNet50 classification network. The common convolutional 
layers in encoding and decoding paths of U-Net are replaced by residual units while 
the loss function is changed to Dice loss after using cross entropy loss to accelerate 
network convergence. Since the lung nodules are small and rich in 3D information, the 
ResNet50 is improved by replacing the 2D convolutional layers with 3D convolutional 
layers and reducing the sizes of some convolution kernels, 3D ResNet50 network is 
obtained for the diagnosis of benign and malignant lung nodules.

Results:  3D Res U-Net was trained and tested on 1044 CT subcases in the LIDC-IDRI 
database. The segmentation result shows that the Dice coefficient of 3D Res U-Net is 
above 0.8 for the segmentation of lung nodules larger than 10 mm in diameter. 3D 
ResNet50 was trained and tested on 2960 lung nodules in the LIDC-IDRI database. The 
classification result shows that the diagnostic accuracy of 3D ResNet50 is 87.3% and 
AUC is 0.907.

Conclusion:  The 3D Res U-Net module improves segmentation performance signifi-
cantly with the comparison of 3D U-Net model based on residual learning mechanism. 
3D Res U-Net can identify small nodules more effectively and improve its segmentation 
accuracy for large nodules. Compared with the original network, the classification per-
formance of 3D ResNet50 is significantly improved, especially for small benign nodules.

Keywords:  Lung nodule, Convolutional neural network, U-Net, Residual learning, 
Image segmentation, Image classification
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Background
In recent years, the incidence and mortality of lung cancer have increased significantly. 
The incidence of lung cancer among men is the first among all cancers, and the incidence 
in women is second only to breast cancer [1]. Therefore, accurate screening of early lung 
cancer has important research significance. CT can quickly obtain high-resolution lung 
images and is sensitive to small calcified areas such as lung nodules. It is one of the most 
effective technology for early lung cancer diagnosis.

When diagnosing lung nodules, doctors mainly analyze tomographic images of 3D 
CT cases. A patient’s lung CT case contains hundreds of slices. Faced with the massive 
amount of CT images, doctors will inevitably miss some nodules due to the fatigue of 
reading slices. Moreover, the process of reading CT cases depends on doctor’s clinical 
experience, different doctors may make different diagnoses. Therefore, in the clinical 
diagnosis of lung nodules, a CAD system is needed to help doctors check for deficiencies 
and serves as a reference.

Usually, a lung CAD system has two functions: lesion localization and disease diag-
nosis. The lesion localization is implemented by image segmentation algorithm, and the 
disease diagnosis is implemented by classification algorithm. With the help of artificial 
intelligence and big data, the diagnostic accuracy and speed of CAD system were greatly 
improved. Therefore, the main purpose of this research is to locate and diagnose lung 
nodules by analyzing CT images using artificial intelligence algorithms.

For detection and diagnosis of lung nodules, both traditional feature-based nodule 
detection methods and data-based deep learning algorithms have achieved good per-
formance. In traditional lung nodule detection algorithms, researchers design different 
types of features based on the gray value, location, shape and texture of lung nodules 
in CT images. Carvalho et  al. [2] use Gaussian and median filters to process the lung 
parenchyma region, then use the quality threshold algorithm to segment the lung nod-
ules and extract the shape and texture features (spherical disproportion, spherical den-
sity, sphericity, weighted radial distance, elongation and Boyce-Clark radial shape index). 
Finally, SVM is used to remove false positives. Jacobs et al. [3] design 21 context features 
based on the grayscale features, shape features and texture features of lung nodules, 
which can significantly improve the classification performance. However, their algo-
rithm requires reconfiguration for different types of nodules, which is inefficient. Li et al. 
[4] propose an integrated active contour model to detect ground glass opacity nodules. 
Their model is built based on wavelet energy-based adaptive local energy and posterior 
probability-based speed function, which enhance the contrast between ground glass 
opacity nodules and background. This model is suitable for segmenting ground glass 
opacity nodules with fuzzy boundaries and uneven grayscale. Mao et al. [5] use the fuzzy 
c-mean method to segment lung nodules after denoising and enhancing CT images with 
windowed Fourier filtering and fuzzy set methods. Messay et al. [6] combine intensity 
thresholding and morphological processing to detect lung nodules and extract 240 types 
of features. Then the Fisher Linear Discriminant classifier is used to screen candidate 
nodules, and the overlap rate of the segmented mask and the annotation mask is 63%. 
Murphy et al. [7] use shape index and curvedness features to detect candidate lung nod-
ules, and then remove the false positive nodules with two consecutive KNN classifiers. 
Santos et al. [8] use Gaussian model and Hessian matrix to separate tissues such as blood 
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vessels, trachea, and bronchi from the lung parenchyma. The candidate nodules are then 
detected using SVM, which is suitable for detection of small nodules. Ye et al. [9] use 
a fuzzy thresholding method to segment the lung parenchyma, then perform candi-
date nodule detection based on local shape information and local intensity dispersion 
information. In this method, the Rule-based filter and weighted SVM are used to screen 
candidate nodules. Zhai et  al. [10] use adaptive border marching and region growing 
algorithm to segment lung parenchyma and candidate nodules, and then classify 11 
kinds of gray and geometric features of candidate nodules based on fuzzy min–max neu-
ral network. Their diagnostic sensitivity is 84%. The traditional image processing meth-
ods based on features have achieved good performance to some extent. However, due to 
the differences in the shape, size, texture, and location of lung nodules, the generaliza-
tion performance of artificially designed features is poor. Therefore, it is difficult to accu-
rately detect lung nodules when faced with large amount of data.

In recent years, with the improvement of compute capability, deep learning has devel-
oped rapidly and is widely used to process medical images. Compared with traditional 
methods, this data-driven method is more generalized and has better performance in 
object detection, image segmentation and classification. The segmentation and classifi-
cation algorithms of lung nodules based on deep learning can be implemented by both 
2D CNNs and 3D CNNs. Ding et al. [11] propose a lung nodules detection algorithm 
using Faster R-CNN and DCNN. This method first use VGG16 to extract features, and 
then restore the size of feature map based on deconvolution, and finally perform lung 
nodule detection and false positives removal based on Faster R-CNN and DCNN. Based 
on this method, they won the first place in the LUNA16 competition. Setio et al. [12] 
propose a method for lung nodule detection based on multi-view CNN. After the pre-
liminary detection of candidate lung nodules, this method extracts the axial, sagittal and 
coronal plane images of each candidate nodule, and inputs them into wide residual net-
work. Finally, the outputs of multi-view networks are merged as the prediction result. 
This method makes use of the 3D information of CT data. Gong et  al. [13] improve 
U-Net for lung nodule segmentation based on squeeze-and-excitation module and 
residual blocks. They add SE-ResNet modules to encoding and decoding paths in U-Net, 
which combines high-level and low-level semantic information and enhances the repre-
sentation ability of network. Studies show that merging multi-dimensional information 
of lung nodules can effectively improve the detection performance, so researchers have 
proposed series of 3D lung nodule detection algorithms. Pezeshk et al. [14] propose a 
3D FCN for lung nodule detection. The network first use 3D FCN to preliminarily seg-
ment lung nodules, then crop the feature map with a size of 36 × 36 × 8 voxels for can-
didate nodule detection, and finally remove false positives. Wang et al. [15] propose a 
central focused-CNN to segment lung nodules from heterogeneous CT images, which 
can simultaneously extract 3D and 2D features of lung nodules. For the classification 
of CT voxels, they propose a special pooling layer, which preserves more information 
around the voxel patch center. The segmentation result has a Dice coefficient of 0.81. 
Zhu et al. [16] propose a fully automatic lung cancer detection system based on CT data, 
which consists of two subsystems. The first subsystem is a 3D Faster R-CNN network 
based on 3D dual path blocks and U-Net architecture, which is used to detect lung nod-
ules. The second subsystem is the GBM based on 3D dual path network. The function 
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of this subsystem is to classify the detected lung nodules as benign or malignant. Golan 
et al. [17] design a multi-parameter lung nodule detection model. The model takes the 
CT volume with a size of 5 × 20 × 20 voxels, the position information of the volume and 
the parameters of DICOM file as input. The output is its prediction of whether the vol-
ume contains a lung nodule. Then the network processes the output probabilities based 
on the voting grid to predict the location and boundaries of lung nodules. Petrick et al. 
[18] treat lung nodule detection as a regression task, and use the DetectNet architec-
ture based on YOLO for lung nodule detection. The detection and classification of lung 
nodules can be performed simultaneously by one network. Usman et al. [19] propose a 
semi-automatic 3D lung nodules segmentation method. This method takes a manually 
labeled 2D ROI of lung nodules as input, and performs mask prediction based on deep 
residual U-Net, and then uses the adaptive ROI algorithm to detect adjacent slices that 
contain lung nodules. Then deep residual U-Net is used again to accurately segment the 
lung nodules on the coronal and sagittal planes of the 3D volume of interest. Finally, the 
volumetric segmentation result of nodules is given by a consensus module.

Deep learning is also widely used in the diagnosis of lung nodules, that is, the classifica-
tion network is used to classify lung nodules as benign or malignant. These classification 
networks also include 2D CNNs and 3D CNNs. Shen et al. [20] propose a classification 
method MCNN that does not require segmentation of lung nodules. MCNN takes lung 
nodule ROI of different sizes as input, and concatenates the response neuron activations 
of different input sizes in the output layer of the network, thereby the benign and malig-
nant nodules can be successfully classified without any prior definition of nodule mor-
phology. Yan et al. [21] compare three CNNs with different inputs: 2D slice level CNN, 
2D nodule level CNN, and 3D nodule level CNN, and the three networks are able to 
achieve the diagnostic accuracy of 86.7%, 87.3% and 87.4%, respectively. The research 
result shows that 3D CNN has better performance when only weak-labels are given or 
the lung nodule lesion boundary is not clear. Liao et al. [22] innovatively use 3D RPN 
network with 3D U-Net as the backbone to classify lung nodules. The network takes a 
small patch centered on lung nodules as input, and then uses the center voxel of the ten-
sor output by the last convolutional layer to classify lung nodules. This method achieves 
high-accuracy classification of lung nodules without overfitting. Xie et al. [23] propose a 
method for lung nodule classification based on transfer learning. In this method, three 
pre-trained ResNet50s are used to fine-tune the overall appearance, heterogeneity in 
voxel value, and heterogeneity in shape of lung nodules. Then the adaptive weighting 
scheme is used to integrate the results of three networks into the diagnosis result of 
benign or malignant. This method achieves a classification accuracy of 93.4%.

As shown in Fig. 1, a lung nodule detection and diagnosis system is proposed in this 
research, which consists of two subsystems: a detection system for lung nodule segmen-
tation and a diagnosis system for lung nodule classification.

1.	 Lung nodules detection system. The system first extracts the lung parenchyma region 
in CT slices using morphological algorithms, and then builds a 3D Res U-Net net-
work based on residual learning and U-Net architecture to segment lung nodules. 
It has the advantages of both U-Net and residual learning. It can learn more subtle 
features while integrating high-level and low-level semantic information, which is 
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more suitable for medical image segmentation. In the training process, the method 
of dynamically adjusting loss function is used to improve the segmentation accuracy 
and convergence speed.

2.	 Lung nodules diagnosis system. The system focuses on the fact that lung nodules 
are small and rich in spatial information. In this study, a 3D ResNet50 network is 
proposed based on the ResNet50 classification network to classify the detected lung 
nodules as benign or malignant. This network improves convolutional layers and 
pooling layers in ResNet50 to improve its classification accuracy, making it suitable 
for classifying small targets such as lung nodules.

Methods
Preprocessing

CT image is the intensity distribution of rays received after the external X-ray penetrates 
human body. During the ray transmission process, it passes through many unrelated tis-
sues, such as bed frame, clothing, muscle and bones. For the detection of lung nodules, 
since lung nodules locate in the lung parenchyma, it is necessary to segment the lung 
parenchyma from CT images to avoid the interference of other tissues, thereby reducing 
false positives and improving the segmentation performance.

The lung parenchyma appears in the CT image as a connected domain with low gray 
scale that is surrounded by high gray scale chest muscles. Based on this feature, we first 
binarized the CT images, then deleted the regions such as air and bed frame, then filled 
the holes formed by the high-density tissues in the lung parenchyma, and finally repaired 
the lung parenchyma mask using morphological algorithms. Figure 2 shows the work-
flow of segmenting lung parenchyma.

Segmentation network architecture

Inspired by U-Net [24] and residual learning [25], we designed 3D Res U-Net [26] to 
segment lung nodules. Its architecture is shown in Fig. 3. The 3D Res U-Net combines 
the advantages of both U-Net and residual learning, and makes full use of the spatial 
information of lung nodules.
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Fig. 1  Overview of lung nodule detection and diagnosis system
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Based on residual learning mechanism, two consecutive convolutional layers in 
encoding path of 3D U-Net are improved into a residual unit, as shown in Fig. 4. The 
mapping path of the residual unit contains two combined modules of convolutional 

Fig. 2  The process of segmenting lung parenchyma from CT images

Fig. 3  The architecture of 3D Res U-Net
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layer and instance normalization, in which the first convolutional layer is followed 
by an activation function. The second convolutional layer yields a feature map that is 
added to the output of the identity mapping path and then input into the activation 
function. Since the number of channels in the feature map are increased in encod-
ing path, it is necessary to add a convolutional layer to the identity mapping path of 
residual unit, so that the number of channels in its output feature map is the same as 
that in the mapping path, and the two are linearly superimposed.

As shown in Fig. 3, 3D Res U-Net is composed of encoding path and decoding path. 
In the encoding path, 3D convolutional layers and pooling layers are used to extract 
features. For the decoding path, the network uses transposed convolutional layers to 
restore the size of feature map to the same as input data. The left half of the network is 
the encoding path, which consists of 4 down-sampling modules. Each down-sampling 
module contains a residual unit and a maximum pooling layer. It reduces the size of 
input data to one-half of the original size, and doubles the number of feature chan-
nels to ensure the complexity of network. At the bottom of the network is a residual 
unit, which is only used to increase the feature channels without changing the size 
of feature map. The right half of the network is the decoding path, which consists 
of 4 transposed convolution modules and feature map concatenating modules. Each 
transposed convolution module contains a residual unit and a transposed convolu-
tional layer. Transposed convolutional layer is used to restore the feature map size to 
twice of the original size. The feature map will be concatenated after transposed con-
volutional layer. The objects of concatenating are the feature maps of the same size 
in encoding and decoding path, and the two are concatenated in the feature channel 
dimension. The concatenated feature map contains high-level and low-level semantic 
information of CT data, which can be used to accurately classify voxels. The residual 
unit in decoding path reduces the number of feature channels by half, and its input 
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Fig. 4  Residual unit
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is the concatenated feature map. The output layer of the network is a classification 
layer, which is implemented by 3D convolutional layer with kernel size of 1 × 1 × 1, 
and finally outputs the probability map of the segmentation result. Table 1 shows in 
detail the parameters of each layers of 3D Res U-Net.

For image segmentation, the Dice coefficient is an important indicator to evaluate 
the segmentation performance. Therefore, Dice loss is used as the loss function of 3D 
Res U-Net, which is defined by

Table 1  Detailed parameters of 3D Res U-Net

IN represents instance normalization, c represents the number of output channels, k represents convolution kernel size, p 
represents the number of padding pixels

Name Operations Output size

Input 1 × 48 × 192 × 192

Encoder0 Conv, IN, ReLU, c = 8, k = 1, p = 0 8 × 24 × 96 × 96

Conv, IN, ReLU, c = 8, k = 3, p = 1

Conv, IN, ReLU, c = 8, k = 3, p = 1

MaxPool, k = 2

Encoder1 Conv, IN, ReLU, c = 16, k = 1, p = 0 16 × 12 × 48 × 48

Conv, IN, ReLU, c = 16, k = 3, p = 1

Conv, IN, ReLU, c = 16, k = 3, p = 1

MaxPool, k = 2

Encoder2 Conv, IN, ReLU, c = 32, k = 1, p = 0 32 × 6 × 24 × 24

Conv, IN, ReLU, c = 32, k = 3, p = 1

Conv, IN, ReLU, c = 32, k = 3, p = 1

MaxPool, k = 2

Encoder3 Conv, IN, ReLU, c = 64, k = 1, p = 0 64 × 3 × 12 × 12

Conv, IN, ReLU, c = 64, k = 3, p = 1

Conv, IN, ReLU, c = 64, k = 3, p = 1

MaxPool, k = 2

Bottle Conv, IN, ReLU, c = 128, k = 1, p = 0 128 × 3 × 12 × 12

Conv, IN, ReLU, c = 128, k = 3, p = 1

Conv, IN, ReLU, c = 128, k = 3, p = 1

Decoder0 TransConv, IN, ReLU, c = 64, k = 2, s = 2 64 × 6 × 24 × 24

Conv, IN, ReLU, c = 64, k = 1, p = 0

Conv, IN, ReLU, c = 64, k = 3, p = 1

Conv, IN, ReLU, c = 64, k = 3, p = 1

Decoder1 TransConv, IN, ReLU, c = 32, k = 2, s = 2 32 × 12 × 48 × 48

Conv, IN, ReLU, c = 32, k = 1, p = 0

Conv, IN, ReLU, c = 32, k = 3, p = 1

Conv, IN, ReLU, c = 32, k = 3, p = 1

Decoder2 TransConv, IN, ReLU, c = 16, k = 2, s = 2 16 × 24 × 96 × 96

Conv, IN, ReLU, c = 16, k = 1, p = 0

Conv, IN, ReLU, c = 16, k = 3, p = 1

Conv, IN, ReLU, c = 16, k = 3, p = 1

Decoder3 TransConv, IN, ReLU, c = 8, k = 2, s = 2 8 × 48 × 192 × 192

Conv, IN, ReLU, c = 8, k = 1, p = 0

Conv, IN, ReLU, c = 8, k = 3, p = 1

Conv, IN, ReLU, c = 8, k = 3, p = 1

OutputConv Conv, Sigmoid, c = 1, k = 1, p = 0 1 × 48 × 192 × 192
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where P represents the mask predicted by network, and T represents the mask of the 
lung nodule marked by doctors, both of which are binary arrays. When P and T are per-
fectly matched, the segmentation result has a Dice coefficient of 1. The gradient of Dice 
loss during training is computed by

Since lung nodules account for only a small portion of CT data, lung nodule segmenta-
tion is a semantic segmentation task with extremely imbalanced positive and negative 
samples. In the early training stage of the network, almost all voxels in the mask output 
by the network have a gray value of 0, that is, the value of P is very small. In this stage, 
the gradient of Dice loss is very large, so the network is unstable and converges slowly. 
Therefore, the Dice loss function needs to be improved.

Binary cross entropy (BCE) loss is often used in image segmentation networks, its def-
inition and gradient are defined as

where n represents voxels in the 3D data, Tn represents the label of the voxel, and Pn 
represents the probability predicted by network. BCE loss can effectively evaluate the 
similarity between the input and output of the network, and its gradient is only propor-
tional to the difference between Tn and Pn, which is relatively stable. In the early training 
stage of the network, the gradient maintains a large value to speed up the network con-
vergence. For lung nodule segmentation, the imbalance of positive and negative samples 
will bias the loss function to the background, which is not conducive to the segmenta-
tion of lung nodules.

Therefore, BCE loss and Dice loss are combined in this study. In the first 3 epochs, the 
BCE loss is selected as the loss function. The Dice loss is used after loss function is sta-
ble. In this method, the first 3 epochs are equivalent to the weight initialization process, 
which is used to reduce the fluctuation of Dice loss in the early training stage, thereby 
making the network more stable and accelerating its convergence.

Classification network architecture

ResNet50 is a classification model obtained by improving VGG19 [27] based on the 
residual learning mechanism. It retains the convolutional layer with a kernel size of 7 × 7 
in VGG19 to learn more spatial information, and uses the maximum pooling layer for 
down-sampling. ResNet-50 has more layers and can learn deeper features. Because of 
the small size and rich spatial information of lung nodules, ResNet-50 is improved to 
obtain a classification network suitable for lung nodule diagnosis, which is named 3D 
ResNet50. Figure 5 shows the architecture of 3D ResNet50. The improvement methods 
are as follows.

(1)DiceLoss = 1−
2|T ∩ P|

|T | + |P|
,

(2)GradP =
2T

(

T 2 − P2
)

T 2 + P2
.

(3)

{

BCELoss = −
∑

n
Tn log (Pn)+(1− Tn) log (1− Pn)

GradP = Pn − Tn

,
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1.	 Change the 2D network to the 3D network. The 3D morphological features of lung 
nodules have an important influence on its degree of malignancy. Moreover, for a 
single lung nodule, it is a challenging task to find the key slice that represents its 
malignancy.

2.	 Reduce the kernel size in the first convolutional layer and the last 2 residual blocks. 
Lung nodules are small and its edge shape is an important indicator for its diagnosis. 
In the calculation process, large convolution kernel introduces many padding voxels 
at the edge, which not only leads to the inefficient utilization of the edge voxels of 
lung nodules, but also increases the computational cost.

3.	 Abandon pooling layer and reduce stride of convolutional layers [28]. Most of lung 
nodules are small, abandoning the pooling layer ensures that network contains 
enough feature information.

In this study, negative log likelihood (NLL) loss was used for 3D ResNet50 to measure the 
difference between the output array and the one-hot vector of the label, which is defined as

where Pn and Tn represent the output array and the one-hot label respectively.

(4)NLL_Loss =
1

N

N
∑

n=1

− ln
(

PT
n Tn

)

,

Fig. 5  The architecture of 3D ResNet50
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Experiment settings
CT data used in study was read and displayed as grayscale images by lung window 
(CT value: − 1000–400). To prevent the different resolutions of CT data from affect-
ing the segmentation results, we resampled all CT data to a common voxel spacing 
of 3 mm × 1.5 mm × 1.5 mm (axial, coronal and sagittal plane). Then we separated a 
case of CT data along vertical axis into two subcases of 48 × 192 × 192 voxels as the 
input of segmentation network. Finally, according to the predicted lung nodule mask, 
an ROI with a size of 16 × 48 × 48 voxels was cropped as the input of classification 
network.

The 3D Res U-Net was trained on Nvidia RTX 2080Ti GPU for a total of 64 epochs. 
PyTorch framework was used to implement our network, which used Xavier initial-
izer and Adam Moment Estimation (Adam) with initial learning rate of 1 × 10–2. Dur-
ing the training process, learning rate was adjusted to 1 × 10–3 and 1 × 10–4 according 
to the number of epochs, and the batch size was set to 6.

The 3D ResNet50 was trained on Nvidia RTX 2080Ti GPU for 52 epochs. Here we 
used PyTorch framework to implement it. Xavier initializer and Adam Moment Esti-
mation (Adam) with initial learning rate of 1 × 10–4 were used for training. The batch 
size was set to 16.

Results
Dataset and annotation

The CT data used in this study comes from the Image Database Resource Initiative 
(IDRI) created by the US Institutes of Health based on the Lung Image Database Con-
sortium (LIDC) [29]. A total of 1018 cases of CT data are included in the LIDC-IDRI 
database, of which 971 cases were selected for our study according to imaging quality 
and annotation integrity.

All CT cases in the LIDC-IDRI were annotated by four experienced radiologists. 
They labeled the coordinates of center point and diameter for nodules with a diame-
ter less than 3 mm, and the coordinates of contour pixels for nodules with a diameter 
greater than 3 mm. For the segmentation of lung nodules, the area labeled as nodules 
by at least three doctors was selected as the ground truth for nodule lesion mask. 
After screening and preprocessing, a total of 1074 subcases of CT data were obtained, 
900 of which were randomly selected to train 3D Res U-Net, and the rest were used 
for test and validation. Table 2 shows the size distribution of CT subcases [30].

In this dataset, the malignant degree of lung nodules is divided into 5 levels. In 
this study, nodules labeled as 1 and 2 in were considered as benign nodules, and 

Table 2  Lung nodule size distribution of CT subcases

Cate Diameter (mm) Amount

Micro nodule d ≤ 5 105

Small nodule 5 < d ≤ 10 541

Nodule 10 < d ≤ 30 412

Lung mass 30 < d 7
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nodules labeled as 4 and 5 were considered as malignant nodules. Since the level 3 
indicates the degree of benign and malignant nodules is uncertain, these nodules 
were excluded. After screening and preprocessing, a total of 2985 lung nodules were 
obtained, including 1478 benign nodules and 1507 malignant nodules. 15% of them 
were randomly selected as test and validation set, and the rest were used for training.

Quantitative evaluation criteria

In this study, three commonly used semantic segmentation evaluation indicators, 
Dice coefficient, precision, and recall were used to evaluate lung nodule segmentation 
result of 3D Res U-Net. The Dice coefficient is an indicator that measures the degree 
of overlap between the predicted mask and the ground truth [31]. It’s defined as

where P represents the mask predicted by network, and T represents the ground truth. 
Precision indicates the proportion of the number of pixels correctly predicted as lung 
nodule to the number of pixels predicted as lung nodule [32]. It’s defined as

Recall represents the ratio of the number of pixels correctly predicted as lung nod-
ule to the number of pixels of lung nodule area [32]. It’s defined as

Based on the confusion matrix of the classification results, accuracy, recall and 
specificity were used to comprehensively evaluate the classification performance of 
3D ResNet50 in this study. They are defined as [33]

Among them, TP, FP, TN and FN represent true positives, false positives, true neg-
atives and false negatives respectively. According to recall and specificity of the classi-
fication result, the receiver operating characteristic (ROC) curve can be obtained, and 
the classification performance can be evaluated based on the Area Under the Curve 
(AUC) of ROC. AUC is essentially a probability value, indicating the probability that 
the true positive rate is greater than the false positive rate in the classification result. 
Compared with accuracy, AUC is a more reasonable evaluation indicator when the 
distribution of positive and negative samples is unbalanced.

(5)Dice =
2 · |T ∩ P|

|T | + |P|
,

(6)Precision =
|T ∩ P|

|P|
.

(7)Recall =
|T ∩ P|

|T |
.

(8)











Accuracy = TP+TN
TP+FP+TN+FN

Recall = TP
TP+FN

Specificity = TN
FP+TN

.
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Lung nodule segmentation results

To investigate whether residual learning mechanism can help to improve the segmen-
tation performance, we used the same hyperparameters to train 3D U-Net [34] and 
3D Res U-Net respectively in the same environment. The loss function used by 3D 
U-Net is Dice loss, and 3D Res U-Net used BCE loss and Dice loss alternately. Fig-
ure 6 shows the training loss of 3D U-Net and 3D Res U-Net. Since the residual learn-
ing was used and the loss function was improved. Compared with 3D U-Net, 3D Res 
U-Net converges faster with less fluctuation of loss function and better stability. And 
its loss value is smaller, so the segmentation accuracy of 3D Res U-Net is higher.

The segmentation results of 3D U-Net, 3D Res U-Net and 4 state-of-the-art methods 
[35–37] are shown in Table 3. Both 3D U-Net and 3D Res U-Net have lower segmen-
tation accuracy for small nodules and higher segmentation accuracy for large nodules. 
Due to the low resolution of the resampled CT data, some of the morphological infor-
mation of the small nodules is lost. What’s more, since there are 4 pooling layers in the 
encoding path of the network, the lesion area of small nodules occupies a very small 
proportion in the deep feature map, which makes the decoding path insensitive to small 

Fig. 6  The loss of 3D Res U-Net and 3D U-Net changes during the training process. The loss function used by 
3D U-Net is Dice Loss, and 3D Res U-Net used a mixed loss function

Table 3  Comparison of Dice coefficient of 3D Res U-Net and state-of-the-art methods

Bold text represents the highest Dice obtained by different models when segmenting lung nodules of different sizes

Models Dice

Lung mass Nodule Small nodule Micro nodule

FCN-8 s 0.759 0.327 0.212 0.159

2D PSPNet 0.718 0.593 0.447 0.144

2D Res U-Net 0.829 0.731 0.536 0.208

3D U-Net 0.911 0.698 0.588 0.185

MSS U-Net 0.846 0.685 0.415 0.209

3D Res U-Net 0.910 0.805 0.652 0.466
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nodules. The insensitivity of the other 4 segmentation networks with 5 down-sampling 
layers to small nodules also proves this. By comparing 3D U-Net with 3D Res U-Net, it 
can be seen from Fig. 7 that residual learning mechanism enables the network to learn 
more subtle features. So 3D Res U-Net can segment small nodules more accurately, and 
it also improves the segmentation performance of large nodules.

The comparison of the three evaluation indicators in Table 4 shows that the preci-
sion of the segmentation result is higher than recall, which means that the area of 
the predicted lung nodule lesion is slightly smaller than that of ground truth. This is 
because doctors usually annotate a small part of normal lung tissues around the nod-
ule as lesion region based on their clinical experience. However, these lung tissues are 
normal in CT images, and the network is unable to identify it as lung nodule lesion 
based on gray value only.

Cate Original
Image

Ground
Truth 3D U-Net 3D Res U-Net

Lung Mass

Nodule

Small Nodule

Micro Nodule

Fig. 7  The lung nodule segmentation results using 3D U-Net and 3D Res U-Net

Table 4  Segmentation results for lung nodules of different sizes using 3D U-Net and 3D Res U-Net

Cate 3D U-Net 3D Res U-Net

Dice Precision Recall Dice Precision Recall

Micro nodule 0.185 0.144 0.315 0.466 0.424 0.549

Small nodule 0.588 0.532 0.509 0.652 0.673 0.697

Nodule 0.698 0.771 0.687 0.805 0.839 0.805

Lung mass 0.911 0.944 0.880 0.910 0.916 0.902
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Lung nodule classification results

The training loss of 3D ResNet50 is shown in Fig. 8. After multiple tests, the optimal 
number of epochs of the network is 52 without overfitting.

The confusion matrices were obtained by classifying the test set (209 malignant 
nodules and 191 benign nodules) and the training set (1287 malignant nodules and 
1273 benign nodules) using 3D ResNet50 before and after improvement respectively, 
as shown in Fig. 9. Based on the confusion matrix, the results of classification accu-
racy, recall and specificity are shown in Table 5.

Specificity and recall reflect the sensitivity of 3D ResNet50 to benign and malignant 
nodules, respectively. The higher the specificity is, the more sensitive the network is to 
benign nodules. And the higher the recall is, the more sensitive the network is to malig-
nant nodules. After improving plain 3D ResNet50, the specificity is improved from 81.7% 
to 94.8%. Therefore, the classification performance of network on small benign nodules 
was significantly improved. It can be seen from Fig. 9 that the classification accuracies 
of benign nodules on the training set and test set are 97.7% and 94.8%, respectively, and 
that of malignant nodules are 78.9% and 80.4%, respectively, so 3D ResNet50 is more 
effective in diagnosing benign nodules. As shown in Fig. 9(d), the AUC of 3D ResNet50 
is 0.907, indicating that the network has a good classification performance for the diag-
nosis of benign and malignant lung nodules. Moreover, the accuracy of the network on 
the training set and test set are 88.2% and 87.3% respectively, which are basically the 
same, so 3D ResNet50 has good generalization performance.

Discussion
As shown in Fig. 10, the segmentation performance of 3D Res U-Net for lung nodules of 
different sizes varies greatly, and some small nodules cannot even be recognized by the 
network. Therefore, the network has high false negative rate in segmenting small nod-
ules. In this study, due to the limitation of GPU memory and different data resolutions in 
LIDC-IDRI, CT data was resampled to a voxel spacing of 3 mm × 1.5 mm × 1.5 mm, so 
the ROI area of small nodules is greatly reduced. The comparison between Fig. 10(a) and 

Fig. 8  Training loss and validation loss of 3D ResNet50
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Fig. 10(b) shows that the larger area a nodule lesion is, the more sensitive 3D Res U-Net 
is to it. Therefore, reducing the voxel spacing of CT data can effectively improve the seg-
mentation performance for small nodules.

It can be seen from Fig.  9 that the false negative rate of 3D ResNet50 classification 
result is much higher than the false positive rate. However, as shown in Fig. 11, of the 
41 nodules in the test set that are misclassified as negative, 18 are ground glass opacity 
nodules [38]. Clinically, when ground glass opacity nodules appear in CT images, it is 
necessary for doctors to combine enhanced CT and follow-up CT for further diagnosis 
[39]. Therefore, it is difficult for 3D ResNet50 to correctly diagnose whether a ground 
glass opacity nodule is malignant or not based on ordinary CT.

Fig. 9  Confusion matrices of classification results using different networks and ROC curve of classification 
results using 3D ResNet50

Table 5  The classification results of 3D ResNet50 and state-of-the-art methods

Models Accuracy (%) Recall (%) Specificity (%)

2D ResNet50 [25] 78.1 73.6 82.6

Plain 3D ResNet50 80.8 79.9 81.7

Yan [21] 87.3 88.5 86.0

3D ResNet50 87.3 80.4 94.8
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Conclusion
Since the spatial information of lung nodules is very important for clinical diagnosis, we 
built a lung nodule detection and diagnosis system based on 3D CNN, which consists of 
two subsystems: lung nodule segmentation system and lung nodule diagnosis system. 
For the lung nodule segmentation system, 3D Res U-Net was proposed based on 3D 
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Fig. 10  Segmentation results of lung nodules with different sizes by 3D Res U-Net. a Lung mass. b Nodule. c 
Small nodule. d Micro nodule

Nodule A
Benign: 63.2%

Malignant: 36.8%

Nodule B
Benign: 70.9%

Malignant: 29.1%

Nodule C
Benign: 61.2%

Malignant: 38.8%

Fig. 11  Some malignant ground glass opacity nodules that are misclassified as benign nodules and the 
probabilities of benign and malignant nodules made by 3D ResNet50
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U-Net and residual learning mechanism. This network not only combines high and low-
level semantic information, but also learns more subtle features. In order to improve the 
segmentation accuracy of network, the BCE loss function and Dice loss function were 
used alternately in different stages of training process to reduce the fluctuation of the 
loss function. The experimental results show that the Dice coefficient for segmenting 
nodules larger than 10 mm in diameter is 0.81, so the network has a good segmentation 
performance. For the lung nodules diagnosis system, in view of the small size and rich 
spatial information of lung nodules, we improved the plain 3D ResNet50. The pooling 
layer of plain 3D ResNet50 was removed and the kernel size of some convolutional lay-
ers was reduced in this study, so that the network would not introduce too much irrele-
vant content in the feature map. The accuracy of 3D ResNet50 in the diagnosis of benign 
and malignant lung nodules is 87.3%. In the future work, we plan to resample CT data 
to a higher resolution to improve the segmentation accuracy of the network on small 
nodules.
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