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Abstract

We developed a prototype genomic archiving and communications system to securely store 

genome data and provide clinical decision support (CDS). This system operates on a client-server 

model. The client encrypts the data, and the server stores data and performs the computations 

necessary for CDS. Computations are directly performed on encrypted data, and the client 

decrypts results. The server cannot decrypt inputs or outputs, which provides strong guarantees of 

security. We have validated our system with three genomics-based CDS applications. The results 

demonstrate that it is possible to resolve a long-standing dilemma in genomic data privacy and 

accessibility, by using a principled cryptographical framework and a mathematical representation 

of genome data and CDS questions.

Keywords

secure clinical decision support; secure outsourcing; genomic computation; genome archiving and 
communications system; homomorphic encryption

1 Introduction

New discoveries are being made at a fast pace, linking genetic variants with disease 

risk and drug interactions. As next-generation genome sequencing becomes more reliable, 

economical, and widely available, the findings from research are being incorporated into 

clinical practice. Making responsible and meaningful use of human genomic data to support 

healthcare, including clinical decision support (CDS) applications, is an emerging challenge 

of great importance. CDS can provide answers to questions such as: ‘what is the patient’s 
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CYP2C19 genotype and drug-metabolism phenotype’, and ‘does the patient have any 

pathogenic BRCA1 variants’.

Genome data are large, comprising billions of base-pairs on thousands of genes and 

intergenic regions. Next-generation sequencing can identify thousands to millions of 

variants, whose clinical significance can change over time as our knowledge evolves. 

Sequencing can produce gigabytes of data for a single individual. It is impractical to 

securely store and analyze such large data in contemporary electronic health record (EHR) 

systems, which clinicians use when delivering care to patients. The challenges for storage 

can be more acute for smaller healthcare facilities that may not have large, secure data 

repositories. This means that genomic data must be stored outside the EHR system and 

retrieved for CDS.

A Genome Archiving and Communications System (GACS) can make genomic data 

accessible for clinical applications [1] [2]. This is analogous to how radiological images 

are stored in a Picture Archiving and Communications System [3]. Further, a cloud-based 

GACS can provide a cost-effective solution due to economies of scale [4]. However, cloud 

storage of genome data increases privacy concerns. Theft and misuse of genome data can 

cause long-term harm to individuals and their families because the data are unique, heritable, 

and immutable. Given this highly-sensitive nature of genome data, appropriately strict levels 

of protection must be applied to their storage.

The competing demands of accessibility and privacy create a challenging problem that 

has been studied for years. Solutions have been proposed for securely outsourcing 

computation and data sharing [5]–[24]. Many of these solutions have vulnerabilities during 

computation, inefficiencies, or require special hardware. One promising solution that meets 

the requirements, is to use fully homomorphic encryption technology, which enables 

computation over encryption. Since data are never decrypted during storage, transfer, or 

computation, there is a strong guarantee of privacy [25], [26]. We have developed a 

prototype client-server system for encrypting and storing genomic data and providing secure 

CDS. In this model, a client encrypts the data using a public key and sends it to the server 

for storage. The same client or another client asks CDS questions. The server stores the 

encrypted data and performs the computations without decrypting the data or the CDS 

questions. The results are returned to the client, who has the private key (also called secret 

key or decryption key) to decrypt them. Only the custodian of the data, (the client that 

has the secret key), can decrypt results. We have evaluated our system with three use-cases 

representing a breadth of CDS scenarios: (1) screening for eligibility in a clinical trial based 

on the presence of certain haplotypes in the APOE gene, (2) inferring the drug metabolism 

phenotype for clopidogrel based on the CYP2C19 genotype, and (3) assessing risk for 

familial hypercholesterolemia (FH) based on the LDLR gene. Our system currently retrieves 

‘key variants’, calculates genotypes, and computes phenotypes based on genotype-matching 

or scoring. Key variants are known variants that are of interest for a given scenario, e.g., 

because they are known to be associated with a disease or with altered drug metabolism.
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2 Background

2.1 Ancillary Genomics Systems and Genomics-based CDS

A typical person’s DNA can have several million variants from a given reference DNA, and 

the significance of any of these variants to the person can change over time. Management of 

such a large and dynamic data set has prompted exploration of ancillary genomic systems 

(aka genomic data repository; GACS) that sit outside the EHR [2]. Experience and use 

of such ancillary systems is growing [27]–[29], prompting the Office of the National 

Coordinator’s Sync for Genes project to emphasize the need for pilots that test GACS 

integration with EHRs [30]. Furthermore, institutions are turning to cloud-based solutions 

for hosting genomic data repositories, raising additional concerns over genomic data privacy 

and security.

Our previous work on integrating genomic data into the EHR has followed a model in which 

a CDS engine monitors events occurring within the EHR [31]. When triggered by an event, 

the CDS engine obtains additional genomic data from the GACS. For example, the CDS 

is triggered by a new medication order in the EHR. Upon being triggered, the CDS engine 

queries the GACS for variants in the patient’s genome that interact with the ordered drug. 

The CDS engine returns appropriate recommendations to the ordering provider. It is with 

this context in mind, GACS communicating with CDS which communicates with EHR, that 

we have designed the secure GACS.

Pharmacogenomics CDS applications are of particular interest. Over half of all primary care 

patients are exposed to drugs with potential pharmacogenomic interactions [32]. Studies 

have found that 7% of FDA-approved medications and 18% of the 4 billion prescriptions 

written in the US per year are affected by actionable variants [33], that nearly all individuals 

(98%) have at least one known, actionable variant by current Clinical Pharmacogenetics 

Implementation Consortium (CPIC) guidelines [34]. An example is Clopidogrel, which was 

prescribed over 20 million times in 2015 [35]. For patients on clopidogrel who are found 

to have CYP2C19 genotypes that produce non-functional or reduced functional proteins, 

there is an increased risk for adverse cardiovascular events. In such cases, CPIC guidelines 

recommend alternative antiplatelet therapy [36].

Genome sequence data also can be used for early detection and diagnosis of a variety 

of disorders. The American College of Genetics and Genomics (ACMG) recommends 

reporting secondary findings in 56 genes [37]. The ACMG considers genetic variants that 

cause monogenic disorders where early diagnosis is clinically actionable. Studies have found 

as many as 7% of patients harbor pathogenic or likely pathogenic variants in these 56 

ACMG genes [38]–[40]. Analysis of the ClinVar [41] archive data indicates the number of 

known pathogenic or likely pathogenic variants in these genes was 18,718 in 2018 [42]. A 

case in point is familial hypercholesterolemia (FH), which has an estimated prevalence of 1 

in 250 to 1 in 500 persons [43], [44], and is most commonly due to mutations in the LDLR 

gene. Over 1,500 pathogenic or likely pathogenic LDLR variants are registered in ClinVar, 

and have an associated Clinical Actionability summary in ClinGen [45].
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Specific genetic markers are used as criteria to determine eligibility in clinical trials. Easier 

access to genome sequence data while providing the appropriate protections for the privacy 

of subjects, compliant with regulations and ethical principles, can also facilitate and promote 

recruitment in clinical trials. For example, in a trial of CNP520 versus placebo in the 

treatment of early Alzheimer’s Disease [46], trial entry criteria include being a carrier of 

certain APOE haplotypes. This and the other CDS applications described in this section are 

well-served with privacy-protecting storage and computation.

2.2 Privacy-Protecting Solutions

Inappropriate disclosure of genomic data can put people’s privacy at risk, which might 

have a long-term impact on an individual’s education, employment, insurance [47], [48], 

and on their relatives (e.g., the Golden State killer case [49]). Genomic data yield unique 

biometrics. Early studies showed merely 75 single-nucleotide polymorphisms (SNP) are 

sufficient to uniquely re-identify an individual [50] and a few dozen database queries can 

determine the database membership of a victim [51]–[53]. There are some recent findings 

showing that genomic data can infer physical appearance and diseases that are linkable 

to anonymized phenotype records [5], [54]. It is therefore critical to protect genomic data 

hosted in clinical systems. Traditionally, clinical data are encrypted during storage (labeled 

“encryption at rest” [6]) as a mechanism to protect data loss, which is required by HIPAA 

security rules [7]. However, the value of genomics resides in data analysis (rather than 

depositing data in storage) and existing solutions have no way but to decrypt the data for 

analysis (e.g., on a 3rd party commercial cloud), which has raised many public concerns 

[55].

In the past few years, privacy and cryptographic techniques for secure computation have 

been extensively studied. Multi-party computation (MPC) is considered a promising solution 

for secure computation [8]–[10]. In this approach, multiple parties maintain local data and 

communicate intermediate results. MPC can be vulnerable when the computing parties 

collude, and is thus inappropriate for long-term storage and outsourcing computation [11]–

[14]. Aziz et al. surveyed various secure computation techniques for genomic data [15]. 

Among the most relevant mechanisms, there are two camps of solutions: (1) hardware-based 

methods [16]–[18], and (2) homomorphic encryption (HE) based approaches [19], [20]. 

The former solutions rely on special hardware and engineering skills while the latter 

depend on advanced mathematics. The hardware-based methods provide a secure enclave 

within the CPU. The data is decrypted within this secure enclave for computation with the 

assumption that enclave contents are invisible to the rest of the CPU. An implementation 

of this approach is found in the Software Guard Extensions (SGX) technology built into 

Intel’s recent CPUs. Hardware-based methods are fast and easy to implement but vulnerable 

under new attacks [21]–[23]. On the other hand, HE is backed by principled algebraic 

number theory, which allows one to perform arithmetic operations over encrypted data 

without decryption. Security is guaranteed by cryptographic hardness assumptions, which 

even quantum computers cannot break [24].

Traditionally, HE has been considered too slow and too memory-intensive for practical 

applications. While this might have been true 5 to 8 years ago, the field has progressed 
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rapidly (indeed, faster than Moore’s law) as benchmarked by the iDASH genome privacy 

competition series [56], [26]. HE is starting to demonstrate its feasibility in offering rigorous 

yet practical solutions to real-world clinical applications. Shimizu et al. proposed a HE­

based string search to locate sequences of SNPs in large genome databases [57]. Kim et al. 

developed a secure matching algorithm for biomarkers and a secure training protocol for 

building a logistic regression model for genome-wide association studies [58], [59].

3 Method

3.1 System Overview

Our system models a client-server architecture. In this model, a sequence client, e.g., a 

laboratory, encodes, and encrypts patient data with a public key of the HE system. The 

encrypted data, also called ciphertext, are sent to the GACS server which stores the data. 

Subsequently, the CDS client, e.g., a hospital poses encrypted CDS questions and sends 

them to the GACS. The GACS performs computations over encryption and returns the result 

to the CDS client for decryption with a private key.

The data flow is illustrated in Figure 1. The input data consists of variant call format 

(VCF) files [60], which are text files. Since computation requires numerical representation, 

we encode the variants from a VCF file as a vector shown as ν. The variant vector is 

homomorphically encrypted (shown as v) and sent to the server for storage. Descriptions 

of encoding and encryption are given in Sections 3.2 and 3.3, respectively. Patient and 

sequence identifiers are meta-data, and are deterministically encrypted before being sent to 

the server for storage to conceal them from the server. Questions (called queries) are posed 

by a CDS client. In Figure 1, the CDS client encodes the question as a matrix or vector A, 

encrypts it to A, along with the deterministically encrypted patient identifiers and sends that 

to the server. The server computes a result ℎ and sends it to the client for decryption to h 
The result h is the same (within a noise margin defined by the precision parameter) as the 

unencrypted computation on the plain data, O(A,ν). The data, questions or results are not 

decrypted by the server.

We defined operations in the GACS that can be used by CDS systems to obtain variants 

or calculate genotypes (pairs of haplotypes). These operations include weighted summation 

of variants and evaluation of zygosity (heterozygous or homozygous). Haplotyping includes 

a special case of finding a particular haplotype, e.g., in the clinical trial application. For 

our pharmacogenomics application, we must compute a phenotype from the genotype. We 

compute this phenotype on the client. Although it is possible to chain queries (genotyping, 

followed by phenotyping), chaining requires increasing the multiplicative depth of the 

evaluation circuit, which in turn requires greater memory and time.

In this paper, we focus on CDS with key variants, but not with novel variants (i.e. those 

that have not been registered in databases such as ClinVar) or structural variants (variants 

that may have hundreds of bases differing from the reference genome, often with imprecise 

endpoints). Computation on novel and structural variants requires additional considerations 

for encoding the data and will be addressed in future work.
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3.2 Vector-encoding of key variants

For computation over encryption, analysis questions must be expressed mathematically. We 

developed a novel framework to represent variant data and CDS questions numerically. In 

this framework, key variants are encoded as vectors, and the analysis questions are encoded 

as linear operations on these vectors. Each known key variant is represented by a fixed 

element in a vector. The variant and its element position in a vector are stored in a lookup 

table on the client. The presence of a variant is encoded by a “1” (one), and its absence is 

encoded by a “0” (zero). We create pairs of vectors because chromosomes exist in pairs. 

Each vector-pair represents a region of the genome. There are groups of variants that can be 

considered together because they are in a particular region, define particular haplotypes, or 

determine phenotypes. In our model, it is optimal to encode such a group of variants into the 

same vector-pair. The encoding is done by the client before encryption.

We use two types of encoding schemes that we call “phased” and “unphased”. Unphased 

encoding allows us to compute on variants. We use it when CDS does not need to calculate 

haplotypes (e.g., for LDLR variants). Phased encoding allows us to calculate haplotypes and 

genotypes in addition to computing on variants. Consider two key variants in the APOE 

gene as shown in the rightmost two columns of Table A1. Two variants can generate four 

haplotypes. If a patient has the heterozygous variant rs7412, the genotype is ε2/ε3. For this 

patient, a representative pair of vectors is [1, 0] and [0, 0]. Phased encoding is illustrated in 

Figure 2.

When phase information is present in the VCF file, the pair of vectors is uniquely 

determined, although we do not know which is maternally or paternally derived. When 

phase information is absent or partial, and heterozygous variants are present, there are 

ambiguities regarding which homologous chromosome (e.g., maternally- vs. paternally­

derived) has particular key variants. In other words, the haplotypes are uncertain. To 

accommodate ambiguity, we generate multiple combinations of variants that capture all the 

possible haplotypes. If the patient had two unphased heterozygous variants, the vector pairs 

could be [1,0]/[0,1], representing ε2/ε4, or [1,1]/[0,0] representing ε1/ε3. In general, with P 
distinct or unknown phases, the number of combination pairs is 2P − 1. Ambiguous genotype 

calls are often resolved clinically according to population probability distributions, which we 

anticipate occurring in the CDS client.

For efficient computation and storage, the combinations of variants (in a group of variants) 

are concatenated vertically within the pair of vectors. This allows us to efficiently pack 

the vectors into the ciphertexts, whose lengths are fixed by the multiplicative depth of the 

encryption circuit, as described in Section 3.3.

In unphased encoding, we ignore partial phase information from the VCF file. When a 

heterozygous variant is present, we can encode the “1” into the relevant element in either 

vector of the pair. Here, we do not generate various combinations of unphased variants. 

Unphased encoding allows us to do variant-level operations, but it does not allow us to 

calculate genotypes, except for those genotypes defined by a single variant. For many CDS 

applications, unphased encoding is sufficient to answer the clinical question. An example 

is the application to determine the risk of FH, in which we need to detect the presence 
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of certain variants in the LDLR gene. In this application, there are over 2000 variants and 

as many possible haplotypes. A possible combinatorial explosion of unphased variants is 

avoided by unphased encoding.

3.3 Homomorphic Encryption

We use the CKKS homomorphic encryption scheme developed by Cheon et al., to encrypt 

our data [61]. Compared to other HE schemes such as BGV [62] and BFV [63], CKKS 

is capable of controlling the magnitude of encrypted messages during homomorphic 

computation. It creates a trade-off between precision and efficiency, and offers a practical 

and effective solution for applications such as ours, which do not require high precision. 

Additionally, this HE scheme supports ciphertext packing techniques to encrypt multiple 

messages into a single ciphertext, so that we can compute a function on multiple data 

simultaneously. For instance, it provides element-wise addition, multiplication, and rotation 

(shift) of vector elements. As a result, it enables us to achieve good performance in terms of 

amortized ciphertext size and timing per plaintext slot.

We use the Microsoft SEAL library for homomorphic encryption functions. The library is 

written in C++. Our software implementation is in Python. We wrote binding functions 

using the Pybind11 software [64], to allow Python scripts to call the SEAL library C++ 

functions. The selection of encryption parameters is explained in Appendix A

3.4 Computations on the server

As mentioned in Section 3.1, the analysis questions are framed as linear operations on vector 

data. This is because HE data are closed under addition and multiplication only. Surrogate 

solutions are sometimes necessary to frame analysis questions as linear operations. These 

solutions must balance complexity, memory, and the need to coordinate the computation 

with the client. Our computations are of the forms ℎ = Av, < a, v1 + v2 > and < a, v1 ⊗ v2 >, 

where ⊗ represents element-wise multiplication. Logical operations (e.g., < a, v1 OR v2 >) 

and logical template matching are also allowed.

We describe the linear operation ℎ = Av here, and describe logical template matching in 

Appendix B. The plaintext operator A is a matrix whose rows are the haplotype template 

vectors, i.e., each row defines a particular haplotype. Each row of A is encrypted as a 

ciphertext. ℎ = Av is calculated using dot-products. To calculate a dot-product we must do 

an element-wise multiplication followed by summation across the vector. Summation across 

the vector is performed by performing n left shifts and additions, as described in Appendix 

C, where n is the power of two greater than or equal to the length of the plaintext vector, 

n = log2 | v| . The plaintext equivalent vector ℎ is a real number vector, and the patient 

haplotype corresponds to the element with the largest result, i.e., it requires us to compare 

values, which is not computationally friendly over our encryption scheme. To overcome 

this, a surrogate operation can be used or the result ℎ can be returned to the client, which 

decrypts it to h and then computes argmax(ℎ). We have used the latter approach because of 

its efficiency.
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In Section 3.2 we explained encoding using the example of a two-element plaintext vector, 

ν. In practice, in our phased encoding method, we add elements to ν to include wildtypes, 

i.e., the absence of variants at key-variant positions. This is because different haplotypes 

have different numbers of variants, which means normalization by the number of variants is 

required. By including the wildtype elements, ν has a constant amplitude, providing implicit 

normalization. Figure 3 represents haplotyping of a pair of unambiguous vectors. The figure 

shows the plaintext equivalent: ℎ =Aν.

As stated in Section 3.2, if the variant vector is ambiguous due to incomplete phasing, then 

we stack the variant combinations vertically before encryption. Since the dot-product uses 

shift and add operations, each combination is padded with zeros to the nearest power of two, 

to avoid contamination from the next combination. The CDS client replicates the matrix A 
horizontally to match the stacked ν and encrypts it.

4 Testing and Results

4.1 CDS applications

We tested our method against three CDS applications: 1) clinical trial eligibility based 

on APOE haplotypes; 2) screening for familial hypercholesterolemia based on LDLR 

pathogenic variants; and 3) interaction with clopidogrel based on CYP2C19 genotyping.

To test clinical trial eligibility, the query matrix encodes the question ‘does the patient have 

at least one ε4 haplotype?’. The variants and haplotypes associated with this question are 

explained in Section 3.2. This query is of the form < A4, v > for each vector in the pair, 

where A4 is the row-vector corresponding to the ε4 haplotype.

To assess for FH and to differentiate between moderate and severe phenotypes, we can ask 

two queries: 1. How many pathogenic or likely pathogenic alleles are present in the LDLR 

gene? 2. How many homozygous pathogenic or likely pathogenic variants are present in the 

LDLR gene? The first query is a weighted summation of the form < a, v1 + v2 >. The second 

query is a weighted summation < a, v1 ⊗ v2 >. The vector a encodes pathogenic or likely 

pathogenic alleles, with a “1”. If the answer to question 1 is zero, there is no evidence of FH. 

If the answer to question 1 is exactly one (i.e. only one gene affected), we predict a moderate 

phenotype. If the answer to question 2 is >=1 (i.e. both genes affected), we predict a severe 

phenotype. (For example, given. a = [ 0...1 1 0...1 0], if the patient had one homozygous 

pathogenic variant and a non-pathogenic variant, the vectors are ν1 = [0...1 0 ….0] and ν2 

= [0...1 0 ….1], the answers would be 2 and 1 respectively, and the inference would be a 

severe risk of FH.) The phenotype is indeterminate (either moderate or severe) with other 

answers. For LDLR, we obtained key variants from ClinVar. These were filtered to indels 

and single nucleotide variants (SNVs) with pathogenic or likely pathogenic clinical status, 

review status of at least one star, and known start and end coordinates.

The phenotype for clopidogrel metabolism depends on the haplotypes of CYP2C19. 

We compute ℎ = Av and return ℎ to the client for decryption and argmax(ℎ) to obtain 

haplotypes. The client applies a score to the haplotypes. The score maps to the phenotype: 

poor, intermediate, normal, rapid, ultra-rapid, or indeterminate metabolizer. We obtained 
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variants, haplotype definitions, and genotype-phenotype mapping from PharmGKB [65]. 

An alternative solution that chains the genotype and phenotype queries is possible. In the 

chained method, the genotype is calculated by logical template matching and does not have 

to be decrypted by the client for the phenotype calculation. However, this solution is slower, 

requires greater circuit depth and consequently, requires more memory.

4.2 Study population

Genomic data in VCF files from 287 individuals from the publicly available 1000 

Genomes database were obtained for testing [66]. This data is publicly accessible and 

its use in research does not require approval by an Institutional Review Board. Regions 

of the genomes containing key-variants in APOE (NC_000019.9:45408005–45413652), 

LDLR (NC_000019.9:11199037–11245506), and CYP2C19 (NC_000010.10:96521437–

96613962) were extracted from the files using the tabix software tool [67]. To ensure 

consistent encoding, the key variants were normalized to canonical SPDI form using NCBI 

Variation Services [68].

4.3 Results

The operations for each application are given in Table 2. Measurements of time and 

memory consumption are given in Table 3. Timings were measured for key-generation, 

encryption, computation and decryption. The mean and standard deviation of these timings 

were computed over all the patients in our test set. The software was run on a virtual Linux 

machine on a PC with an Intel i7–6500 CPU and was allocated 6 GB memory. We verified 

that the genotypes and phenotype results calculated over encryption matched ground-truth 

results generated with plaintext calculations and manual labeling of haplotypes.

The genome data and CDS query can be encrypted ahead of time in an offline, asynchronous 

manner. Table 3 does not show the timing for parsing the VCF file, which can be slow, 

or for encoding, which is sub-second. The query computation (shown by the “Query time” 

column) and the result decryption are real-time calculations, and the timings for these 

operations are more important for usability. Since the ciphertext vector length is fixed by 

the multiplication circuit-depth, the memory consumption or time do not increase with 

plaintext vector length, as long as the plaintext vector is smaller than the limit allowed by 

the ciphertext. The presence of multiple ambiguous haplotypes does not change the timing 

or memory consumption because they are packed into the same ciphertext.

The table shows that the query time is different for the different applications. The CYP2C19 

application requires as many dot-products as there are haplotypes. The APOE application 

requires only one dot-product because there is only one haplotype. The LDLR application 

requires an element-wise multiplication, followed by a dot-product, and an addition 

operation followed by a dot-product. The key generation depends on the multiplicative 

depth. The encryption of the operator depends on the operator. Each row of the matrix A 
is separately encrypted for CYP2C19, and therefore the encryption takes approximately 31 

times as long as the encryption of the other operators. Since the vector length is fixed in all 

these applications, the encryption and decryption time is fixed.
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5 Discussion

A new framework for secure computation on genomic data has been developed. The 

framework includes a vector representation for genomic data and a matrix or vector 

representation of CDS questions that can be applied as linear operations to the vectors. The 

representation allows HE and thus enables computation on a remote server with guarantees 

of security and privacy. Our framework was validated with three CDS applications and 

287 patients from the 1000-genomes dataset. Timing and memory measurements from our 

test-cases demonstrate the feasibility of using this approach. While homomorphic operations 

are slower than plaintext operations, we anticipate that query results (such as identified 

drug-gene interactions or positive genetic screening results), once computed, can be stored 

in EHRs where they can be accessed quickly for CDS.

A key component of the framework is the vector representation of the genome sequence, 

that allows queries on genome data to be expressed as mathematical operations. This 

representation is generalizable to a range of CDS applications as demonstrated by the three 

applications in our study that all used the same representation. As explained previously, 

each known variant is assigned a vector element. The scheme is extensible such that new 

variants of interest can be assigned to unoccupied elements of existing vectors or to new 

vectors. CDS queries are performed as mathematical operations, unlike other CDS systems 

that commonly use Boolean logical operations. To make it easier for CDS systems to 

query the secure GACS, we can encapsulate common patterns of queries into functions that 

automatically generate the query matrices.

HE provides guarantees of privacy for the genomic data stored in the cloud. Variant queries, 

and genotype and phenotype computation can be performed in the cloud without decrypting 

the stored genomic data. In fact, even the results of the computation are only revealed on 

the client which has the private key to decrypt the results. A cloud-based GACS removes 

barriers for healthcare organizations in delivering precision medicine. It allows precision 

medicine-based clinical care to stay current with the very rapid evolution in sequencing 

technologies, data formats, and research and best practice recommendations in clinical 

genomics. Furthermore, smaller healthcare organizations, including those in rural areas, 

can subscribe to a secure GACS service in the cloud, empowering them to deliver precision­

medicine, without requiring large investments in this technology.

An alternative to using HE for cloud-based GACS is to use encryption-at-rest to store 

variant data in segments. The server would return the appropriate encrypted segments when 

requested by the client and all computation would be done on the client. However, this 

approach has several disadvantages: (1) there is potentially more data transfer since the 

GACS is sending sequence data rather than the results of the computation (e.g., genotype 

or phenotype), (2) an HE GACS can allow sharing of permissible phenotype data across 

a patient’s healthcare providers whereas an encryption-at-rest GACS requires exposure of 

sequence data which creates a greater risk to privacy, and (3) complex software must be 

maintained on all clients.
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Nevertheless, there are many areas of our approach that require improvement. We have 

proposed grouping variants within genome regions for optimal ciphertext packing. However, 

optimal grouping requirements may change with new medical knowledge, and a mechanism 

is required to modify the clusters efficiently. A related area is to determine the optimal 

encryption parameters and optimal size of the ciphertext to improve computational 

performance and storage.

Currently, we only work with key variants because CDS computations are defined for key 

variants. This framework does not support novel variants because the vector positions cannot 

be defined for unknown variants. Therefore, the encoding framework must be extended to 

retain and provide information on the existence of novel variants, even if no CDS questions 

are defined for them. A similar problem exists for structural variants, which are variants 

that may have hundreds of bases differing from the reference genome. These variants 

are complex, often with imprecise start and end positions. As a result, they are poorly 

defined. As with novel variants, we have not yet included them in our encoding framework. 

Despite this current limitation, we have shown the ability to work with homomorphically 

encrypted simple variants (SNVs and Indels) that have been previously identified and that 

have precise start and end positions. Such capabilities enable a wide range of potential 

clinical applications, such as screening for genetic risk, pharmacogenomics CDS, clinical 

trials eligibility determination, and other applications that have historically relied on SNVs 

and Indel data generated by DNA chips.

Our testing must be expanded to cover many more CDS applications, to validate the variant 

clustering and the selection of parameters. This could lead to more efficient ciphertext 

packing methods. Similarly, testing must be expanded to more patients. Additionally, we 

need to develop efficient methods for population-level queries. Finally, to use HE in a 

real-world system requires further development, such as integration with an EHR, storing 

metadata, regions studied, and managing multiple sequences per patient.

6 Conclusion

We have successfully prototyped a secure GACS and tested it against pharmacogenomic 

and genetic screening CDS applications. We have demonstrated an encrypted solution for 

inferring genotypes from variants and detecting known pathogenic variants from encrypted 

patient genomic data. The ability to address these common scenarios suggests that HE 

shows promise for clinical application, at least for a subset of genetic use cases. We need to 

address practical issues in integrating with real-world systems. Further research is required 

to address the limitations of how HE solves genomic computation, such as improvements 

to our encoding scheme. Many additional scenarios, such as querying over novel variants or 

CDS based on structural variants, remain to be tested.
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Appendices

A. Encryption Parameters

In CKKS, a freshly encrypted ciphertext is represented as a pair of polynomials of degree 

with N coefficients modulo Q. When a circuit to be evaluated has multiplication depth=L, 

the ciphertext modulus Q is a product of L+ 1 pairwise small co-primes (i.e. Q = ∏i = 0
L qi) 

such that each prime qiis chosen to have roughly the same size as the scaling factor of a 

message. In particular, the output ciphertext represents the desired result but is multiplied 

by the scaling factor, so the output ciphertext modulus q0 should be larger than the scaling 

factor. The size of the largest modulus is PQ = P ⋅ ∏i = 0
L qi where P is specially chosen 

to reduce the noise growth during homomorphic multiplications. This special modulus P 
has a similar size to the base modulus q0. For more detail, we refer to Kim et al. [59]. In 

our protocol, we require L=2 for genotyping and L = 4 for phenotyping. We set the scaling 

factor (to convert real numbers to integers) as 231( ≈ qi for i > 0) and we select q0 ≈ P ≈ 
240. As a result, the value of PQ is 2204 for L=4 and 2142 for L = 2. We take the ciphertext 

dimension N= 213 to ensure at least 128 bits of security according to the Homomorphic 

Encryption Standardization [69], which implies that the number of plaintext slots is 212.

B. Logical Template Matching

Consider logical template matching to calculate haplotypes. Every known haplotype is 

represented by a template vector. Logical template matching can be done with an element­

wise XOR operation between a template vector and patient vector, followed by an OR 
operation across the result vector, and finally taking the ones’ complement. The result is 

“1” when the allele template vector and the patient vector are identical, and “0” otherwise. 

Given a set of distinct allele vectors, at most one will match the patient vector. As before, 

we illustrate with the APOE genotype shown in Table A1. Consider a patient vector with 

a plaintext representation ν = [1, 0]. Table B.1 illustrates intermediate and match results. 

Since HE does not support logical operations, we use their arithmetic equivalents:

XOR a, b = a + b – 2ab,

OR a, b = a + b – ab .

The advantage of using logical template matching over multiplication is that queries can be 

chained. There is no need for the client to interpret the results of the template match. The 

disadvantage of template matching is that the circuit depth is greater, and it depends upon 

the length of the variant vector.
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Table B.1

Template matching for APOE genotype. The template is shown in the left column, the 

intermediate result of the XOR operation is shown in the middle column. The match result is 

in the right column.

Template (t) x = XOR(v,t) h = 1 − OR(x)

[0, 1] [1, 1] 0

[1, 1] [0, 1] 0

[0, 0] [1, 0] 0

[1, 0] [0, 0] 1

C. Summation along a vector.

Summation of the elements of a vector is performed using shift and addition functions in 

the SEAL library. For a vector with n elements, we require ⌈n ⌉ shifts and additions. Each 

shift is by 2(s−1) elements, where s is the stage. Table C.1 shows the operations on a plaintext 

vector of four elements. The final answer is given in the first element of the result vector. We 

multiply by a plaintext vector whose first element is one “1”, and other elements are zero. 

This operation increases multiplicative depth by one.

Table C.1

Summation of values in a vector. Successive shift and add operations can be used to sum the 

elements of a vector. A four-element vector needs two stages. The first element of the result 

vector contains the sum (in bold font).

Stage Initial x0 x1 x2 x3 0

1 shift-1 x1 x2 x3 0

add x0+x1 x1+x2 x2+x3 x3

2 shift-2 x2+x3 x3 0 0

add x0+x1+x2+x3 x1+x2+x3 x2+x3 x3
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Highlights

• A secure remote repository and computation for genomic data is proposed

• A numerical representation of genomic data has been defined

• Homomorphic encryption enables secure computations for decision support
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Figure 1. 
Illustration of system components and data flow.
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Figure 2. 
Illustration of phased encoding. The table on the left shows partially phased genome 

sequence data from a VCF file. In the Sample column, the pipe delimiters indicate phased 

variants and slashes indicate unphased variants. The unphased heterozygous data generates 

two combinations. A lookup table (not shown) is used to assign a variant to a vector and an 

element position in the vector.
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Figure 3. 
Haplotypes for APOE found by argmax(Aν). The rows of A are the haplotypes and the 
columns are variants. The zero-valued elements are shown blank for clarity. For the pair of 
variant vectors shown, ν1 = [0 1 0 1] and ν2 = [1 0 1 0], the genotype is ε4/ε2.
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Table A1

Haplotypes of the APOE gene. The phenotype column indicates haplotype-associated risk for development of 

Alzheimer’s Disease. Haplotypes are determined by the alleles at rs7412 and rs429358 as shown.

Haplotype Phenotype rs7412 rs429358

ε1 (0.2%) Normal risk T C

ε2 (7%) Decreased risk T T

ε3 (wild type, 79%) Normal risk C T

ε4 (14%) Increased risk C C

J Biomed Inform. Author manuscript; available in PMC 2021 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karimi et al. Page 22

Table 2.

The operations used for each application. The match in the first row of this table is the element of h that equals 

one.

Application Operations Meaning

CYP2C19/Clopidogrel ℎ1 = Av1, ℎ2 = Av2 Haplotype match

LDLR/FH < a, v1 + v2 >, < a, v1 ⊗ v2 > Sum pathogenic mutations, Sum pathogenic homozygous variants

APOE/clinical trial < A4, v1 >, < A4, v2 > Is the haplotype ε4?
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Table 3

Time and memory consumption for the use-cases. Time (mean/std dev) was measured in seconds.

Application Size of operator Key 
generation

Encryption of 
operator

Encryption of 
vectors Computation Decryption Memory 

(MB)

CYP2C19/
Clopidogrel A = (31, 68) 0.65/0.07 0.58/0.03 0.04/0.01 3.94/0.53 0.02/0.01 67

LDLR/FH a = (1,2039) 1.26/0.11 0.03/0.01 0.06/0.01 0.30/0.03 0.02/0.01 127

APOE/clinical 
trial A_4 = (1,4) 0.65/0.03 0.02/0.01 0.04/0.01 0.10/0.02 0.02/0.01 56
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