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Abstract

MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger 

RNA and are implicated in almost all cellular processes. Importantly, miRNAs are can be 

released extracellularly and are stable in these matrices where they may serve as indicators 

of organ or cell-specific toxicity, disease, and biological status. There has thus been great 

enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, 

and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are 

still not routinely employed as non-invasive biomarkers. This is in part due to the lack of 

standard approaches for sample preparation and miRNA measurement and uncertainty in their 

biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health 

and Environmental Sciences Institute’s (HESI) Committee on Emerging Systems Toxicology 

for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists 

dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to 

routine acceptance and use of miRNA biomarkers and case examples of success and deficiencies 

in development. Finally, we provide insight on miRNA measurement, collection, and analysis 

tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
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INTRODUCTION

In the almost three decades since the discovery of the small non-coding regulatory RNA 

by Ambros and Ruvkun (Lee et al. 1993; Wightman et al. 1993), microRNAs (miRNAs) 

have been under intense investigations to understand their role in disease processes, as 

putative targets of therapeutics, and as biomarkers of these underlying biological processes. 

The latter has been of particular interest when it was discovered that miRNAs were stably 

detected extracellularly in biofluids, including blood, urine, cerebrospinal fluid, saliva, and 

tears, among others (Valadi et al. 2007; Chen et al. 2008; Wang et al. 2010; Weber et al. 

2010; Arroyo et al. 2011; Turchinovich et al. 2011; Vickers et al. 2011). There are a number 

of reasons why miRNAs are released from the cell into these matrices, including speculation 

that miRNAs are effectors of cell-to-cell communication (Valadi et al. 2007; Wang et al. 

2010; Vickers et al. 2011). In addition, they may also be passively released during cell 

injury and content release into biofluids, thereby potentially serving as biomarkers of injury 

and/or toxicity (Harrill et al. 2016). The added value of miRNAs as biomarkers is that some 

display tissue specificity or enrichment, which has been demonstrated in mouse, rat, dog, 

and human (Lagos-Quintana et al. 2002; Babak et al. 2004; Liang et al. 2007; Mestdagh et 

al. 2011; Minami et al. 2014; Yu et al. 2014; Koenig et al. 2016; Smith et al. 2016), as well 

as high conservation across other model species (Landgraf et al. 2007; Koenig et al. 2016), 

allowing for human translation of findings in animal and alternative model experimentation 

(Wang et al. 2009, 2010; Kong et al. 2010; Starkey Lewis et al. 2011; Antoine et al. 2013; 

Usborne et al. 2014; Liu et al. 2015; Nishimura et al. 2015). Recent studies have indicated 

strong correlations between environmental pollutants and radiation, thereby altering levels 

Chorley et al. Page 2

Crit Rev Toxicol. Author manuscript; available in PMC 2022 May 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



of miRNAs linked to metabolic and vascular disorder in exposed human populations (Ruiz­

Vera et al., 2019; Martinez-Ibarra et al., 2019), further indicating direct utility of these 

biomarkers in environmental hazard evaluations. Not coincidentally, the recent development 

of methodologies to reproducibly measure miRNAs in small volumes of bodily fluids 

has also increased the feasibility of further developing biofluid-based miRNA biomarkers 

(Thompson et al. 2016; Lee et al. 2017; Thorsen et al. 2017; Detassis et al. 2019).

The stage has been seemingly set for robust development of biofluid-based miRNA 

biomarkers. Although there has been significant investment in prognostic and diagnostic 

miRNA biomarkers, the adoption of miRNAs beyond discovery and basic scientific 

applications has not been fully realized. To date, there are no U.S. Food and Drug 

Administration (FDA)-qualified miRNA biomarkers, which include categories of risk, 

diagnosis, monitoring, prognosis, predictiveness, response, and safety. This is partially due 

to the costly and the arduous process of biomarker qualification, although recent initiatives 

such as the Center for Drug Evaluation and Research’s (CDER) Biomarker Qualification 

Program (BQP) and published guidance have provided a pathway for early development 

(Amur et al. 2015). The TGx-28.65 transcriptomic biomarker panel for distinguishing agents 

that induce DNA damage from those that do not recently received a letter of support by 

FDA (Li et al. 2019) and is currently under regulatory review for qualification, which holds 

promise for future molecular-based biomarker qualification such as miRNAs. Evidence of 

high enthusiasm is also reflected in the scientific literature with citations on biofluid-based 

miRNA biomarkers nearly doubling annually between 2009 and 2015; however, interest 

has levelled off in the years since this period (Figure 1). The slow progress toward 

qualified miRNA biomarkers, and the apparent recent cooling-off period in related scientific 

publications, is likely attributable to an overall uncertainty associated with biofluid-based 

miRNA measurements.

The Health and Environmental Sciences Institute’s (HESI) Committee on Emerging Systems 

Toxicology for the Assessment of Risk (eSTAR) encompasses a workgroup of experienced 

toxicologists and life scientists in the government, academic, non-profit, and commercial 

sectors who are collectively involved in developing miRNA biomarkers for regulatory, 

drug development, and clinical applications. For nearly a decade, eSTAR collaborative 

efforts have focused on key questions surrounding the development of miRNA biomarkers, 

including tissue specificity (Pavkovic et al. 2015; Koenig et al. 2016; Smith et al. 2016; 

Bushel et al. 2018) and measurement techniques in biofluids (Harrill et al. 2016; Thompson 

et al. 2016; Wolfinger et al. 2018). There remain multiple utilization challenges for miRNAs, 

including but not limited to biases associated with biological sample collection, storage, 

and isolation, the non-standardization of miRNA quantification, the lack of understanding 

of normal biological variation of biofluid miRNAs, and understanding the functional and 

prognostic role of these molecules (Figure 2). The inherent qualities of miRNAs suggest 

these unique small RNAs are strong biomarker candidates, but a clear understanding of 

the strengths and weaknesses of the sampling, the analyses performed, and the context 

of use, are necessary before widespread implementation. The purpose of this manuscript 

is to review the literature to inform the reader on specific knowledge gaps to enable a 

more certain path forward in applying biofluid-based miRNA biomarkers in a variety of 

decision-making contexts.
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RELIABLY DISTINGUISHING SIGNAL FROM NOISE

In established protein biomarkers measured in blood, low baseline values and variability 

are preferable to detect small changes (Shlipak et al. 2005); however, higher baseline or 

signal variability can generally only be overcome by a robust responsive signal (Tanno et 

al. 2007). The latter baseline expression pattern reflects what is commonly observed in 

circulating miRNA candidate biomarkers, where nearly half of the measured miRNAs in 

serum have 30- to 1000-fold baseline variation (Cheng et al. 2013). We have determined 

that variability is likely miRNA-specific (Thompson et al. 2016), and several processes 

can contribute to this observation, including the mechanism(s) of cellular release and 

accessibility to biofluids (Valadi et al. 2007; Tominaga et al. 2015), as well as different 

macromolecule interactions within biofluids which may affect stability (Li et al. 2007; 

Mitchell et al. 2008). In addition, miRNAs near the lower limit of detection further confound 

the statistical calls that distinguish measurements from baseline (Wolfinger et al. 2018). 

While biological variation that is not attributable to perturbation cannot be avoided entirely, 

some confounding technical factors can be minimized by reducing variables introduced at 

collection, storage, isolation, measurement, and analysis (Table 1).

Consistent collection, storage, and extraction from sample

Normal biological variation can be dictated by both internal and external biological cues that 

may not be directly attributable to the disease state or phenotype of interest. For example, 

sexual dimorphic patterns of miRNAs are present in peripheral blood (Meder et al., 2014; 

Cui et al., 2018). Also, normal circadian rhythms can influence diurnal patterns of blood- 

and salivary-based miRNAs, and some miRNAs that display such cyclic patterns have 

ubiquitous expression throughout the body and release into biofluids (Heegaard et al. 2016; 

Hicks et al. 2018). Circadian cycles also influence small extracellular vesicle release into 

urine (Koritzinsky et al. 2019) and presumably packaged miRNAs. Other normal biological 

cycles such as the menstrual cycle and prandial states may also contribute to specific 

miRNA variation in biofluids (Vickers et al. 2011; Marzi et al. 2016). The current literature 

on the biological periodicities of circulating miRNAs is not extensive and there is not a lot 

known about cyclic expression of most miRNAs. Therefore, timing of sample collection in 

studies should be consistent to minimize potential variability in not only clinical samples, 

but also preclinical safety assessments.

As with time of collection, consistent sample types and storage will reduce measurement 

variability and increase the capability to compare separate studies and should therefore 

be carefully predetermined for comparability of samples within and across study samples. 

Consistency in the location of blood sampling (e.g., retro-orbital, sublingual, aortic, jugular, 

etc) may affect levels of cellular miRNA contamination from surrounding tissue during 

collection (Mikaelian et al., 2013). Also, different types of blood fractions can exhibit 

differing patterns of miRNA detection (Mompeon et al., 2020). A contributing factor 

is plasma which retains of fibrinogen, whereas serum does not contain clotting factors. 

Importantly, platelets and red and white blood cells also contain a broad array of miRNAs 

that can be released into the serum during coagulation (Wang et al. 2012) and may 

contribute to inter-sample variation in serum samples, if pre-processing centrifugation is 
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not performed (McDonald et al. 2011; Wang et al. 2012; Page et al. 2013). Related 

to this, miRNA measurements should be performed in serum and plasma samples to 

determine the extent of hemolysis present, in particular for those miRNAs that may 

have unwanted contribution from blood cells which may be more than the majority of 

detectible miRNAs in blood fractions (Kirschner et al., 2013). Since this contribution 

may occur at levels of hemolysis not detectable by eye, UV-Vis absorbance readings of 

hemoglobin (Kirschner et al., 2013; Kirschner et al., 2011) or measurements of blood cell 

miRNAs indicative of hemolysis (Blondal et al., 2013) should be considered. In whole 

blood samples, blood cell miRNAs may also be released during post-collection storage 

(Kannan et al. 2009), increasing measurable miRNAs after freezing/thaw cycle (Glinge 

et al. 2017). Hence, rapid processing after collection is preferred to avoid unwanted 

contribution of extracellular miRNAs as well as haemoglobin and lactoferrin, which may 

inhibit downstream applications (Al-Soud and Radstrom 2001).

The associations of extracellular miRNAs with proteins such as Argonaute, lipoproteins, or 

encapsulation in extracellular vesicles (EVs) are hypothesized to confer microRNA stability 

in biofluids, in addition to potentially mediating their release across cell membranes (Hunter 

et al. 2008; Arroyo et al. 2011; Turchinovich et al. 2011; Vickers et al. 2011). At room 

temperature, some miRNAs can be stable for at least 24 hours in whole blood, serum, 

and plasma (Zhao et al. 2014; Mitchell et al. 2008), but specific miRNAs may show both 

more and less resilience due to different levels of protection afforded by these interactions 

(Koberle et al. 2013; Marzi et al. 2016). Long term, miRNAs in these samples can be 

stable for nearly 2 years when stored at −20°C or −80°C (Grasedieck et al. 2012; Glinge 

et al. 2017) but may be markedly decreased during longer storage durations. Freeze/thaw 

cycles can have a significant impact on stability; however, there are disagreements in the 

literature with some studies showing minimal degredation of serum miRNAs eve after eight 

freeze/thaw cycles (Mitchell et al. 2008). Similar to sample pre-processing, the inherent 

stability of miRNA in biofluids may differ depending on protective interactions of proteins 

and the collection matrices (Chen et al. 2008; Mitchell et al. 2008; Grasedieck et al. 2012; 

Glinge et al. 2017). The consensus across datasets suggests that, for applications where 

long incubation and/or storage times are unavoidable, systematic miRNA stability analysis 

should be performed. Similarly, miRNAs in cell-free urine are relatively stable, which could 

be attributable to EVs that encapsulate miRNAs and protect from high levels of RNase 

activity (Lv et al. 2013). Therefore, miRNAs in isolated EVs may be somewhat more stable, 

considering that only small losses in miRNA levels were observed after 24 hours at 4°C and 

for at least five freeze-thaw cycles. Additives can improve this stability (Hanke et al. 2010), 

but immediate chilling or freezing the sample at −80°C is important for ensuring longer-term 

miRNA sample storage. Standardization of collection and storage practices is imperative for 

consistency in miRNA measurements; and pilot studies should be leveraged to determine if 

the miRNA biomarkers of interest may be more susceptible to degradation, thereby reducing 

chances of measurement bias.

RNA isolation is required for many miRNA measurement protocols and can contribute to 

technical variability in samples (Marzi et al. 2016; Khan et al. 2017; Max et al. 2018). A 

significant number of comparison studies have been published to determine differences in 

efficiency and performance for commercially available miRNA extraction methods. While 
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some studies report that the choice of extraction method is generally comparable (Hantzsch 

et al. 2014; Brunet-Vega et al. 2015; Aarem et al. 2016), these studies only measured a 

limited number of miRNAs; therefore, failing to represent sufficient numbers of supportive 

independent studies and datasets for validation. Other reports noted that phenol-based 

extraction methods may bias for miRNAs that are GC enriched (Lam et al. 2016). In 

addition, Brown et al. (2018) cautioned that total RNA extraction methods are optimized 

for longer RNA yield rather than small RNA recovery and noted 2- to 4-fold differences 

in abundance for the subset of miRNAs measured by different extraction techniques 

from homogenized tissue. In biofluids, there is a low concentration of miRNAs in the 

aqueous phase and high levels of contaminating protein (such as albumin, immunoglobulins, 

coagulants, and complement components), further complicating extraction. Techniques to 

remove protein from samples (Kim and Jung 2011) and increase miRNA yield with added 

carriers or concentrating RNA post-isolation (Ramon-Nunez et al. 2017) can improve 

recovery; however, inter-sample variability can be introduced as a result of these methods 

(Bartram et al. 2009; Jarry et al. 2014; Ramon-Nunez et al. 2017). Quality control (e.g., 

consistent standard operating procedures, documentation and consistent terminology, spike­

in miRNAs during isolation, assessment of hemolysis, potential inclusion of reference 

samples or treatments leading to known miRNA alterations, etc.) and optimized methods 

for the specific biofluid of interest are imperative for high confidence in measurements 

(Tan et al. 2015). Notably, there are methods that simply directly measure miRNAs from 

biofluids (Glineur et al. 2015; Shah et al. 2018; Bailey et al. 2019; López-Longarela et al. 

2019), which eliminates bias due to isolation procedures; however, these procedures may be 

susceptible to inhibitory contaminants within biofluids; thus, consistent quality control steps 

are warranted.

Selecting methods for measurement

The methodologies currently available to quantitate miRNAs vary by throughput, cost, 

dynamic range, and sensitivity. These approaches include quantitative polymerase chain 

reaction (qPCR), digital-based PCR (dPCR), bead or particle detection, microarrays, and 

next generation sequencing (NGS; Table 2). The choice of which technique to utilize 

depends on the user’s goals and application, expertise, and capabilities. In general, 

the choice of technique depends on the number of miRNAs and samples that need 

to be assessed in tandem. A small body of work exists that describes correlations 

between platforms that reproducibly demonstrate directionality of differential abundance 

of miRNA in samples (Mestdagh et al. 2014). Moreover, any primary disagreements 

in these measurements were due to different calculated absolute fold-changes; however, 

each platform demonstrated good intra-platform reproducibility. Conversely, consistent 

best practices for miRNA measurement should not introduce uncertainty in the data 

generated; the limitations of methods need to be understood before they are applied to 

biomarker-based application. For example, developing biomarkers to understand disease 

prognosis, and in particular regulated diagnostics, requires that the methods used meet 

regulatory standards for consistency of performance, ideally coefficient of variation less than 

25% between replicates (https://www.fda.gov/regulatory-information/search-fda-guidance­

documents/bioanalytical-method-validation-guidance-industry), and that sufficient technical 

controls and reference standards are available to measure assay performance. It would be 
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preferable for this application to choose methods that require minimum samples handling, 

e.g. preparation of RNA from blood, that can be easily automated or performed by a 

technician, and that can be performed on approved instrumentation (e.g., a 510k cleared 

qPCR machine). As such, existing next generation sequencing and microarray platforms 

may not be the best candidates for prognostic biomarker development.

The low-throughput method of choice for nucleic acid quantitation is qPCR; however, 

specific challenges are faced with measuring small RNA. These methods require reverse 

transcription of miRNA to complementary DNA (cDNA) and amplifying the miRNA 

candidate so that it may be measured typically by fluorometrically labelled hydrolysis 

probes (e.g., Thermo Fisher Scientific TaqMan) or intercalating dyes (e.g., Qiagen SYBR 

Green). Given the small size of miRNAs, primers commonly must generate binding 

specificity from 10 to 15 nucleotides of miRNA sequence. Increased specificity in qPCR 

can be obtained using primers containing locked nucleic acids (LNA), where the 2′-O is 

“locked” while the 4′-C atom uses a methylene bridge, which increases thermal stability 

of the nucleotide and enables high-affinity base pairing to the cDNA strand. Despite this, 

qPCR may have trouble distinguishing isomeric forms of canonical miRNA, or “isomiRs,” 

that are present in cells and biofluids. Most isomiRs are 3′ additions to the canonical 

sequence, most likely reflecting differential nuclease processing from the primary transcript 

(Wu et al. 2018) and may have functional consequences. Results from the miRNA Quality 

Control (miRQC) study and others indicated that discrimination varied markedly between 

measurement platforms and assessments may be problematic when distinguishing isomiRs 

and closely related miRNA families (Mestdagh et al. 2014; Magee et al. 2017).

Because of low amounts of miRNAs isolated from biofluids, enzymatic pre-amplification 

of cDNA may be necessary (e.g., Applied Biosystems Megaplex™ Primer pools). Pre­

amplification has been reported to enhance the detection of low-expressed species; however, 

there is evidence that pre-amplification bias of target DNA can occur (Sanders et al. 

2011). To potentially measure lower levels of miRNA with greater sensitivity, dPCR is 

an alternative method that may help alleviate pre-amplification bias and save assessment 

time. dPCR segregates individual DNA molecules into discrete volumes (such as emulsion 

droplets) followed by end-point PCR. Hydrolysis probes or intercalating dyes are used to 

identify count target miRNAs and estimate the original copy number. Despite the advantage 

of absolute quantitation and higher sensitivity for low copy targets, some limitations 

exist for miRNA measurements. Given the dynamics of single molecule amplification as 

well as increased sensitivity to measure off-target and no template amplification, careful 

optimization of procedures is required for successful and reproducible dPCR measurements 

(Huggett et al. 2013; Redshaw et al. 2013; Emslie et al. 2019). Importantly, primer 

design and demonstration of optimal performance (e.g., no off-target amplification, primer 

efficiency, annealing temperatures) should be documented.

For more medium-throughput applications such as assessing a panel of miRNAs (measuring 

10s to 100s of miRNAs in a multiplexed manner), particle or bead-based measurement 

platforms may be a practical solution. For example, NanoString Technologies employs 

fluorescent color-coded “molecular barcode” oligonucleotides that hybridize directly to the 

target molecules. This method does not rely on amplification and therefore offers reduced 
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potential bias for miRNA quantification. As a result, RNA input must be significantly higher 

than many analogous assays, which may be problematic with limited miRNA amounts 

derived from biofluids. The Luminex bead-based assays detect miRNAs from purified 

RNAs and biofluids with a PCR-free workflow. While specific, the assay often lacks 

sensitivity due to the requirement of a certain number of probe molecules to achieve signal 

and related binding inefficiencies. Abcam’s FirePlex assay integrates cDNA preparation 

and amplification into a hydrogel particle-based enrichment workflow and allows higher 

sensitivity of detection than bead-based platforms (Pregibon et al. 2007). The hydrogel 

beads can be incubated directly with biofluid and tissue lysates to capture miRNAs present, 

thereby allowing direct measurement of miRNA without any loss associated with isolation.

For measuring global amounts of miRNAs (1000s at a time), microarray and NGS are 

commonly used. While currently cost-prohibitive for screening purposes in clinical or 

regulatory settings, these methods are invaluable assets for biomarker discovery. Microarrays 

allow comprehensive coverage of known miRNA sequences. However, they cannot be used 

for absolute quantification and they have a significantly poorer sensitivity and specificity 

than other methods. For miRNA, the intra-platform reproducibility is typically good; 

however, the agreement between various microarray technologies is low, especially for 

the less abundant miRNAs that may be of interest when examining biofluids (Mestdagh 

et al. 2014). NGS offers several additional advantages compared to microarray profiling, 

including greater sensitivity and dynamic range. An advantage of NGS relative to other 

technologies is that 5′ and 3′ sequences are defined, allowing the investigator to distinguish 

isomeric miRNAs (isomiRs) from miRNAs that can differ by a single nucleotide, including 

changes related to RNA editing that may influence miRNA stability. Unbiased NGS may 

also generate a profile of all small RNAs in a sample, including non-coding RNAs, 

such as short interfering RNA (siRNA), piwi-RNA (piRNA), and repeat-associated siRNA 

(rasiRNA). Despite the powerful advantages of NGS to profile miRNA, data analysis 

requires considerable computational and bioinformatics support, and sequencing platform­

specific artifacts may occur. As these limitations become minimized over time, sequencing­

based quantitation or analogous methods may serve as a complementary follow-up method 

for more in-depth analysis of complex individuals or those with borderline values.

A number of analyses have been performed to compare different measurement platforms 

versus common samples to determine relative performance (Giraldez et al., 2018; Mestdagh 

et al., 2014; Yauk et al., 2010; Git et al., 2010). Common with these studies is the 

requirement for synthetic miRNA controls and/or abundant samples that can be split and 

run on each platform. Careful normalization of data between platforms is required before 

determining whether data generated on each correlate. Firstly, and obviously, it must be 

determined which miRNAs are efficiently detected on each platform, for instance above a 

threshold value. Secondly, it is necessary to measure the correlation of fold changes relative 

to a second sample or an in silico generated benchmark vector from the average expression 

of common miRNA (Mestdagh et al., 2014; miRQC) in order to measure “fold change” of 

each miRNA relative to this value. Reports indicate correlations generally between 0.6 and 

0.95 depending on the method used (Giraldez et al., 2018; Mestdagh et al., 2014; Yauk et al., 

2010; Git et al., 2010), and platforms with similar protocols (e.g., ligation based protocols) 
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anecdotally are more comparable than significantly different methods (e.g., microarray vs 

RT-qPCR).

From the perspective of biomarker development, one should consider evaluation of markers 

on multiple platforms a valuable exercise to generate high confidence in the differential 

abundance detected (Mestdagh et al., 2014). For routine application a single platform 

should suffice for measurements, providing that sufficient potential signal variables, e.g. 

isomiRs and cross-reacting sequences, have been well characterized. Reference standards for 

miRNAs may be purchased from commercial vendors and used for technical controls, albeit 

consideration must be given limiting degradation from RNases during sample preparation 

(Shiotsu et al., 2018; Schlosser et al., 2015).

Normalization approaches and recognized limitations

One of the principal limitations for consistently reliable miRNA application is a lack of 

standardized normalization (Etheridge et al. 2011; Creemers et al. 2012; Meyer et al. 

2012). In general, an ideal normalization scheme would result in absolute measures of 

miRNAs relative to internal reference markers such that data from two different technologies 

could be compared. Further, measurement of identical samples at different sites would 

produce identical data, when using sufficiently calibrated equipment. Hence, progress can be 

made toward high-confidence comparisons between technologies through a combination of 

technical and computational normalization approaches (see Table 3).

Critical evaluation of reference miRNA for normalization is an important task. There are 

limited idealized “housekeeping” miRNAs currently annotated for specific sample types and 

the heterogeneity of a sample should be considered. Related miRNA sequences (such as miR 

family members including miR-17–92 family or let-7 family) should be avoided to reduce 

the potential for technical crosstalk within platforms from influencing the normalization 

vector (Mestdagh et al., 2014). In addition, reference miRNAs should be chosen that can 

be measured to be consistently abundant using multiple platforms, increasing the likely 

reliability of those measurements.

Quantitative (q)PCR and other targeted approaches are the methods of choice for most 

application settings (e.g., clinical, preclinical safety assessments) and the recommendation 

for normalization would be the use of experimentally determined invariant miRNA or other 

small RNA molecules that are resistant to exposure or physiologic perturbation (Figure 3). 

Other methods of normalization may increase measurement variability, or worse, lead to 

misinterpretation of the measurements. Unfortunately, characterizing miRNA expression 

in biofluids is challenging as no universally invariant calibrator miRNA or any other 

small RNA molecule has been identified. There are a few invariant miRNAs in solid 

tissues (Peltier and Reddy 2018) but their consistent expression in various pathological 

instances has not yet been demonstrated for any biofluid. Endogenous reference RNAs, 

such as small nuclear (snRNA) and small nucleolar (snoRNAs) or specific miRNAs 

(Eisenberg and Levanon 2003; Vigneron et al. 2016), have been identified by using mean 

normalization methods such as geNorm, NormFinder, and Bestkeeper (Vandesompele et 

al. 2002; Andersen et al. 2004; Pfaffl et al. 2004).The literature indicates that endogenous 

RNAs are subjected to multiple sources of variation across individuals such as inter-sample 
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heterogeneity and pre-isolations steps (Schwarzenbach et al. 2015). Therefore, putative 

reference RNAs must be optimized for individual experimental models as well as storage 

procedures, but these efforts have proven difficult (Vigneron et al. 2016). One commonly 

referenced solution to the lack of endogenous control is to spike-in exogenous, synthetic 

miRNA that allow for normalization and estimate the efficiency of miRNA extraction and 

the reverse transcription step (Mitchell et al. 2008). A concern of the spike-in approach is 

its reliability for normalization when quantification of extracted RNA is not possible because 

of RNase activity that is present in the biofluid. To avoid this, addition of known quantities 

of non-homologous species miRNA spike-ins during the first extraction step or additional 

spike-ins after extraction. Regardless, spiking-in synthetic miRNAs after collection does not 

account for biological-based variables (e.g., RNA concentration different due to several 

biological factors such as diurnal cycles, as noted previously) or urine from variably 

hydrated subjects (Vickers et al. 2011). As an alternative, established protein and other 

biomarkers could be used to assess input such as creatinine concentration in urine (Pavkovic 

et al. 2014; Chen et al. 2017; Ichii et al. 2018), but until this approach has been validated 

for normalizing urine miRNA values, the rate of urinary miRNA excretion (with timed 

sample collection) should be used. Population-based studies are further complicating as 

many factors can influence normalization, including disease state (Levin-Schwartz et al. 

2021).

For microarray or sequencing data, adjusting measurements to the mean or the distribution 

of miRNAs in samples underlies many of the methods of normalization. A common 

normalization method used is Trimmed Mean of M values (TMM) (Anders and Huber 

2010). The underlying assumption of this method is that the condition or the treatment 

changes only a few of the miRNA targets, so most targets should be constitutively 

expressed. As such, miRNA levels are adjusted from sample to sample according to 

calculated proportions of mean expression. The method is effective when there is a large 

set of unperturbed miRNA targets in samples for a study, so that the presence of a few 

differentially expressed targets between case and control do not appreciably change the 

average. Most distribution adjustment methods work under a similar assumption. The 

distribution of target expression levels in a single sample will often have a log-normal, 

Poisson, or a negative binomial distribution in controls that is then used to fit the identified 

distribution to case examples. A particularly elegant implementation of the method is 

quantile normalization (Amaratunga and Cabrera 2001), which makes no assumptions about 

the actual distribution in the reference but instead directly forces a match between the 

quantiles of each sample to the quantiles of the reference sample. Unlike the mean-adjusting 

methods, quantile normalization can adjust different targets in the same sample by different 

amounts. Unfortunately, the assumption underlying these methods likely does not apply 

for miRNAs present in biofluids, where the absolute quantity and variety of measurable 

miRNAs is more limited and overall more likely influenced by biological conditions than 

in tissues (e.g., the assumption that most miRNAs are invariant from sample to sample 

is likely not true). Alternative strategies must be investigated to standardize normalization 

efforts, which depends on the method of measurement. Indeed, a combination of absolute 

quantitation with standard curves of synthetic miRNAs and internal biological controls is 
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necessary for direct comparison of samples between platforms and between analysis sites 

(Thompson et al. 2016).

INTERPRETING THE BIOLOGICAL MEANING OF MIRNA ALTERATIONS

A major challenge in biofluid-based miRNA studies is interpreting the biology behind the 

changes that are measured. If there is high confidence in the measurements of miRNAs 

in a biofluid, there still exists “variability” in understanding of the underlying pathology 

or toxicity of interest that influences these measurements. Without this information, the 

mechanistic-based information afforded by miRNA biomarkers is not realized. It is key to 

understand why these values may change in a matrix where contributions are derived from 

many sources. Some miRNAs are tissue or cellular specific and may serve as an injury 

or disease biomarker for that target tissue. Other miRNAs may be specific to a process or 

cellular pathway and could serve as a biomarker of a biological response. Both aspects that 

influence the presence of miRNAs in biofluids must both be understood to garner full utility 

as biomarkers.

Tissue specificity of miRNA expression

Early evidence established that some miRNAs expressed in adults are tissue-specific, even 

more as compared to mRNA expression (Babak et al. 2004). Other miRNAs are not tissue­

specific but display restricted expression for specific organs (Ludwig et al. 2016). Families 

of miRNAs can also display a more restricted expression pattern. For example, the miR-378 

family is preferentially expressed in muscle tissues and the myocardium, with very low or 

no expression in other tissues. Similarly, members of the miR-506 family are preferentially 

expressed in testis (Ludwig et al. 2016). This expression pattern is highly associated with the 

involvement of miRNAs in normal physiological functions, during disease development, and 

in response to injuries (Akamatsu et al. 2015). Thus, the identification of the tissue of origin 

of miRNA is critical in order to identify the source of perturbation when these miRNAs are 

identified in blood or any other body fluids (Xu et al. 2011; Krauskopf et al. 2015; Pirola et 

al. 2015).

An example of a well-characterized, blood-based, single miRNA biomarker candidate to 

detect liver injury because of its organ-specific expression is miR-122. Landgraf et al. 

published a survey of small RNA sequencing data from mammalian tissues that indicated 

miR-122 to be expressed almost exclusively in the liver of mammals (Landgraf et al. 2007; 

Koenig et al. 2016). It was shown to be present at approximately 66,000 copies per adult 

mouse liver cell, which comprises nearly 70% of the entire mature miRNA pool in the 

liver (Lagos-Quintana et al. 2002; Chang et al. 2004). Qualitatively, liver injury leads to 

an increase in detectable miR-122 in circulating fluids (i.e., plasma and serum), most often 

through apoptosis/necrosis of liver cells, the majority of which are hepatocytes. Changes in 

circulating miR-122 levels have been shown in different physiological processes in hepatic 

function as well as a variety of liver pathologies (Trebicka et al. 2013; Clarke et al. 2014; 

Park et al. 2016; Howell et al. 2018). Up to a 6000-fold increase in plasma miR-122 levels 

has been observed in rats treated with the hepatotoxicant, chlorobromomethane (Laterza et 

al. 2009). In the clinic, multiple studies demonstrated that circulating miR-122 becomes 
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elevated prior to the increase of the traditional clinical chemistry biomarker for liver injury, 

alanine transaminase (ALT), and has a greater sensitivity in predicting acetaminophen liver 

toxicity than serum aminotransferases (Wang et al. 2009; Antoine et al. 2013; Dear et al. 

2014; Thulin et al. 2014; Ward et al. 2014). It was also shown to be more accurate in 

detecting drug-induced liver injury (DILI) upon first presentation at the hospital in patients 

with normal ALT levels (Antoine et al. 2013; Dear et al. 2014). Combining high levels 

of expression, tissue specificity, homology between species, and release into biofluids, 

miR-122 has been proposed as a novel, non-invasive highly specific translatable biomarker 

of liver homeostasis including liver injury.

Given this scientific enthusiasm, one may question why miR-122 has not been adopted 

as a replacement biomarker for liver toxicity and disease. The utility of a new biomarker 

can also be assessed through estimation of the additional value it brings when quantified 

concomitantly with existing biomarkers. It has been demonstrated in pre-clinical studies 

that the addition of miR-122 to the traditional clinical chemistry panel (ALT, aspartate 

aminotransferase [AST], and glutamate dehydrogenase [GLDH]) improves the diagnostic 

accuracy by 4%, although miR-122 alone outperformed ALT as a minimally-invasive 

biomarker and was equivalent in performance to AST and GLDH relative to microscopic 

evidence of the liver histopathology findings (Sharapova et al. 2016). A systematic review of 

the miR-122 as a biomarker of DILI showed that despite a moderate heterogeneity between 

datasets, there was high sensitivity and specificity overall for miR-122 as a biomarker 

(0.85 and 0.93, respectively) but only a modest ability to detect DILI (Liu et al. 2018). 

Although the addition of miR-122 to the biomarker panel was shown to be beneficial in 

both nonclinical and clinical settings, the added cost to monitor for changes in miR-122 

in may not provide an overall benefit given the modest improvements in predictivity and 

assessment of DILI. Therefore, economics is a major factor in the development of miR-122 

as a biofluid-based liver safety biomarker.

Broader insight with miRNA panels

While many studies have focused on single, tissue-specific miRNA to infer physiologic 

changes, a panel of miRNA biomarkers that includes both tissue-specific and tissue-enriched 

miRNAs can overcome some limitations of single miRNA biomarkers. Indeed, NGS has 

expanded the scope of discovery of candidate miRNA biomarkers in biofluids. Further 

refinement of these panels may be gleaned from histopathology. For example, techniques 

such as in situ hybridization of miRNAs, laser capture microdissection-guided PCR, and 

single-cell transcriptomics can help prioritize biofluid-based miRNAs for biomarkers of 

tissue-specific damage and potentially severity of injury and disease processes.

One example of where a panel of miRNA biomarkers may inform underlying 

tissue pathology is urinary miRNA biomarkers of kidney injury. Select miRNAs are 

characteristically expressed in the kidney and involved in many renal physiological and 

pathological processes (Bhatt et al. 2011). Urinary miRNAs are relatively stable (Mall et al. 

2013) and have been shown to be differentially expressed in nephron segments in kidney 

(Kriegel et al. 2013). Additionally, given the highly conserved nature of miRNA sequences 

across species (Friedman et al. 2009) and the overlap in kidney miRNA expression between 

Chorley et al. Page 12

Crit Rev Toxicol. Author manuscript; available in PMC 2022 May 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



laboratory animal models and humans (Pavkovic and Vaidya 2016), there is potential 

translational context of use for miRNAs as kidney-specific injury markers when monitoring 

for acute, progressive and/or reversible kidney injury.

A cross-laboratory program was conducted by the Health and Environmental Sciences 

Institute (HESI) Biomarkers of Nephrotoxicity Committee to identify and characterize 

miRNA patterns (i.e., changes in individual miRNAs and/or a panel of differentially 

expressed miRNAs) indictive of kidney injury in rats (Chorley et al., 2020). The overall 

strategy of this program is depicted in Figure 4. The program combined miRNA profiling 

in urine from rats treated with nephron segment-selective toxicants and experiments on 

nephron segments isolated by laser capture microdissection to further characterize the 

localization of miRNA candidates directly in the kidney. Results from the individual rat 

studies showed that several urinary miRNAs were increased with doses of compounds 

resulting in minimal to moderate degeneration/necrosis in the expected nephron segments; 

although the traditional clinical pathology parameters serum creatinine and blood urea 

nitrogen (BUN) were either not or only slightly changed. Interestingly, in the rat study 

with the glomerular toxicant doxorubicin, urinary miR-34c-3p was found to be increased 

earlier than albuminuria (Church et al. 2014). It was demonstrated that several miRNAs 

changed early in glomerular and urine samples in two different rat models of glomerular 

injury (Nassirpour et al. 2015). In a rat study with the proximal tubular toxicant cisplatin, 

other urinary miRNAs were increased earlier than BUN and serum creatinine and were 

comparable to the more specific and sensitive kidney injury biomarker, KIM-1, with respect 

to timing (Pavkovic et al. 2014). Similarly, miR-210–3p was reported in another study as 

displaying the most robust changes in urine from rats treated with collecting duct toxicant, 

N-phenylanthranylic acid (NPAA) (Glineur et al. 2018). In contrast, another set miRNAs 

were found to be changed in abundance in urine from rats treated with nephrotoxicants 

affecting different nephron segments, thus suggesting that these miRNAs are expressed 

generally in the kidney across all locations and lack diagnostic capacity for site-specificity 

of injury. This was especially the case for mechanistic miRNAs like miR-34c-5p and 

miR-155–5p, which were increased in urine as a consequence of their biological function, 

regardless of the localization of the kidney lesions (Glineur et al. 2018). Taken together, 

these results suggest that a panel of urinary miRNAs with preferential localization in 

the glomerulus and the proximal and distal tubules may be useful to discriminate the 

localization of drug-induced lesions in the kidney.

Interestingly, liver and cardiac injury outside of the kidney may also be assessed in urine 

(Cheng et al. 2012; Yang et al. 2012; Zhou et al. 2013; Wolenski et al. 2017). In the kidney, 

it is plausible that glomerular damage may facilitate the passage of plasma miRNAs through 

the glomerulus into urine and thus may complicate the interpretation of results. However, it 

remains to be confirmed that plasma miRNAs can be excreted into the urine and by which 

mechanism(s) if any in the absence of kidney damage. Conversely, it was reported that 

certain miRNA levels were altered in plasma in correlation with kidney injury (Lorenzen 

et al. 2011; Gutierrez-Escolano et al. 2015; Zhang et al. 2017). The origin of these plasma 

miRNAs (extra-renal versus renal) is not known. Additional studies are needed to identify 

pathophysiological mechanisms associated with these plasma miRNA changes.
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There remain limitations, such as in being able to induce comparable severity of injury in 

only one specific location of the kidney at a time. Thus, more systematic meta-analyses 

across studies reporting development of a panel of miRNA changes in the urine in both 

animal models and human patients with kidney injury, differentiating between acute or 

chronic settings, are still needed. These evaluations may be followed by specifically 

designed measurements and exploration of several analysis approaches. Such investigations 

may require collaborations between many stakeholders yet may then be expected to yield 

miRNA panels in reasonable time for focused kidney injury settings.

Interpreting non-canonical sequence

Another advantage of sequencing is the ability to detect modifications of the canonical 

sequence of miRNAs. As discussed previously, some of these detected sequence changes 

are due to technical sequencing errors; however, some have been consistently identified 

and validated by other methods (Morin et al. 2008; Neilsen et al. 2012; Gomes et 

al. 2013). Biologically, the existence of directed modification, such as adenylation or 

uridylation at the 3′ or some microRNAs, suggests that this region may be a focal point 

of regulation (Rissland et al. 2007; Menezes et al. 2018). In addition, isomiRs may be a 

result of differential cleavage of precursor miRNAs (Seitz et al. 2008; Hu et al. 2009). 

The endogenous biological functions of most isomiRs has proven elusive to date despite 

some evidence of regulatory roles (Cloonan et al. 2011). Most isomiR variants occur at the 

3′ of the miRNA sequences, with templated and non-templated additions common (Wang 

et al. 2016; Wu et al. 2018). 5′ variants are predicted to change the miRNA seed and 

therefore may have significant influence on miRNA specificity (e.g., mammalian miR-142–

3p, miR-101–5p, or mmu-miR-223–3p), whereas some 3′ variants may modulate miRNA 

stability or subcellular location (Telakivi and Flink 1985). Not surprisingly, 5′ isomiR 

variants are significantly less common than 3′ variants in most sequencing datasets (Wang et 

al. 2016) if it is speculated that these seed alterations may have greater biological impact.

The association of isomiRs with certain biological or disease states is intriguing biologically 

and has implications for biofluid-based biomarker development. IsomiR species appear to 

be more abundant in tumor cells, indicating a potential role for dysregulation of miRNA 

processing (Wang et al. 2016). These examples indicate that isomiR function and presence 

in biofluids must be considered and may prove to be a better indicator of adverse pathology 

than canonical sequence alone. Like advantages of assessing miRNA panels, the distinction 

of isomeric miRNAs may be critical.

One example of this phenomenon is that the source of variability in the baseline levels of 

circulating miR-122 in controls may result from the presence of various isomiRs. Multiple 

isoforms of miR-122 have been detected in the liver, and their distribution between different 

conditions, types of injury, as well as animal strains may vary. Using NGS technology, it 

has been shown that in the plasma of subjects with acetaminophen toxicity, only 20% of all 

detected mature miR-122–5p represent a canonical sequence referenced in the miRBase; the 

majority of miR-122–5p was present as trimmed isomiRs (Krauskopf et al. 2017). Primer 

design for qPCR based on sequence data in miRBase may not detect all isoforms present, 

thus affecting the accuracy of miRNA results in given sample. Applying NGS methods 
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for miRNA analysis may provide more accurate quantification of miR-122 as well as aid 

in getting useful information on isomiR distribution, thereby increasing the utility of this 

putative liver biomarker.

miRNAs as biomarkers of active cell signalling versus passive leakage

Like ALT, the release of miR-122 into the circulation was initially attributed to passive 

leakage of miRNA-protein complexes from injured hepatocytes (Arroyo et al. 2011; Hornby 

et al. 2014). However, multiple studies have confirmed that miR-122 is also actively released 

by hepatocytes as cargo of EVs (specifically exosomes) (Cho et al. 2018). Moreover, 

its enrichment and half-life in each fraction varies greatly based on liver condition or 

mechanism of injury. In vitro, miR-122 was detected in hepatocyte-derived exosomes at 

doses of acetaminophen in the absence of the overt hepatotoxicity, possibly serving as 

an early damage associated signalling molecule (Holman et al. 2016; Mosedale et al. 

2018). In animal studies, circulating miR-122 was localized to protein-rich and exosomal 

fractions in a time- and injury-specific manner (Bala et al. 2012; Motawi et al. 2018). In 

animals with acetaminophen-induced toxicity, the early (3–12 hours after dosing) release of 

miR-122 was associated with exosomes. During late release, which was accompanied by 

massive hepatocyte necrosis, miR-122 was primarily detected in the protein-rich fraction 

of serum and not exosomes (Bala et al. 2012; Holman et al. 2016). In rodents with 

alcohol-induced liver injury, miR-122 was highly enriched in the exosomal fraction while 

just a minimal increase was observed in protein-bound fraction. This same study showed 

that in an inflammatory liver disease model, miR-122 was detected almost exclusively in 

exosomes and decreased in protein fraction compared to the controls (Bala et al. 2012; 

Yang et al. 2014). Another study reported that exosomal miR-122 derived from ethanol­

treated hepatocytes, when up-taken by monocytes and Kupffer cells, can modulate liver 

inflammatory response, positioning miR-122 as an important signalling molecule in cell-cell 

interaction (Momen-Heravi et al. 2015). The signalling role of miR-122 is supported by 

the evidence that exosomal miR-122 can also be taken up by tissues outside of the liver, 

including kidneys and muscle (Rivkin et al. 2016; Chai et al. 2017). Finally, decreased 

exosomal levels of miR-122 were associated with hepatocellular carcinoma, which agrees 

with reported downregulation of miR-122 in liver cancer (Gramantieri et al. 2007; Sohn et 

al. 2015). Therefore, serum-based miRNAs do not always reflect the presence or extent of 

organ damage and may be regarded as an extracellular stress signal. The reported findings 

on longitudinal and spatial miR-122 distribution in the circulation may account for the 

miR-122 variability in healthy individuals observed in studies of liver injury and make the 

interpretation of miR-122 results more complex but also enticing as a putative biomarker 

beyond overt organ injury.

MOVING FORWARD AND MEETING THE CHALLENGES

Shortly after it was discovered that miRNAs were present in biofluids, qualities of ideal 

biomarkers were noted (Etheridge et al. 2011) such as specificity for tissue of origin, 

sensitivity to distinguish adverse from transient cellular responses, patterns of expression 

predictive for an apical pathological state, robust response and stability in biofluids, 

and orthology across human and non-clinical species. These promising molecular-based 
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biomarkers may not only enhance the utility but also fill gaps that are present with the use 

of existing biomarkers. Despite this promise, both technical and biological challenges add 

variability to the measurements and uncertainty to the interpretation of miRNA biomarkers 

in biofluids, and the full application for safety, clinical, and clinical use has yet to 

be realized. Several challenges have been listed within this summary which may seem 

overwhelming, but a holistic view of existing research can serve as a guide for what 

areas need most attention (Table 4). In general, issues associated with technical variables 

(such as sampling, storage, extraction, and quantitation) can be minimized with careful 

planning, standard operating procedures, and experience, whereas the interpretation of these 

measurements is less well defined and will require focused research to better connect to the 

biological phenotype or outcome that the miRNAs serve as biomarkers.

As highlighted in the previous HESI effort, biofluid-based evaluation of a robust miRNA 

response to a toxicant using a defined method can be replicated across different laboratories 

and sites (Thompson et al. 2016). After removing measurement data from sites that had clear 

outlying results, variability in the measurements was primarily due to the biofluid source 

(in the study, urine versus plasma) and inherent biological range in the miRNA biomarker 

response not due to technical bias. Standardized methods for sample processing and qPCR­

based detection significantly minimized technical variability and were selected for the 

specific purpose of robust, consistent measurements and uniform available equipment. This 

work and many others tested the consistency and robustness of miRNA measurements 

(McDonald et al. 2011; Mestdagh et al. 2014; Bailey et al. 2019; López-Longarela 

et al. 2019) and underscores the importance of controlling uncertainty by minimizing 

technical factors through consistent collection, processing, storage/transport, isolation, and 

measurement protocols with experienced staff and technicians. It is also important to keep 

in mind that these procedures are fit-for-purpose, and certain caveats exist for specific 

miRNAs measured. For example, some miRNAs may not be as stable during collection 

and storage conditions, which may influence results if measurements cannot be immediately 

performed after collection (Glinge et al. 2017). This is particularly important in clinical 

and safety settings if an adverse value is determined by a defined normal range. Therefore, 

a general standard operating procedure is not defined as part of this review, but rather is 

encouraged to be developed for specific contexts of use with respect to the caveats of costs 

and availability of technology, stability of the miRNA biomarkers measured, experimentally 

determined normalizers, and other factors appropriate for the model and perturbation being 

assessed. As one example for a specific application, namely targeted measurement of 

certain miRNAs, we do propose a workflow for normalization methods (Figure 3). Future 

research investment should be made for promising candidate miRNA biomarkers to optimize 

technical procedures to reduce any potential bias before qualification and/or routine use 

in diagnostic, prognostic, and predictive situations. Additionally, standard and minimal 

reporting procedures for measurements made for a published study should be developed, 

similar to current efforts for general gene expression studies such as the Transcriptomics 

Reporting Framework (TRF) (Gant et al., 2017). Setting such reporting standards would 

increase replicability of published data, reduce technical variability associated with different 

measurement approaches, and ultimately increase the confidence in biomarker results and 

use.
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Importantly in the HESI study, result variability was introduced by the biofluid that was 

being assessed due to the tissue origin of the miRNAs. There have been multiple efforts 

to determine tissue and cellular specificity of miRNAs (Landgraf et al. 2007; Koenig et 

al. 2016; Smith et al. 2016; de Rie et al. 2017) that could serve as toxicity or “release” 

biomarkers in human and other non-clinical species which present obvious roads for 

development. However, sub-toxic, predictive/prognostic markers of disease or therapeutic 

response require more in-depth knowledge of the source of cellular response and release but 

also hold the most promising use of mechanism-based miRNA biomarkers. One strategy to 

improve the signal to noise ratio uses fractionation to isolate a subset of miRNAs, such as 

from EVs (apoptotic bodies, microparticles, microvesicles, and/or exosomes) (Duttagupta et 

al. 2011; Turchinovich et al. 2011). Currently, the best examples of the predictive power 

of EV-derived miRNA scans assessed the presence of cancer and response to therapy 

(Hannafon et al. 2016; Qin et al. 2019; Rodriguez-Martinez et al. 2019); however, one 

can envision the use of these paracrine signals as a way to measure cellular response prior 

to adverse health outcomes. Even with this enrichment, signal may still be an issue. Several 

reports indicate that a small fraction of circulating EVs contain miRNAs, whereas other 

reports imply that selection of RNA containing EVs may improve yield (Chen et al. 2014; 

Chevillet et al. 2014). Specific EV enrichment may be achieved using markers correlated 

with tumor cells or specific miRNA signatures, such as CD63, epithelial cell adhesion 

molecule (EpCAM), and prostate-specific membrane antigen (PSMA) in the case of prostate 

tumor-derived exosomes (Meng et al. 2016; Fang et al. 2017) or TSG101 in urine exosomes 

(Koritzinsky et al. 2019). Investment in large-scale efforts, such as the Extracellular RNA 

Communication Consortium (ERCC), which collate existing research, provide protocols for 

isolation, house databases for analysis, and tools for discovery and validation is key to our 

better understanding of the role of RNA, including miRNA, in cell-to-cell communication 

(Das et al. 2019). Such information will guide the development of specific panels of 

biofluid-based miRNA biomarkers for specific prognostic and diagnostic uses.

There are additional challenges for developing clinical biomarkers. As post-transcriptional 

regulators, miRNAs can affect multiple genes that represent an orchestrated response, 

but they are not “master controllers.” With multiple potential sources of any given 

miRNA, traditional downstream bioinformatics approaches to infer biologically meaningful 

information (e.g., Ingenuity Pathway Analysis, miRPathDB, etc.) may be obscured, diluted 

and/or misinterpreted due to mixed signals. Furthermore, any given miRNA is working 

in concert with other miRNAs in a given response. This distributed control makes it 

unlikely that single miRNAs would be adequate biomarkers and complicates the path toward 

biomarker qualification for these purposes. Normal human subjects tend to be homogeneous, 

both in biomarker levels and demographics/characteristics, whereas patients with injury 

or disease exhibit wide ranges of biomarker values with a large array of confounding 

factors that make translation to the clinic nearly impossible without large cohorts. Several 

clinical studies demonstrate that multiple miRNAs change during disease progression such 

as obesity, diabetes (Mori et al. 2019), sepsis (Rahmel et al. 2018), or cancer (Zorofchian 

et al. 2019), and it remains to be seen whether these can be leveraged to provide a template 

for tissue injury by toxicants or can be used to reduce the variability of disease-specific 

miRNA signals in clinical cohorts that contain subjects with subclinical disease. Fortunately, 
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blueprints for success exist, such as the Predictive Safety Testing Consortium (PSTC) 

(Stephenson and Sauer 2014), where several protein biomarkers have been FDA qualified 

to serve as biomarkers for nephrotoxicity. Key features that can be applied to miRNAs are 

as follows: a) a large consortium of investigators who each have access to limited technical/

analytical resources and samples, but when pooled become adequate to approach a common 

problem; b) multiple platforms to perform unbiased searches of potential biomarkers; and 

c) a critical mass of stakeholders whose consensus can influence and guide the field toward 

common standards, from sample preparation to measurement to analysis and interpretation 

of data. When combined with a biorepository of longitudinal or cross-sectional natural 

history studies such as the African American Study of Kidney Disease and Hypertension 

(AASK) (Almaani et al. 2017) or the Chronic Renal Insufficiency Cohort (CRIC) (Denker 

et al. 2015), the larger cohorts can provide the needed statistical power to develop panels 

of biomarkers. Additionally, miRNA biomarker panels can be assembled by comparing their 

performance, then combining the top performers, but these panels should not be limited to 

miRNAs. Other classes of biomarkers, such as proteins, other nucleic acids, or lipids, could 

provide complementary information that would synergize with the top miRNAs.

Reducing the uncertainty associated with these challenges in biomarker development for 

miRNAs will require systematic focus and large-scale investment. The challenges are well 

defined and the added benefits of these mechanistic-based biomarkers for pre-clinical, 

clinical, regulatory, and scientific uses are a promise that can still be fulfilled.
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Figure 1. 
Leveling trend of published microRNA biomarker studies in common biofluids. PubMed 

was searched for the terms microRNA and biomarker in addition to blood (blue), urine 
(orange), saliva (grey), or cerebrospinal fluid (yellow). The graph displays the number of 

total annual publications over the past 17 years. A near annual doubling of publications 

occurred from the years 2009 until 2015, whereas only a mere 3% increase in annual 

publications from 2015 until 2019 was noted. While several factors can contribute to these 

publication trends, this indicates an overall cooling of research interest in biofluid-based 

microRNA biomarker development.
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Figure 2. 
Challenges associated with microRNA (miRNA) biomarker development. A cycle of 

technical (yellow) and biological (green) features feed into biofluid-based miRNA 

biomarker development. Each slice indicates stepwise considerations of miRNA collection, 

processing, storage, extraction, measurement, interpretation, and biological application and 

understanding. Ultimately, knowledge from these steps feeds back into the primary purpose 

of these biomarkers, which is to assess human and model species adverse outcomes due to 

toxicity, disease, and other perturbations. Challenges are associated with each of these steps 

and need to be addressed before miRNA biomarkers can be established.
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Figure 3. 
Decision tree for selecting normalization methods based on available information.
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Figure 4. 
Strategy to identify nephron segment-specific urinary microRNAs (miRNAs) within a cross­

laboratory research program conducted by the Health and Environmental Sciences Institute 

Biomarkers of Nephrotoxicity Committee. Rats were treated with nephron segment selective 

toxicants causing injury to glomeruli, proximal tubules, Henle’s loops, and collecting ducts. 

Urinary miRNAs were profiled by quantitative polymerase chain reaction (qPCR). A meta­

analysis was then performed to identify significantly modulated urinary miRNAs that were 

common and/or specific across studies. Given that some compounds produced a mixture 

of lesions in several nephron segments, small RNA sequencing and other confirmatory 

experiments were conducted in nephron segments isolated by laser capture microdissection 

(LCM) to further characterize the localization of miRNA candidates.

Chorley et al. Page 33

Crit Rev Toxicol. Author manuscript; available in PMC 2022 May 26.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Chorley et al. Page 34

Ta
b

le
 1

.

Su
m

m
ar

y 
of

 r
ec

om
m

en
da

tio
ns

 f
or

 s
am

pl
e 

co
lle

ct
io

n 
an

d 
pr

ep
ar

at
io

n 
fo

r 
co

m
m

on
 a

cc
es

si
bl

e 
bi

of
lu

id
s.

Sa
m

pl
e

F
ra

ct
io

n
P

re
pa

ra
ti

on
St

or
ag

e/
tr

an
sp

or
t

T
im

in
g

K
ey

 in
fo

rm
at

io
n

B
lo

od
m

iR
N

A
 

ab
un

da
nc

es
 d

if
fe

r 
in

 s
er

um
, p

la
sm

a,
 

an
d 

w
ho

le
 b

lo
od

U
se

 E
D

TA
 o

r 
ci

tr
at

e 
co

lle
ct

io
n 

tu
be

s 
an

d 
av

oi
d 

he
pa

ri
n

C
hi

ll,
 u

se
 w

ith
in

 6
 h

ou
rs

 o
th

er
w

is
e 

sh
ip

 o
n 

dr
y 

ic
e

St
an

da
rd

iz
e 

tim
in

g 
of

 c
ol

le
ct

io
n 

ac
ro

ss
 

sa
m

pl
es

T
ra

ck
 f

re
ez

e/
th

aw
 c

yc
le

s

C
en

tr
if

ug
e 

to
 is

ol
at

e 
se

ru
m

 o
r 

pl
as

m
a 

fr
ac

tio
n;

 s
to

re
 

de
si

re
d 

fr
ac

tio
n 

w
ith

in
 1

–3
 h

ou
rs

 a
ft

er
 c

ol
le

ct
io

n
If

 s
hi

pp
in

g 
co

nd
iti

on
s 

on
ly

 a
va

ila
bl

e 
at

 
am

bi
en

t t
em

pe
ra

tu
re

, t
ra

ns
fe

r 
w

ho
le

 b
lo

od

U
ri

ne
N

/A
16

–1
8 

ho
ur

s 
co

lle
ct

io
n 

(e
xp

er
im

en
ta

l)
 o

r 
sp

ot
 u

ri
ne

 
(c

lin
ic

al
)

C
hi

ll,
 f

or
 im

m
ed

ia
te

 u
se

 <
6 

ho
ur

s,
 o

th
er

w
is

e 
sh

ip
 o

n 
dr

y 
ic

e
St

an
da

rd
iz

e 
tim

in
g 

of
 c

ol
le

ct
io

n 
ac

ro
ss

 
sa

m
pl

es

T
ra

ck
 f

re
ez

e/
th

aw
 c

yc
le

s

C
en

tr
if

ug
e 

to
 e

lim
in

at
e 

ex
og

en
ou

s 
an

d/
or

 c
el

lu
la

r 
m

at
er

ia
l

If
 s

hi
pp

in
g 

co
nd

iti
on

s 
at

 a
m

bi
en

t 
te

m
pe

ra
tu

re
, t

ra
ns

fe
r 

ur
in

e 
su

pe
rn

at
an

t a
ft

er
 

ce
nt

ri
fu

ga
tio

n

T
ra

ck
 to

ta
l v

ol
um

e 
co

lle
ct

ed

Sa
liv

a
A

ce
llu

la
r 

fr
ac

tio
n

Su
bj

ec
ts

 s
ho

ul
d 

re
fr

ai
n 

fr
om

 e
at

in
g,

 d
ri

nk
in

g,
 s

m
ok

in
g,

 o
r 

or
al

 h
yg

ie
ne

 p
ro

ce
du

re
s 

fo
r 

1 
h 

pr
io

r 
to

 c
ol

le
ct

io
n

R
in

se
 m

ou
th

 w
el

l w
ith

 d
is

til
le

d 
w

at
er

 f
or

 1
 m

in
 p

ri
or

 to
 

co
lle

ct
io

n 
on

 ic
e.

 B
ri

ef
ly

 v
or

te
x 

an
d 

ce
nt

ri
fu

ge
 to

 s
ep

ar
at

e 
an

d 
co

lle
ct

 a
ce

llu
la

r 
fr

ac
tio

n

A
dd

 1
 μ

L
 S

U
PE

R
as

e 
In

hi
bi

to
r 

fo
r 

ev
er

y 
m

L
 

of
 s

al
iv

a 
co

lle
ct

ed
Fr

ee
ze

 a
t −

80
°C

 im
m

ed
ia

te
ly

St
an

da
rd

iz
e 

tim
in

g 
of

 c
ol

le
ct

io
n 

ac
ro

ss
 

sa
m

pl
es

T
ra

ck
 f

re
ez

e/
th

aw
 c

yc
le

s
R

N
A

 p
ol

ym
er

as
e 

II
I­

tr
an

sc
ri

be
d 

U
6 

sn
R

N
A

 h
as

 
be

en
 u

se
d 

su
cc

es
sf

ul
ly

 a
s 

an
 

en
do

ge
no

us
 c

on
tr

ol
 n

or
m

al
iz

er
 

in
 s

al
iv

a

A
bb

re
vi

at
io

ns
: m

iR
N

A
, m

ic
ro

R
N

A
; N

/A
, n

ot
 a

pp
lic

ab
le

.

Crit Rev Toxicol. Author manuscript; available in PMC 2022 May 26.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Chorley et al. Page 35

Ta
b

le
 2

.

C
ur

re
nt

 m
et

ho
do

lo
gi

es
 to

 m
ea

su
re

 m
iR

N
A

M
et

ho
d

St
re

ng
th

s
L

im
it

at
io

ns
A

pp
lic

at
io

ns
M

et
ri

c
D

yn
am

ic
 

ra
ng

e
Se

ns
it

iv
it

ya

SY
B

R
-b

as
ed

 
qP

C
R

Se
ns

iti
vi

ty
B

ro
ad

 ta
rg

et
 c

om
pa

tib
ili

ty
D

et
ec

tio
n 

re
pr

od
uc

ib
ili

ty
C

om
m

on
 s

ta
nd

ar
d 

op
er

at
in

g 
pr

oc
ed

ur
e

C
he

ap
er

 th
an

 p
ro

be
-b

as
ed

 
te

ch
no

lo
gi

es

M
ul

ti-
st

ep
 w

or
kf

lo
w

s
C

om
m

on
ly

 r
eq

ui
re

s 
pu

ri
fi

ed
 R

N
A

In
pu

t r
eq

ui
re

d 
fo

r 
m

an
y 

m
iR

N
A

 s
cr

ee
ni

ng
s 

ca
n 

be
 

to
o 

hi
gh

 f
or

 s
ca

rc
e 

sa
m

pl
es

N
on

-s
pe

ci
fi

c 
am

pl
if

ic
at

io
n 

di
ff

ic
ul

t t
o 

m
ea

su
re

Is
om

iR
 s

eq
ue

nc
es

 d
if

fi
cu

lt 
to

 d
is

cr
im

in
at

e

D
is

co
ve

ry
 d

ev
el

op
m

en
t, 

V
al

id
at

io
n,

 S
af

et
y 

as
se

ss
m

en
t/P

re
cl

in
ic

al
 

st
ud

ie
s,

 C
lin

ic
al

C
yc

le
 th

re
sh

ol
d 

(C
t)

7 
lo

gs
+

+
+

+

H
yd

ro
ly

si
s 

pr
ob

e-
ba

se
d 

(“
Ta

qM
an

”)
 

qP
C

R

Se
ns

iti
vi

ty
B

ro
ad

 ta
rg

et
 c

om
pa

tib
ili

ty
D

et
ec

tio
n 

re
pr

od
uc

ib
ili

ty
Sp

ec
if

ic
ity

 v
s.

 S
Y

B
R

 q
PC

R
C

om
m

on
 s

ta
nd

ar
d 

op
er

at
in

g 
pr

oc
ed

ur
e

M
ul

ti-
st

ep
 w

or
kf

lo
w

s
C

om
m

on
ly

 r
eq

ui
re

s 
pu

ri
fi

ed
 R

N
A

In
pu

t r
eq

ui
re

d 
fo

r 
m

an
y 

m
iR

N
A

 s
cr

ee
ni

ng
s 

ca
n 

be
 

to
o 

hi
gh

 f
or

 s
ca

rc
e 

sa
m

pl
es

N
on

-s
pe

ci
fi

c 
am

pl
if

ic
at

io
n 

di
ff

ic
ul

t t
o 

m
ea

su
re

Is
om

iR
 s

eq
ue

nc
es

 d
if

fi
cu

lt 
to

 d
is

cr
im

in
at

e

D
is

co
ve

ry
 a

nd
 

de
ve

lo
pm

en
t, 

V
al

id
at

io
n,

 
Sa

fe
ty

 a
ss

es
sm

en
t/

Pr
ec

lin
ic

al
 s

tu
di

es
, 

C
lin

ic
al

C
yc

le
 th

re
sh

ol
d 

(C
t)

7 
lo

gs
+

+
+

+

D
ig

ita
l P

C
R

D
ig

ita
l q

ua
nt

if
ic

at
io

n 
w

ith
ou

t 
st

an
da

rd
 c

ur
ve

Se
ns

iti
vi

ty
 d

ue
 to

 e
nd

-p
oi

nt
 

am
pl

if
ic

at
io

n

M
ul

ti-
st

ep
 w

or
kf

lo
w

s
C

om
m

on
ly

 r
eq

ui
re

s 
pu

ri
fi

ed
 R

N
A

N
on

-s
pe

ci
fi

c 
am

pl
if

ic
at

io
n 

di
ff

ic
ul

t t
o 

m
ea

su
re

Is
om

iR
 s

eq
ue

nc
es

 d
if

fi
cu

lt 
to

 d
is

cr
im

in
at

e

D
is

co
ve

ry
 a

nd
 

de
ve

lo
pm

en
t, 

V
al

id
at

io
n,

 
Sa

fe
ty

 a
ss

es
sm

en
t/

Pr
ec

lin
ic

al
 s

tu
di

es
, 

C
lin

ic
al

C
op

y 
nu

m
be

r
5 

lo
gs

+
+

+
+

B
ea

d 
hy

br
id

iz
at

io
n

C
an

 b
e 

co
m

pa
tib

le
 w

ith
 b

io
fl

ui
ds

 
an

d 
tis

su
es

 w
ith

ou
t R

N
A

 p
ur

if
ic

at
io

n
L

ow
 in

pu
t w

ith
 a

m
pl

if
ic

at
io

n

N
um

be
r 

of
 m

iR
N

A
 d

et
ec

te
d

Se
ns

iti
vi

ty
 w

ith
ou

t a
m

pl
if

ic
at

io
n 

is
 p

oo
r

Is
om

iR
 s

eq
ue

nc
es

 d
if

fi
cu

lt 
to

 d
is

cr
im

in
at

e

D
is

co
ve

ry
, V

al
id

at
io

n,
 

Sa
fe

ty
 a

ss
es

sm
en

t/
Pr

ec
lin

ic
al

 s
tu

di
es

, 
C

lin
ic

al

A
bu

nd
an

ce
 (

w
ith

 
cu

rv
e)

5 
lo

gs
+

+
+

+

N
ex

t g
en

er
at

io
n 

se
qu

en
ci

ng

B
re

ad
th

 o
f 

sm
al

l R
N

A
 s

pe
ci

es
 

de
te

ct
ed

Si
ng

le
 n

uc
le

ot
id

e 
sp

ec
if

ic
ity

C
an

 d
is

tin
gu

is
h 

is
om

iR
s

L
ab

or
io

us
 m

ul
ti-

st
ep

 w
or

kf
lo

w
In

pu
t f

or
 w

or
kf

lo
w

s 
to

o 
hi

gh
 f

or
 s

ca
rc

e 
sa

m
pl

es
D

is
co

ve
ry

 a
nd

 
de

ve
lo

pm
en

t
R

ea
ds

 p
er

 u
ni

t
5–

6 
lo

gs
+

+

D
ig

ita
l c

ou
nt

in
g

L
ac

k 
of

 a
m

pl
if

ic
at

io
n 

bi
as

D
ig

ita
l q

ua
nt

if
ic

at
io

n 
w

ith
ou

t 
st

an
da

rd
 c

ur
ve

In
pu

t r
eq

ui
re

m
en

ts
 h

ig
he

r 
th

an
 q

PC
R

G
en

er
al

ly
 lo

w
er

 s
pe

ci
fi

ci
ty

 w
ith

in
 m

iR
N

A
 f

am
ili

es
Is

om
iR

 s
eq

ue
nc

es
 d

if
fi

cu
lt 

to
 d

is
cr

im
in

at
e

D
is

co
ve

ry
 a

nd
 

de
ve

lo
pm

en
t, 

V
al

id
at

io
n,

 
Sa

fe
ty

 a
ss

es
sm

en
t/

Pr
ec

lin
ic

al
 s

tu
di

es
, 

C
lin

ic
al

C
ou

nt
s

5–
6 

lo
gs

+
+

M
ic

ro
ar

ra
y

B
re

ad
th

 o
f 

m
iR

N
A

 d
et

ec
te

d

W
or

kf
lo

w
s 

ar
e 

la
bo

r 
in

te
ns

iv
e

In
pu

t f
or

 w
or

kf
lo

w
s 

is
 h

ig
h,

 r
eq

ui
re

s 
pu

ri
fi

ed
 R

N
A

G
en

er
al

ly
 lo

w
er

 s
pe

ci
fi

ci
ty

 w
ith

in
 m

iR
N

A
 f

am
ili

es
Is

om
iR

 s
eq

ue
nc

es
 d

if
fi

cu
lt 

to
 d

is
cr

im
in

at
e

D
is

co
ve

ry
 a

nd
 

de
ve

lo
pm

en
t

R
el

at
iv

e 
fl

uo
re

sc
en

ce
3–

4 
lo

gs
+

A
bb

re
vi

at
io

ns
: m

iR
N

A
, m

ic
ro

R
N

A
; q

PC
R

, q
ua

nt
ita

tiv
e 

PC
R

.

So
ur

ce
s:

 J
en

se
n 

et
 a

l. 
(2

01
1)

, S
ah

 e
t a

l. 
(2

01
0)

, T
an

 e
t a

l. 
(2

01
5)

, a
nd

 G
od

oy
 e

t a
l. 

(2
01

9)
.

a +
+

+
+

 =
 <

10
0 

co
pi

es
, +

+
+

 =
 1

00
–1

00
0 

co
pi

es
, +

+
 =

 1
00

0–
50

00
 c

op
ie

s,
 a

nd
 +

 =
 ≥

50
01

 c
op

ie
s.

Crit Rev Toxicol. Author manuscript; available in PMC 2022 May 26.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Chorley et al. Page 36

Ta
b

le
 3

.

Su
m

m
ar

y 
of

 a
pp

ro
ac

he
s 

to
 n

or
m

al
iz

e 
m

iR
N

A
 m

ea
su

re
m

en
t d

at
a

M
et

ho
d 

(r
ef

er
en

ce
)

C
om

pa
ti

bl
e 

pl
at

fo
rm

s
A

pp
ro

ac
h

St
re

ng
th

s
L

im
it

at
io

ns
D

at
as

et
 

si
ze

E
nd

og
en

ou
s 

R
N

A
qP

C
R

/d
PC

R
D

es
ig

n 
pr

ob
es

 to
 d

et
ec

t e
nd

og
en

ou
s 

sm
al

l R
N

A
s 

w
ith

in
 s

am
pl

e
E

nd
og

en
ou

s 
pr

ob
es

 p
ro

vi
de

 
bi

ol
og

ic
al

 n
or

m
al

iz
er

 f
or

 s
am

pl
e 

in
pu

t

A
ss

um
es

 c
on

si
st

en
t e

xp
re

ss
io

n 
of

 
co

nt
ro

ls
1–

10
00

N
G

S
N

or
m

al
iz

e 
to

 s
om

e 
fu

nc
tio

n 
of

 
av

er
ag

e 
si

gn
al

 p
er

 s
am

pl
e

So
m

e 
bi

of
lu

id
s 

m
ay

 n
ot

 c
on

ta
in

 c
on

tr
ol

 
R

N
A

s

M
ic

ro
ar

ra
y

A
ss

um
es

 e
qu

iv
al

en
t p

ro
be

 d
et

ec
tio

n 
to

 
m

iR
N

A
s

H
yb

ri
di

za
tio

n 
m

et
ho

ds

E
xo

ge
no

us
 s

yn
th

et
ic

 R
N

A
s

qP
C

R
/d

PC
R

D
es

ig
n 

pr
ob

es
 to

 d
et

ec
t e

nd
og

en
ou

s 
sm

al
l R

N
A

s 
w

ith
in

 s
am

pl
e

Sy
nt

he
tic

 R
N

A
s 

ca
n 

be
 a

dd
ed

 a
t 

de
fi

ne
d 

co
nc

en
tr

at
io

ns
Sy

nt
he

tic
 p

ro
be

 s
ta

bi
lit

y 
m

ay
 v

ar
y 

in
 

bi
ol

og
ic

al
 s

am
pl

es
1–

10
00

N
G

S
N

or
m

al
iz

e 
to

 s
om

e 
fu

nc
tio

n 
of

 
av

er
ag

e 
si

gn
al

 p
er

 s
am

pl
e

E
na

bl
es

 lo
ad

in
g 

co
nt

ro
ls

 f
or

 
m

ul
tip

le
 a

ss
ay

 s
te

ps
C

he
m

ic
al

 m
od

if
ic

at
io

ns
 c

an
 c

ha
ng

e 
de

te
ct

io
n 

pe
rf

or
m

an
ce

M
ic

ro
ar

ra
y

H
yb

ri
di

za
tio

n 
m

et
ho

ds

Ta
rg

et
 m

ea
n 

no
rm

al
iz

at
io

n 
(E

.g
., 

ge
N

or
m

, N
or

m
Fi

nd
er

, B
es

tK
ee

pe
r)

qP
C

R
/d

PC
R

D
et

er
m

in
e 

no
rm

al
iz

at
io

n 
ve

ct
or

 b
y 

m
os

t s
ta

bl
e 

pr
ob

es
 b

et
w

ee
n 

sa
m

pl
es

Id
en

tif
ie

s 
co

nt
ro

ls
 w

ith
in

 
un

ch
ar

ac
te

ri
ze

d 
sa

m
pl

es
Te

ch
ni

ca
l v

ar
ia

tio
n 

m
us

t b
e 

re
m

ov
ed

 
be

fo
re

 s
ta

bi
lit

y 
ca

lc
ul

at
ed

10
–1

00
0

N
G

S
R

eq
ui

re
s 

m
iR

N
A

 e
xp

re
ss

io
n 

to
 b

e 
st

ab
le

 
be

tw
ee

n 
sa

m
pl

es

M
ic

ro
ar

ra
y

H
yb

ri
di

za
tio

n 
m

et
ho

ds

Sa
m

pl
e 

m
ea

n 
no

rm
al

iz
at

io
n

qP
C

R
/d

PC
R

A
dj

us
t p

er
 p

ro
be

 s
ig

na
l b

y 
ov

er
al

l 
sa

m
pl

e 
m

ea
n

E
ff

ec
tiv

el
y 

re
m

ov
es

 s
om

e 
so

ur
ce

s 
of

 te
ch

ni
ca

l v
ar

ia
tio

n 
(e

.g
., 

sa
m

pl
e 

in
pu

t)

R
eq

ui
re

s 
m

os
t d

et
ec

te
d 

m
iR

N
A

 to
 

be
ha

ve
 s

im
ila

rl
y.

 H
ig

hl
y 

va
ri

an
t s

m
al

l 
m

iR
N

A
 s

ig
na

tu
re

s 
ar

e 
ha

rd
er

 to
 

no
rm

al
iz

e

10
–1

00
00

N
G

S

M
ic

ro
ar

ra
y

H
yb

ri
di

za
tio

n 
m

et
ho

ds

D
is

tr
ib

ut
io

n 
ad

ju
st

m
en

t
qP

C
R

A
dj

us
t p

er
 p

ro
be

 s
ig

na
l b

y 
ov

er
al

l s
am

pl
e 

m
ea

n 
(e

.g
., 

qu
an

til
e 

no
rm

al
iz

at
io

n)

C
an

 a
dj

us
t f

or
 te

ch
ni

ca
l 

va
ri

at
io

n 
in

 a
m

pl
if

ic
at

io
n 

ef
fi

ci
en

cy

R
eq

ui
re

s 
hi

gh
 n

um
be

r 
of

 p
ro

be
s 

fo
r 

re
lia

bl
e 

es
tim

at
io

n 
of

 d
is

tr
ib

ut
io

n
~≥

50
00

N
G

S

A
bb

re
vi

at
io

ns
: d

PC
R

, d
ig

ita
l-

ba
se

d 
PC

R
; m

iR
N

A
, m

ic
ro

R
N

A
; N

G
S,

 n
ex

t g
en

er
at

io
n 

se
qu

en
ci

ng
; q

PC
R

, q
ua

nt
ita

tiv
e 

po
ly

m
er

as
e 

ch
ai

n 
re

ac
tio

n.

Crit Rev Toxicol. Author manuscript; available in PMC 2022 May 26.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Chorley et al. Page 37

Ta
b

le
 4

.

A
re

as
 o

f 
hi

gh
es

t r
es

ea
rc

h 
ne

ed
 f

or
 b

io
fl

ui
d-

ba
se

d 
m

iR
N

A
 b

io
m

ar
ke

r 
de

ve
lo

pm
en

t

T
yp

e 
of

 v
ar

ia
bl

e
A

re
a 

of
 fo

cu
s

D
eg

re
e 

of
 

im
pa

ct
a

C
ur

re
nt

 e
ff

or
ts

 t
o 

ad
dr

es
s 

ne
ed

R
ef

er
en

ce
s

Te
ch

ni
ca

l
D

et
er

m
in

e 
pr

e-
an

al
yt

ic
al

 s
ta

bi
lit

y 
of

 m
iR

N
A

 
bi

om
ar

ke
r

+
In

di
vi

du
al

 la
bo

ra
to

ry
 r

es
ea

rc
h

G
lin

ge
 e

t a
l. 

(2
01

7)
, E

ne
lu

nd
 e

t a
l. 

(2
01

7)
, M

itc
he

ll 
et

 a
l. 

(2
00

8)
, 

G
ra

se
di

ec
k 

et
 a

l. 
(2

01
2)

Te
ch

ni
ca

l
E

st
ab

lis
h 

St
an

da
rd

 O
pe

ra
tin

g 
Pr

oc
ed

ur
es

 f
or

 
sa

m
pl

e 
co

lle
ct

io
n 

an
d 

m
ea

su
re

m
en

ts
+

+
+

In
di

vi
du

al
 la

bo
ra

to
ry

 r
es

ea
rc

h,
 

co
m

m
er

ci
al

, E
D

R
N

E
xi

qo
n 

(h
ttp

://
w

w
w

.e
xi

qo
n.

co
m

/ls
/D

oc
um

en
ts

/S
ci

en
tif

ic
/m

ic
ro

R
N

A
­

se
ru

m
-p

la
sm

a-
gu

id
el

in
es

.p
df

),
 F

ar
in

a 
et

 a
l. 

(2
01

4)
, N

at
io

na
l 

C
an

ce
r 

In
st

itu
te

 E
D

R
N

 (
ht

tp
s:

//p
re

ve
nt

io
n.

ca
nc

er
.g

ov
/m

aj
or

-p
ro

gr
am

s/
ea

rl
y-

de
te

ct
io

n-
re

se
ar

ch
)

Te
ch

ni
ca

l
E

st
ab

lis
h 

a 
fr

am
ew

or
k 

fo
r 

re
po

rt
in

g 
of

 d
at

a
+

+
In

di
vi

du
al

 la
bo

ra
to

ry
 r

es
ea

rc
h,

 
co

m
m

er
ci

al
G

an
t e

t a
l. 

(2
01

7)

Te
ch

ni
ca

l/ 
bi

ol
og

ic
al

D
et

er
m

in
e 

m
ec

ha
ni

sm
 o

f 
ac

tio
n 

of
 E

V
­

de
ri

ve
d 

m
iR

N
A

s
+

+
In

di
vi

du
al

 la
bo

ra
to

ry
 r

es
ea

rc
h,

 
co

m
m

er
ci

al
, E

R
C

C
D

as
 e

t a
l. 

(2
01

9)
, L

iu
 e

t a
l. 

(2
01

9)

Te
ch

ni
ca

l/ 
bi

ol
og

ic
al

is
om

iR
 id

en
tif

ic
at

io
n 

an
d 

lin
ka

ge
 to

 
ou

tc
om

es
+

+
In

di
vi

du
al

 la
bo

ra
to

ry
 r

es
ea

rc
h,

 
Is

om
iR

 B
an

k,
 m

iR
-i

so
m

iR
E

xp
Z

ha
ng

 e
t a

l. 
(2

01
6)

, G
uo

 e
t a

l. 
(2

01
6)

B
io

lo
gi

ca
l

Id
en

tif
y 

tis
su

e/
ce

llu
la

r 
so

ur
ce

 o
f 

m
iR

N
A

 
re

le
as

e
+

+
In

di
vi

du
al

 la
bo

ra
to

ri
es

 r
es

ea
rc

h,
 

at
la

s 
ef

fo
rt

s
L

an
dg

ra
f 

et
 a

l. 
(2

00
7)

, S
m

ith
 e

t a
l. 

(2
01

6)
, d

e 
R

ie
 e

t a
l. 

(2
01

7)
, K

oe
ni

g 
et

 
al

. (
20

16
)

A
bb

re
vi

at
io

ns
: E

D
R

N
, E

ar
ly

 D
et

ec
tio

n 
R

es
ea

rc
h 

N
et

w
or

k;
 E

R
C

C
, E

xt
ra

ce
llu

la
r 

R
N

A
 C

om
m

un
ic

at
io

n 
C

on
so

rt
iu

m
; E

V
, e

xt
ra

ce
llu

la
r 

ve
si

cl
e;

 m
iR

N
A

, m
ic

ro
R

N
A

.

a +
 =

 is
ol

at
ed

, +
+

 =
 w

id
es

pr
ea

d,
 +

+
+

 =
 f

ou
nd

at
io

na
l.

Crit Rev Toxicol. Author manuscript; available in PMC 2022 May 26.

http://www.exiqon.com/ls/Documents/Scientific/microRNA-serum-plasma-guidelines.pdf
http://www.exiqon.com/ls/Documents/Scientific/microRNA-serum-plasma-guidelines.pdf
https://prevention.cancer.gov/major-programs/early-detection-research
https://prevention.cancer.gov/major-programs/early-detection-research

	Abstract
	INTRODUCTION
	RELIABLY DISTINGUISHING SIGNAL FROM NOISE
	Consistent collection, storage, and extraction from sample
	Selecting methods for measurement
	Normalization approaches and recognized limitations

	INTERPRETING THE BIOLOGICAL MEANING OF MIRNA ALTERATIONS
	Tissue specificity of miRNA expression
	Broader insight with miRNA panels
	Interpreting non-canonical sequence
	miRNAs as biomarkers of active cell signalling versus passive leakage

	MOVING FORWARD AND MEETING THE CHALLENGES
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

