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Abstract
Background.  Glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, has been 
classified into three subtypes: classical, mesenchymal, and proneural. While the original classification relied on 
an 840 gene-set, further clarification on true GBM subtypes uses a 150-gene signature to accurately classify GBM 
into the three subtypes. We hypothesized whether a machine learning approach could be used to identify a smaller 
gene-set to accurately predict GBM subtype.
Methods.  Using a supervised machine learning approach, extreme gradient boosting (XGBoost), we developed a 
classifier to predict the three subtypes of glioblastoma (GBM): classical, mesenchymal, and proneural. We tested 
the classifier on in-house GBM tissue, cell lines, and xenograft samples to predict their subtype.
Results. We identified the five most important genes for characterizing the three subtypes based on genes that 
often exhibited high Importance Scores in our XGBoost analyses. On average, this approach achieved 80.12% ac-
curacy in predicting these three subtypes of GBM. Furthermore, we applied our five-gene classifier to successfully 
predict the subtype of GBM samples at our centre.
Conclusion.  Our 5-gene set classifier is the smallest classifier to date that can predict GBM subtypes with high 
accuracy, which could facilitate the future development of a five-gene subtype diagnostic biomarker for routine 
assays in GBM samples.

Key Points

	•	 Novel application of a machine learning classifier to glioblastoma (GBM) subtyping data.

	•	 Identified five genes that were most important for predicting GBM subtypes with >80% 
accuracy.

Glioblastoma (GBM) is the most common and malignant primary 
tumor affecting the adult nervous system (WHO Grade IV).1 For 
newly diagnosed primary GBM, a multi-modal treatment ap-
proach is undertaken including surgery, radiation, and chemo-
therapy. Despite this aggressive treatment, almost all patients 
with GBM relapse 7–9 months post-diagnosis. The 2-year survival 

rate for GBM stands at an abysmal 16.9% with only 5.5% of pa-
tients surviving at 5-years and 2.9% at 10-years.2

Given the highly treatment-resistant nature of GBM, studies 
from The Cancer Genome Atlas (TCGA) and Parsons et al. first 
dissected the mutational landscape of GBM with the aim of 
discovering actionable mutations or predictive signatures.3,4 With 
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over 200 GBM samples characterized through DNA copy 
number, gene expression, and DNA methylation profiling, 
TCGA was able to identify three critical signaling networks 
that harbor the most frequent mutations: Receptor tyrosine 
kinase (RTK) signaling, p53 signaling, and RB signaling. 
Although the mutational landscape of GBM highlighted mul-
tiple avenues of putative therapeutic targeting, outcomes of 
clinical trials have to date been negative. Gene expression 
profiling further elucidated the gene signatures associated 
with clinical outcomes and patient survival.5–7 These studies 
showed that histopathological GBM actually represented 
multiple molecular subtypes with extensive inter-tumoral 
heterogeneity.

Using consensus average linkage hierarchical clustering 
of almost 200 GBM gene expression profiles, Verhaak et al. 
identified four transcriptomic subtypes of GBM: proneural, 
neural, classical, and mesenchymal, which were then val-
idated in a separate 260 GBM dataset.8 Further studies 
using RNA-sequencing by Wang et  al. have identified 
that only pro-neural, classical, and mesenchymal sub-
types represent the glioma-intrinsic subtypes, while the 
neural subtype could have been identified earlier due to 
higher contamination of normal neural tissue in the tumor 
sample.9 The distinct underlying biology of the GBM sub-
types also suggests a possible role of targeted therapy 
based on signaling networks that specifically govern each 
GBM subtype. More recently, single-cell RNA-sequencing 
of GBM by Neftel and colleagues has elucidated the pres-
ence of heterogeneous cellular states that populate each 
GBM and based on recapitulation of normal neural signa-
tures are defined into four cell states: neural-progenitor-
like, oligodendrocyte-progenitor-like, astrocyte-like, and 
mesenchymal-like.10 Although these transcriptional states 
have unique underlying genetic alterations, these states 
remain plastic and change in response to stimuli from 
their microenvironment. While these recent advances pave 
the path for greater understanding of functional intra-
tumoural heterogeneity present in GBM and its impact on 
disease progression and treatment outcomes, current lim-
itations due to cost and throughput associated with these 
technologies restrict their clinical application.11

To date, GBM subtyping has relied on consensus av-
erage linkage hierarchical clustering of gene expression 
profiles to categorize GBM samples into the different 
subtypes, with a 150 gene-signature allowing for robust 
classification across different sample batches and gene 
expression methodologies. However, with the recent ad-
vances in machine learning and its application to cancer bi-
ology, new methodologies that accurately assign subtype 

identity to GBM samples with fewer genes need to be de-
veloped to further facilitate improved routine diagnostic 
tests. Therefore, developing methodology to accurately 
classify GBM subtypes with small number of genes holds 
strong clinical value and maybe employed as a part routine 
laboratory testing. In this study, we use a supervised ma-
chine learning technique (ie, extreme gradient boosting) to 
predict existing GBM subtypes as well as to achieve strong 
predictive accuracy, based on just a few genes, using the 
RNA-seq dataset and the subtype labeling given to these 
samples by Wang et al.9

Materials and Methods

The RNA-seq GBM Dataset from Wang et al. 
(2017) and the Subtypes

For the purpose of the study, the GBM RNA-seq dataset 
generated by Wang et al. available on the GlioVis website 
is considered.9,12 The dataset consists of 20,501 variables 
for 160 individuals. After removing samples containing 
unavailable subtype information and the genes exhib-
iting zero counts across all samples, the dimension of the 
dataset is 19,980 genes for 156 GBM samples. The sub-
type classes consist of three subtypes including classical, 
mesenchymal, and proneural.9 This data contains the 
cases for 59 classical, 51 mesenchymal, and 46 proneural 
subtypes.

Extreme Gradient Boosting

The method of analysis used for this data is known as 
extreme gradient boosting, more commonly referred 
to as XGBoost.13 It is a widely used technique that is es-
sentially a scalable implementation of gradient boosting 
machines.14 Boosting refers to an ensemble method that 
can create a strong classifier that is based on iteratively 
applying weaker classifiers. This iterative process gradu-
ally reduces the classification error, on the training data, 
while overfitting can be avoided via clever tuning. Cross-
validation (CV) is commonly used for tuning.

A benefit of using gradient boosting is that after the 
boosted trees are constructed, we are able to retrieve 
Importance Scores for each gene. First, a score is calcu-
lated for a single decision tree by the amount that each 
gene split point improves the classification accuracy, and 
then the Importance Score for each gene is averaged 

Importance of the Study

To date, GBM subtyping relies on gene signa-
tures developed using RNA-sequencing ex-
pression of more than 150 genes. In this study, 
we applied a supervised machine learning ap-
proach to identify the most important genes 
for accurate subtyping of GBM samples using 
publicly available GBM RNA-sequencing 

datasets and validated it in our in-house GBM 
RNA-sequencing data. Using this approach, 
we identified five genes that could predict 
GBM subtypes with a classification accuracy 
of over 80%. This 5-gene set signature can be 
developed into a diagnostic assay for GBM 
classification.
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across all of the decision trees. Initially, we start with 1,000 
trees and the maximum depth of each tree is set to 50. To 
avoid overfitting, 80% of the genes are randomly selected 
per tree. The classifier finishes training if the accuracy does 
not improve for 50 rounds.

Cross-validation Based Gene Selection

We used repeated 10-fold CV to assess the performance of 
our classifier. In one round of 10-fold CV, the data are ran-
domly partitioned into 10 roughly equally sized subsamples. 
Of these 10 subsamples, nine take the role of a training set 
and are used to build a classifier while the remaining sub-
sample is used as a validation set to assess classification 
performance. This process is then repeated so that each sub-
sample acts once as the validation set and the classification 
accuracy for the validation sets are then averaged, that is, 
one complete run of 10-fold CV involves 10 rounds. After 
performing one run of 10-fold CV on the Wang et al. (2017) 
GBM RNA-seq dataset, we calculated the average classifi-
cation accuracy for the validation sets and recorded the top 
20 genes, that is, the 20 genes with the highest Importance 
Scores. We carried out a total of 100 runs of 10-fold CV and, 
thereby, obtained 100 sets of top 20 genes as well as 100 
averaged CV accuracies for subtype classification.

RNA-sequencing of Human GBM Samples

Human GBM brain tumors were obtained from consenting 
patients, as approved by the Hamilton Health Sciences/
McMaster Health Sciences Research Ethics Board. RNA was 
extracted from human IDH-wildtype GBM patient tissue 
(n = 11; primary GBM n = 7, recurrent GBM n = 4), GBM cell 
lines (n = 13), and patient-derived xenografts (PDX; n = 33) 
for RNA sequencing (McMaster Samples). Following RNA 
extraction, stranded sequencing libraries were prepared 
using the Illumina TruSeq Stranded Total RNA LT Sample 
Prep kit. Samples were sequenced on an Illumina HiSeq 
2500 using 2 × 100 base pair paired-end reads. Reads were 
trimmed to eliminate adaptor contamination using the 
Illumina bcl2fastq-conversion software (v2.20), and any 
reads shorter than 36bp after trimming were removed. All 
reads were mapped to the Gencode v25 transcript models 
and hg38 human genome sequence using the STAR short-
read aligner (v.2.4.2a), including the command line flag 
“--quantMode GeneCounts” to produce gene-level read 
count files. All read count files were merged together into 
a matrix for further analysis. To adjust for differences in 
read depth, the total number of reads for each sample (ie, 
column) was determined, and the sum was used to divide 
the read count for each gene and multiplied by 1M to pro-
duce “counts per million (CPM) mapped reads”.

Results

Classification Accuracy and Important Genes

The averaged CV classification accuracy across the 100 
runs is 80.12% with a standard deviation of 0.011. The 

minimum CV accuracy is 77.71% and the maximum CV ac-
curacy is 82.96%. A list of the genes most frequently iden-
tified as having high Importance Scores is presented in 
Table 1. We identify NKAIN1, UBE2E2, F13A1, RNF149, and 
PLAUR as the top five most important genes for classifying 
GBM subtypes as they appeared in the top 20 gene list at 
least 80 times out of 100 runs.

Biological Relevance of the Identified Genes: 
NKAIN1, UBE2E2, F13A1, RNF149, and PLAUR

Knowing the strong predictive power of the top five 
genes, we were interested in investigating the biolog-
ical relevance of these genes based on gene expression 
across subtypes and GBM survival analysis.9,12 Sodium/
Potassium transporting ATPase Interacting 1 (NKAIN1) is a 
membrane-bound protein that interacts with beta subunit 
of the Sodium/Potassium ATPase.15 Although the gene is 
not well studied in GBM, NKAIN1 has the highest expres-
sion in proneural subtype as compared to both classical 
and mesenchymal subtype with no difference in survival 
(Figure 1A).

Ubiquitin conjugating enzyme E2 E2 (UBE2E2) is a cyto-
plasmic protein that plays a role in antigen processing and 
presentation for MHC complexes as well as a part of innate 
immunity. Proneural subtype has the highest expression 
of UBE2E2 as well, with mesenchymal subtype have a me-
dium expression and classical subtype having the lowest 

  
Table 1.   Most Frequently Identified Genes When Classifying 
Classical, Mesenchymal, and Proneural Subtypes

Variable Frequency

1 NKAIN1 100

2 UBE2E2 99

3 F13A1 92

4 RNF149 81

5 PLAUR 80

6 TNFAIP8 63

7 PIPOX 59

8 CTSC 58

9 SLC2A10 56

10 MTSS1 51

11 FAM57B 46

12 LRRC16A 40

13 GNA15 38

14 EGFR 35

15 FGFR3 31

16 PLCXD2 30

17 DYRK3 30

18 PAX6 28

19 HEPACAM 27

20 ITGA7 25
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expression (Figure 1B). High expression of EBE2E2 does not 
concur any changes in survival advantage for GBM patients.

Coagulation factor XIII A chain (F13A1) is a member of the 
blood coagulation cascade as a matrix cross-linker. Since 
extracellular matrix plays an important role in solid tumor 
growth, F13A1 may modulate aspects of the extracellular 
matrix to shape the tumor microenvironment in cooperation 
with tumor-associated macrophages.16 F13A1 has the highest 
expression in mesenchymal subtype of GBM, a subtype that 
is also associated with high infiltration of tumor-associated 
macrophages in the tumor microenvironment (Figure 1C).

Ring finger protein 149 (RNF149) functions as an E3 
ubiquitin-protein ligase and may play roles in multiple 
signaling pathways, including proteosomal degradation 
and antigen processing. RNF149 is highly expressed in 
mesenchymal subtype of GBM as compared to classical 
and pro-neural subtypes (Figure 1D). High expression of 
RNF149 also predicts significantly poorer survival (log 
HR  =  0.66[0.46–0.49], log-rank P-value  =  .0228), corre-
sponding with the fact that high expression is correlated 
with poor-surviving mesenchymal subtype.

Plasminogen activating, urokinase receptor (PLAUR), a 
cell-membrane bound protein, plays a role in the localiza-
tion and promotion of plasmin formation, which results 
in reduction or slowing down of clot formation. PLAUR 
also regulates and remodels the extracellular matrix 
and has been shown to promote in vitro GBM survival.17 
The expression of PLAUR is the highest in the mesen-
chymal subtype of GBM and high expression also trends 

towards predicting poor survival in GBM patients (log 
HR = 0.7[0.49–1], log-rank P-value = .0515) (Figure 1E).

To assess whether these five genes also discriminated 
between GBM subtypes in other GBM datasets, we per-
formed signature similarity analysis using GBM-specific 
gene sets in two independent single-cell RNA-sequencing 
GBM datasets (Neftel10 and Richards18 datasets) and evalu-
ated the correlation between their signature scores and 
expression of the five genes (Figure 1F and G). Similar 
to differential expression of these genes across the three 
GBM subtypes in Wang et  al. dataset (Figure 1A–E), we 
found that NKAIN1 and UBE2E2 correlated with proneural/
classical-like subtypes while F13A1, RNF149, and PLAUR 
correlated with mesenchymal-like subtypes in GBM.

Application

Prediction of McMaster Samples' Subtypes Using 
Top Five Genes

We tested the classifier in a new GBM RNA-seq dataset (n = 57 
McMaster cohort; described in Methodology 2.4), which con-
sisted of primary and recurrent human GBM tissue samples, 
their corresponding in vitro generated cell lines, and in vivo 
xenografted primary GBM samples that were subjected to 
chemoradiotherapy at sequential time points.

The five genes we identified with strong predictive 
power were used to build 100 classifiers. Then one set of 
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Figure 1.  Expression of 5-top genes across GBM subtypes and survival. Top panels show the gene expression of the top-5 genes (A) 
NKAIN1, (B) UBE2E2, (C) F13A1, (D) RNF149, and (E) PLAUR across proneural (PN), classical (CLA), and mesenchymal (MES) subtypes of GBM 
in Wang et al. (2017) study. Bottom panel shows corresponding survival data of GBM samples with high or low expression of the top 5-genes. 
Signature similarity profiles of single-cell RNA sequencing from (F) Neftel et al. (2019)10 dataset and (G) Richards et al. (2021)18 dataset. HR = log 
Hazard Ratio. **P < .01, ***P < .001.
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Table 2.   Detailed Subtype Prediction for the 100 Runs Using McMaster Sample Cohort. PDX: Patient-derived Xenograft

Patient ID Sample Type Classical Mesenchymal Proneural Subtype Prediction

BT241 Cell Line 1 99 0 Mesenchymal

BT241 PDX 1 99 0 Mesenchymal

BT428 Cell Line 1 1 98 Proneural

BT428 PDX 1 1 98 Proneural

BT428 PDXa 1 38 61  

BT428 PDX 1 1 98 Proneural

BT428 PDX 0 1 99 Proneural

BT428 PDXa 0 0 100 Proneural

BT594 Cell Line 100 0 0 Classical

BT618 Cell Line 0 99 1 Mesenchymal

BT618 PDX 0 99 1 Mesenchymal

BT618 Patient Tissue 0 100 0 Mesenchymal

BT667 Cell Line 0 99 1 Mesenchymal

BT667 PDX 0 0 100 Proneural

BT667 PDX 0 99 1 Mesenchymal

BT667 PDXa 15 85 0 Mesenchymal

BT667 Patient Tissue 0 100 0 Mesenchymal

BT667 Patient Tissue 0 100 0 Mesenchymal

BT667 PDX 11 89 0 Mesenchymal

BT667 PDXa 26 73 1  

BT698 Cell Line 1 61 38  

BT698 Patient Tissue 0 23 77  

BT799 Cell Line 0 0 100 Proneural

BT799 PDX 0 0 100 Proneural

BT799 PDXa 0 0 100 Proneural

BT799 PDX 0 0 100 Proneural

BT799 Patient Tissue 0 0 100 Proneural

BT935 Cell Line 3 1 96 Proneural

BT935 PDX 74 0 26  

BT935 PDX 87 0 13 Classical

BT935 PDXa 0 0 100 Proneural

BT935 Patient Tissue 0 100 0 Mesenchymal

BT935 PDX 3 2 95 Proneural

BT935 PDXa 7 0 93 Proneural

BT954 Cell Line 79 21 0  

BT954 PDX 80 5 15 Classical

BT954 PDX 80 5 15 Classical

BT954 PDXa 80 5 15 Classical

BT954 Patient Tissue 0 40 60  

BT954 PDX 80 5 15 Classical

BT954 PDXa 80 5 15 Classical

BT956 Cell Line 1 99 0 Mesenchymal

BT956 Patient Tissue 0 99 1 Mesenchymal

BT972 Cell Line 94 6 0 Classical

BT972 PDX 99 1 0 Classical

BT972 Patient Tissue 0 80 20 Mesenchymal

MBT06 Cell Line 0 100 0 Mesenchymal
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predictions for the 57 samples as well as the averaged CV 
accuracy was recorded for each classifier using the Wang 
et al. RNA-seq GBM data. The average CV classification ac-
curacy across the 100 runs with these five genes is 83.28% 
with a standard deviation of 0.013. The CV accuracy with the 
Wang et al. RNA-seq data is expected to be higher in this 
case because these five genes are chosen on the basis of 
all the Wang et al. GBM samples. We assign a subtype to a 
case when the count of the subtype is more than 80 out 100 
times. Table 2 shows the detailed subtype prediction for the 
100 runs using the McMaster cohort. For most of the sam-
ples, the predictions are consistent across all classifiers.

Comments on the Prediction

Identification of GBM subtypes allowed for a greater under-
standing of the underlying biology that governs GBM inter-
tumoral heterogeneity. To date, consensus average linkage 
hierarchical clustering—an unsupervised learning tech-
nique—has been used to analyze GBM transcriptomic data 
and determine GBM subtype. By applying the supervised 
machine learning technique XGBoost to available GBM 
subtyping data, we identified five genes that can predict 
GBM subtype with high accuracy. These genes, although 
studied within the context of GBM biology, have not been 
previously described as important candidates for subtype 
identification of GBM samples. By applying our 5-gene clas-
sifier, we are able to accurately predict the subtype of new 
GBM samples from patient tissue samples as well as in vitro 
and in vivo studies, as demonstrated through the McMaster 
samples. While the majority of samples could be classi-
fied to a single subtype based on our cutoff of at least 80 
out of 100 runs, some samples from all three sample types 
from McMaster cohort could not be classified to a single 
GBM subtype based on this criteria (Table 2; patient tissue 
n = 2/11, cell line n = 2/13, PDX n = 4/33). Although patient 
tissue samples were more likely to not be classified into a 
single subtype as compared to cell lines and PDX samples, 
which may be suggestive of higher prevalence of intra-
tumoral heterogeneity in tissue samples, overall our classi-
fier predicted subtypes for over 80% of the samples in each 

sample type. Interestingly, the same two patient tissue sam-
ples that could not be classified also did not have their cor-
responding cell lines classified (BT698 and BT954, Table 2), 
which maybe suggestive of higher intratumoral heteroge-
neity of these samples that limit clear subtype classification. 
Moreover, in some instances, the same GBM patient sample 
switched subtypes between tissue cell lines and PDX, sig-
nifying that the transcriptional programs underlying GBM 
subtypes change in response to environmental stimuli such 
as cell culture conditions, PDX microenvironment, and treat-
ments (radiation, chemotherapy, and/or targeted therapy in 
PDX models). Further studies on the biological basis of the 
five genes in GBM subtype-prediction can lead to greater 
understanding of how GBM subtypes develop in the context 
of tumor progression.

Conclusion

In this study, we built a classifier to predict the three sub-
types of GBM: classical, mesenchymal, and proneural. 
Our approach achieved 80.12% accuracy on average in 
predicting these three subtypes of GBM. We identified the 
five most important genes for characterizing the three sub-
types based on genes that often had high Importance Scores 
in our XGBoost analyses. We applied our five-gene classi-
fier to successfully predict the subtype of GBM samples at 
our centre (McMaster cohort). Given that our classifier con-
sists of a small number of genes, future studies need to be 
undertaken to develop and evaluate the utility of a five-gene 
subtype diagnostic subtype biomarker through the use 
of cost-effective technologies such as NanoString assays 
or evaluated as part of RT-PCR or immunohistochemistry 
panels that are routinely assayed in all GBM patients.

Keywords

classification | gene signature | glioblastoma subtypes | 
statistical learning | XGBoost.

  
Table 2.   Continued

Patient ID Sample Type Classical Mesenchymal Proneural Subtype Prediction

MBT06 PDX 13 87 0 Mesenchymal

MBT06 PDX 1 99 0 Mesenchymal

MBT06 PDXa 0 2 98 Proneural

MBT06 PDXa 0 28 72  

MBT06 PDX 0 2 98 Proneural

MBT06 PDXa 1 97 2 Mesenchymal

MBT06 PDXa 2 95 3 Mesenchymal

MBT27 Cell Line 2 0 98 Proneural

MBT27 Patient Tissue 0 100 0 Mesenchymal

MBT96 Patient Tissue 0 94 6 Mesenchymal

aPDX models treated with combination of radiation, chemotherapy, and/or targeted therapy.
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