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Abstract
Osteoporosis is a highly prevalent bone disease affecting more than 37.5 million individuals in the European Union (EU) 
and the  United States of America (USA). It is characterized by low bone mineral density (BMD), impaired bone quality, and 
loss of structural and biomechanical properties, resulting in reduced bone strength. An increase in morbidity and mortality 
is seen in patients with osteoporosis, caused by the approximately 3.5 million new osteoporotic fractures occurring every 
year in the EU. Currently, different medications are available for the treatment of osteoporosis, including anti-resorptive and 
osteoanabolic medications. Bisphosphonates, which belong to the anti-resorptive medications, are the standard treatment for 
osteoporosis based on their positive effects on bone, long-term experience, and low costs. However, not only medications used 
for the treatment of osteoporosis can affect bone: several other medications are suggested to have an effect on bone as well, 
especially on fracture risk and BMD. Knowledge about the positive and negative effects of different medications on both frac-
ture risk and BMD is important, as it can contribute to an improvement in osteoporosis prevention and treatment in general, 
and, even more importantly, to the individual’s health. In this review, we therefore discuss the effects of both osteoporotic 
and non-osteoporotic medications on fracture risk and BMD. In addition, we discuss the underlying mechanisms of action.
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Key Points 

Osteoporosis is a highly prevalent bone disease charac-
terized by impaired bone structure and strength, and low 
bone mineral density (BMD).

Bisphosphonates, teriparatide, abaloparatide, deno-
sumab, romosozumab, estrogens, raloxifene, calcitonin, 
and thiazide diuretics exert positive effects on fracture 
risk and BMD, while loop diuretics, glucocorticoids, 
prolactin-raising antipsychotics, coumarin anticoagu-
lants, and anticonvulsants could have negative effects 
on both fracture risk and BMD. However, inconsistency 
exists in the literature.

Literature on potassium citrate, nitrates, calcium channel 
blockers, angiotensin-converting enzyme (ACE) inhibi-
tors, beta blockers, selective serotonin reuptake inhibi-
tors (SSRIs), and tricyclic antidepressants (TCAs), and 
BMD is conflicting, but an increased risk of fractures 
with the use of SSRIs, TCAs, and proton pump inhibi-
tors (PPIs) is well established.

1  Introduction

Osteoporosis is a chronic bone disease of especially the 
elderly [1] and is characterized by low bone mineral den-
sity (BMD), impaired bone quality, and loss of structural 
and biomechanical properties, resulting in reduced bone 
strength [2–4]. Osteoporosis is the most common bone 
condition worldwide [5], and in 2010, it affected more 
than 37.5 million individuals in the European Union (EU) 
and the United States of America (USA) [6–8]. The major 
consequence of this highly prevalent bone disease is the 
occurrence of osteoporotic fractures [3], which can have 
a major influence on individuals’ life as they are associ-
ated with significant morbidity and mortality [9–13]. In 
addition, there is a high economic burden of osteoporotic 
fractures, approximated at 37 billion euros in 2010, and 
this is likely to increase even further with the aging of the 
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population [6]. Hence, osteoporosis can affect an individ-
ual’s health status and can lead to major healthcare costs.

Currently, bisphosphonates are the standard treatment 
for osteoporosis and other diseases related to bone loss 
[14] because of their positive effects on bone combined 
with long-term treatment experience and low costs. How-
ever, bisphosphonates are not the only medications that 
are available for the treatment of osteoporosis. Current 
treatment options can be divided into two groups, as osteo-
porosis is explained by an imbalance in bone resorption 
by osteoclasts and bone formation by osteoblasts [15]. The 
first treatment group consists of medications that can pre-
vent bone resorption by inhibition of osteoclasts [13, 16]. 
These anti-resorptive medications are most important in 
the treatment of osteoporosis [17], and include bispho-
sphonates, denosumab, estrogens, and raloxifene. The 
second treatment group consists of osteoanabolic medi-
cations, which increase bone formation by increasing the 
activity of osteoblasts [13, 16]. Teriparatide and romo-
sozumab are currently the only osteoanabolic medications 
that are approved by the US Food and Drug Administration 
(FDA) and by the European Medicines Agency (EMA) 
for the treatment of osteoporosis. However, romosozumab 
also exerts some anti-resorptive effects. The osteoanabolic 
medication abaloparatide is also approved by the FDA.

Osteoporosis is characterized by a decreased BMD, 
which is an important determinant of fracture risk [18], 
and measuring BMD is a key component in the diagno-
sis of osteoporosis. In theory, every medication affecting 
BMD may influence osteoporosis and fracture risk. The 
purpose of this review is to provide an overview of the 
currently available evidence on the association between 
different, widely used osteoporotic and non-osteoporotic 
medications and both fracture risk and BMD. Knowl-
edge about positive and negative associations of differ-
ent medications with fracture risk and BMD is important 
in the decision-making process about which medications 
can and which should rather not be used in patients with 
osteoporosis.

2 � Bone Remodeling

Bone is a dynamic tissue that is continuously renewed in 
order to preserve its strength and integrity [19–21]. Every 
year, approximately 5–10% of the bone is being replaced by 
new bone tissue, a process that is called bone remodeling 
[21]. This process comprises two important phases: bone 
resorption by osteoclasts and bone formation by osteoblasts 
[19, 22]. These two phases are linked and occur in the basic 
multicellular units (BMU) in which both the osteoclasts 
and osteoblasts are located [23, 24]. While osteoclasts and 
osteoblasts are responsible for the bone remodeling itself, 

cells called osteocytes have a mechanosensory role in bone 
remodeling and are located within the mineralized bone 
[24]. More specifically, osteocytes sense mechanical stimuli, 
such as those caused by weight bearing and muscle con-
tractions, and translate these stimuli into signals that are 
sent to the osteoclasts and the osteoblasts [24]. Osteocytes 
can express the receptor activator of nuclear factor kappa-Β 
ligand (RANKL) [25] and secrete sclerostin [26–28], which 
are both important in the regulation of the bone remode-
ling process. Binding of RANKL to the receptor activator 
of nuclear factor kappa-Β (RANK) on the osteoclasts and 
their precursors stimulates osteoclast precursor differentia-
tion and proliferation, and osteoclast activation and survival 
[24, 29–33]. Therefore, secretion of RANKL by osteocytes 
increases bone resorption. Sclerostin is a glycoprotein that 
causes inhibition of osteoblast precursor differentiation and 
bone formation [34–36]. Sclerostin is an important inhibi-
tor of the Wnt/β-catenin signaling pathway [37, 38]. Wnt 
proteins are able to bind to the low-density lipoprotein 
receptor-related protein 5/6 (LRP5/6) and the co-receptor 
Frizzled (FZD) [39]. In the absence of Wnt or when the 
binding of Wnt to its receptors is inhibited, axin, adeno-
matous polyposis coli (APC), glycogen synthase kinase 
3 (GSK3), and β-catenin form a complex, resulting in the 
phosphorylation of β-catenin [40]. Phosphorylated β-catenin 
will then be degraded by proteasomes [39]. However, when 
Wnt is able to bind to its receptors LRP5/6 and FZD, a 
Wnt-FZD-LRP5/6 complex will be formed [41], which 
inhibits  the phosphorylation of β-catenin [39, 41]. This in 
turn leads to an accumulation of β-catenin in the cytosol, 
eventually causing the glycoprotein to be transported into 
the nucleus [40], where β-catenin acts as a transcriptional 
coactivator that interacts with other transcription factors 
and influences gene expression [40]. This activation of the 
Wnt/β-catenin signaling pathway results in an increased dif-
ferentiation of osteoblast precursors and an increased bone 
formation [37]. Sclerostin competes with Wnt for binding 
to LRP5/6, as sclerostin replaces the Wnt proteins that are 
bound to LRP5/6 [39]. This in turn leads to inactivation of 
the Wnt/β-catenin signaling pathway [34, 35]. Furthermore, 
it is suggested that sclerostin increases bone resorption via 
regulation of RANKL [42]. Using both RANKL and scle-
rostin, osteocytes can communicate with both the osteoclasts 
and the osteoblasts.

Bone remodeling is activated through signals, for 
example mechanical stimuli that are sensed by osteocytes 
or hormonal stimuli, such as from parathyroid hormone 
(PTH) or estrogen binding [19]. Osteoblasts react to these 
activation signals, either by responding to signals provided 
by the osteocytes or by responding to direct hormonal 
stimuli, and then recruit osteoclast precursors to the BMU 
[19]. One of the important pathways by which osteoblasts 
can affect osteoclast precursors and osteoclasts is by the 
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RANKL/RANK/osteoprotegerin (OPG) system [25]. So 
RANKL is not only expressed by osteocytes, but by oste-
oblasts and osteoblast precursors as well [24, 25]. OPG 
is a soluble decoy receptor produced by osteoblasts [25] 
that binds RANKL and prevents RANKL from binding to 
its receptor RANK, which is expressed in amongst oth-
ers the osteoclasts and their precursors [25], and therefore 
can prevent bone resorption [29, 43, 44]. Furthermore, 
osteoblasts express macrophage colony-stimulating fac-
tor (M-CSF), which binds to its receptor on the osteoclast 
precursors leading to their proliferation and differentiation 
[45], after which the mature osteoclasts can be activated 
and the bone resorption phase can be started [24]. After 
this bone resorption phase, the osteoblasts precursors will 
turn into mature osteoblasts, which in turn will start the 
bone formation phase [24]. These mature osteoblasts will 
form the initially new but yet uncalcified bone matrix, 
called osteoid [45]. Subsequently, the newly formed oste-
oid will become calcified, which will complete the bone 
remodeling process [45]. A schematic representation of 
the bone remodeling process in a BMU is shown in Fig. 1.

3 � Typical Osteoporotic Medications, 
Fracture Risk, and Bone Mineral Density 
(BMD)

Several medications are approved for the prevention or 
treatment of osteoporosis, including bisphosphonates, teri-
paratide, abaloparatide, denosumab, and romosozumab. 
Major clinical trials have shown a decreased fracture risk 
associated with the use of these osteoporotic medications. 
An overview of these different typical osteoporotic medi-
cations, including the major randomized controlled trials 
(RCTs) reporting a decreased fracture risk, is provided in 
Table 1. The effects of the typical osteoporotic medica-
tions on BMD are discussed in the following paragraphs.

3.1 � Bisphosphonates

Bisphosphonates are currently the standard medications 
used in the treatment of osteoporosis and other diseases 
related to bone loss [14]. Bisphosphonates are analogues 

Fig. 1   Schematic representation of the cells and molecules in the 
basic multicellular unit (BMU) involved in the bone remodeling pro-
cess. RANK receptor activator of nuclear factor kappa-Β, RANKL 

receptor activator of nuclear factor kappa-Β ligand, OPG osteoprote-
gerin, M-CSF macrophage colony-stimulating factor
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of the human inorganic pyrophosphate. They use the 
specific properties of the phosphonate groups present in 
this inorganic molecule allowing the medication to bind 
strongly to bone minerals and to go into an interaction 
with specific cells in the bone, especially with osteoclasts 
[14]. Bisphosphonates are able to bind selectively to the 
intended target organ, which causes selective uptake of the 
medication [14]. After entering the bloodstream, bispho-
sphonates are transported to the extracellular space of the 
bone by paracellular transport [46], where they bind to free 
hydroxyapatite on the bone surface [14, 46]. Thereafter, in 
the resorption lacuna, a decrease in pH leads to a release 
of the medication from hydroxyapatite [47]. Bisphospho-
nates are then transported into the intracellular space of 
the bone, probably by fluid-phase endocytosis [48], where 
they are internalized by osteoclasts [49]. After internaliza-
tion, bisphosphonates inhibit osteoclasts, preventing them 
from bone resorption [49].

Many observational and experimental studies have 
shown a positive association between bisphosphonate use 
and BMD [50–68], and several important randomized tri-
als should be highlighted. The Fracture Intervention Trial 
(FIT) was originated to investigate the effect of alen-
dronate on the frequency of fractures in postmenopausal 
women with low bone mass, although they also inves-
tigated the effect on BMD and showed that alendronate 
increased BMD at several sites [60–62]. Furthermore, sev-
eral RCTs have shown an increase in BMD and a reduced 
risk of fractures when using risedronate compared to pla-
cebo [63–65]. Similar studies showed a positive effect of 
zoledronic acid on BMD and fracture risk [66–68].

3.2 � Teriparatide

Teriparatide is the first anabolic or bone-building medica-
tion approved for the treatment of osteoporosis [69, 70]. The 
medication consists of the first 34 amino acids of human 
PTH [70, 71], as it is assumed that all of the biological activ-
ity of human PTH is localized in these first amino acids [71]. 
PTH plays an important role in the regulation of calcium 
homeostasis in humans [72]. Calcium-sensing receptors are 
present, for example, on the parathyroid cell surface, sens-
ing extracellular calcium levels [71, 72]. When the extra-
cellular calcium levels decrease, there is a fast increase in 
PTH release, which immediately prevents the extracellu-
lar calcium levels to drop further: PTH acutely mobilizes 
skeletal calcium, increases renal calcium reabsorption, and 
stimulates 1-α hydroxylase in the kidney [71, 72]. This 1-α 
hydroxylase increases serum 1,25-dihydroxyvitamin D lev-
els, causing an increase in calcium uptake in the gastrointes-
tinal tract [72]. Furthermore, PTH acts directly on bone cells 
by stimulating the osteoblasts, leading to increases in bone 
formation and resorption with net bone formation, bone 

quality improvement, and higher bone mass when given as 
intermittent daily subcutaneous injections [71, 72]. In con-
trast, continuously high levels of PTH, such as with primary 
hyperparathyroidism, will increase bone turnover with net 
bone loss [73].

Several RCTs showed the usefulness of teriparatide in 
the treatment of osteoporosis with an increase in spinal and 
femoral neck BMD [74], an increase in vertebral BMD dur-
ing 3 years of treatment with teriparatide [75], and a positive 
effect of 2 years of teriparatide treatment on BMD, regard-
less of the type of previous antiresorptive therapy [76]. Vari-
ous other RCTs have shown the positive effect of teriparatide 
on BMD as well [74, 77–82]. In addition, a recent meta-
analysis of RCTs has shown that teriparatide was superior 
to bisphosphonates in improving lumbar spine and femoral 
neck BMD [83]. Moreover, it was shown that teriparatide is 
superior to risedronate concerning the risk of new vertebral 
and clinical fractures in post-menopausal women with severe 
osteoporosis [84].

3.3 � Abaloparatide

Abaloparatide is the second anabolic drug approved by the 
FDA for the treatment of osteoporosis [85]. Both teripara-
tide and abaloparatide are administered as subcutaneous 
injections and act via binding to the PTH receptor type 1 
(PTHR1) [85–87]. Both PTH and human parathyroid hor-
mone-related peptide (PTHrP) are able to bind to this recep-
tor [88]. Abaloparatide is a synthetic analogue of PTHrP 
consisting of 34 amino acids, from which the first 22 amino 
acids are identical to PTHrP [85]. Abaloparatide has 76% 
homology to PTHrP and 41% homology to PTH [89]. Aba-
loparatide can bind to PTHR1, which has two conforma-
tions: R0 and RG. Abaloparatide has a greater selectivity 
for the RG conformation of the receptor [88], which is also 
called the G protein-dependent receptor conformation, and 
binding results in a shorter intracellular signaling response 
[85, 90–93]. Moreover, it is hypothesized that the transient 
activation of PTHR1 through RG binding results in a higher 
net-bone-anabolic activity [85, 88], causing positive effects 
on bone formation [94].

In an RCT, a total of 222 post-menopausal women were 
treated for 24 weeks with placebo, teriparatide 20 µg, and 
abaloparatide 20 µg, 40 µg, and 80 µg [86]. In this study, 
it was shown that treatment with abaloparatide for these 
24 weeks increased lumbar spine, total hip, and femoral 
neck BMD. A dose-dependency was reported as well, so 
the group treated with 80 µg of abaloparatide showed a 
greater increase in BMD than those treated with 20 and 40 
µg. Furthermore, the increase in BMD when treated with 40 
or 80 µg of abaloparatide was significantly greater than the 
increase in BMD in both the placebo and the teriparatide 
groups.
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In a phase three double-blind RCT, a significantly greater 
increase in BMD at the total hip, femoral neck, and lumbar 
spine was shown in women treated with abaloparatide com-
pared to placebo [95]. Furthermore, it was shown that after 
6, 12, and 18 months, a significantly greater proportion of 
patients treated with abaloparatide had an increased BMD 
compared to placebo or teriparatide [96]. This positive asso-
ciation between abaloparatide and BMD was also shown in 
extensions of the trial [97–99].

3.4 � Denosumab

Denosumab, a human monoclonal antibody that binds to 
RANKL [32], was approved in 2010 for the treatment of 
osteoporosis in postmenopausal women and men with an 
increased or high risk of fractures [100, 101]. Binding of 
denosumab to RANKL prevents RANKL from binding to 
RANK, leading to a decrease in bone resorption and an 
increase in bone mass [29–32, 102, 103].

In the pivotal Freedom trial, 7,868 women were rand-
omized to treatment with 60 mg denosumab or placebo for 
3 years [104]. The primary study showed a reduction in the 
occurrence of vertebral, non-vertebral, and hip fractures 
in the denosumab group. Extensions of the study showed 
that 5, 6, 8, and 10 years of denosumab treatment leads to 
a continuing increase in BMD and a stable low incidence 
of fractures [105–108]. Increases in BMD after denosumab 
treatment were also shown in several other RCTs [109–113]. 
In one of these RCTs, postmenopausal women treated with 
alendronate for at least 6 months were randomized to con-
tinuing weekly alendronate therapy or switching to 60 mg 
denosumab every 6 months, and it was shown that switching 
to denosumab therapy increased BMD to a greater extent 
than continuing alendronate [113].

Moreover, multiple studies have compared denosumab 
to several other medications with regard to their effect on 
BMD. Two meta-analyses comparing denosumab and bis-
phosphonates in the treatment of (post-menopausal) osteo-
porosis showed that denosumab increased BMD more than 
bisphosphonates [114, 115]. A multicenter, randomized, 
non-inferiority study has shown similar results [116, 117], 
and a recent patient-level pooled analysis including four 
RCTs showed that switching to denosumab therapy was 
more effective in improving BMD compared to continuing 
bisphosphonate treatment in postmenopausal women [118], 
which is consistent with the observation that bisphospho-
nates do not show further increases in BMD after 3 years. 
Furthermore, two studies showed that BMD increased when 
switching from teriparatide to denosumab treatment [119, 
120], and a RCT including 94 postmenopausal women with 
osteoporosis showed that a combination of denosumab and 
teriparatide improved BMD more than treatment with either 
of the medications alone [121]. However, a prospective 

non-randomized clinical trial including participants with 
glucocorticoid-induced osteoporosis suggested that teripara-
tide might have some advantages over denosumab regard-
ing BMD gains when switching to one of these medications 
after at least 2 years of bisphosphonate treatment [122]. One 
meta-analysis compared different medications with regard 
to their effect on BMD and showed that treating subjects 
with denosumab for 3 years resulted in a greater increase 
in lumbar spine and total hip BMD than oral alendronate, 
zoledronic acid, oral risedronate, oral ibandronate, intra-
venous ibandronate, oral raloxifene, or calcitonin [123]. 
However, when comparing treatment with denosumab to 
treatment with PTH, no final conclusion could be drawn: 
a higher lumbar spine BMD was seen when treated with 
PTH, while a higher total hip BMD was seen when treated 
with denosumab. Although denosumab possibly increases 
BMD to a greater extent than bisphosphonates, raloxifene, 
and calcitonin, it is not known whether this results in better 
fracture prevention in the absence of head-to-head studies 
with fractures as primary end-points.

3.5 � Romosozumab

Romosozumab is an anti-sclerostin monoclonal antibody 
[124] that was recently approved by the FDA and EMA for 
the treatment of osteoporotic patients with a high risk of 
fracture [125]. The potential role of anti-sclerostin therapy in 
the treatment of osteoporosis was explored after the observa-
tion that the absence of sclerostin plays an important role in 
the pathogenesis of sclerosteosis and Van Buchem disease, 
which are both rare monogenetic conditions characterized 
by hyperostosis [26]. Romosozumab binds and inhibits scle-
rostin [124], resulting in activation of the Wnt/β-catenin 
signaling pathway and an increase in bone formation [39]. 
As sclerostin also increases bone resorption via regulation 
of RANKL [42], it is suggested that romosozumab is an 
inhibitor of bone resorption as well.

Romosozumab has been shown to significantly increase 
BMD compared to placebo in both healthy men and healthy 
postmenopausal women [124, 126, 127]. Furthermore, the 
efficacy of romosozumab was studied in 419 postmenopau-
sal women who were randomized to eight different groups, 
including five different subcutaneous romosozumab dose 
regimens, a subcutaneous placebo group, an oral alendronate 
group, and a subcutaneous teriparatide group [128]. In this 
study, an increase in lumbar spine, total hip, and femoral 
neck BMD after 1 year of treatment was seen in all five 
romosozumab groups, with the largest increase in the group 
treated with the highest dose of the medication, which was 
even larger than the increase seen in the alendronate and teri-
paratide groups. A 12-month extension of this study showed 
that the gains in BMD were smaller in the second year of 
treatment compared to the first year of treatment [129]. 
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Various other RCTs have shown increases in BMD after 
treatment with romosozumab as well [130–136], and with 
a lower risk of fractures than alendronate [133]. A recent 
meta-analysis has shown that romosozumab increases lum-
bar spine, total hip, and femoral neck BMD [137].

4 � Other Osteoporotic Medications, Fracture 
Risk, and BMD

In addition to the commonly used osteoporotic medications, 
estrogens, raloxifene, and calcitonin are also approved for 
the indication of preventing or treating osteoporosis. These 
medications are less commonly used compared to the previ-
ously described typical osteoporotic medications, and espe-
cially the use of estrogens solely for the indication of treating 
osteoporosis has important concerns. An overview of these 
other osteoporotic medications is provided in Table 2.

4.1 � Estrogens

Estrogens can be used in clinical practice to reduce the 
symptoms of menopause and are also known as hormone 
replacement therapy (HRT) [138]. Estrogens play an impor-
tant role in the regulation of bone metabolism [139]. It has 
been shown that treatment of postmenopausal women with 
HRT leads to a reduction in markers of bone resorption, both 
in serum and in urine [140]. In addition, estrogen replace-
ment leads to a decrease in bone resorption and formation 
[141], while withdrawal of estrogen leads to an increase in 
these two processes [142]. Estrogens affect bone turnover 
via three important bone cells: osteocytes, osteoblasts, and 
osteoclasts [139].

Osteocytes can respond to hormonal changes, such 
as changes in estrogen levels [139]. Previous literature 
has shown that estrogen deficiency causes an increase in 
osteocyte apoptosis, both in humans [143] and in animals 
[144, 145]. It is possible that osteocyte apoptosis leads to 
an increase in RANKL [139], which induces formation, 
activation, and survival of osteoclasts [29–33]. Besides the 
effect of estrogen on osteoclasts via osteocytes, estrogen 
can have an effect on osteoclasts through other pathways 
as well, that is, direct and indirect effects [139]. The direct 
effect goes through the estrogen receptor which is present 
in the osteoclasts [33, 146]. An important estrogen receptor 
is the estrogen receptor alfa (Erα), which is able to form a 
complex with the BCAR1 protein [147]. Estrogen is needed 
to form this ERα/BCAR1 complex [147]. The formation 
of this complex leads to a decrease in nuclear factor-κB 
(NFκB) activation [147], which in turn will lead to a reduc-
tion in osteoclast formation [147]. The indirect effects go 
through osteoblastic cells and T cells [139], partly through Ta
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reduction of cytokines involved in the osteoclastogenesis 
such as interleukin 1 (IL-1), interleukin 6 (IL-6), and tumor 
necrosis factor-α (TNF-α) [148, 149]. The osteoblast is the 
third bone cell that is sensitive to estrogen [139]. Estrogens 
reduce apoptosis of osteoblasts and increase the osteoblast 
lifespan [150] through activation of the steroid receptor-
coactivator (Src)/Src-homology/collagen protein (Shc)/
extracellular signal-regulated kinase (ERK) signaling path-
way and through downregulation of c-Jun N-terminal kinase 
(JNK) [150, 151]. This in turn leads to an increase in the 
functional capacity of the osteoblasts [139]. Besides this, 
estrogen also reduces oxidative stress, which increases the 
life span of osteoblasts [139, 152]. Furthermore, estrogen 
reduces osteoblastic NFκB activity [139, 153], which is an 
important factor in the inhibition of bone formation [153].

Several meta-analyses of RCTs have reported a decreased 
risk of vertebral and non-vertebral fractures associated with 
the use of HRT [154–156]. In one meta-analysis, a possible 
attenuation of this beneficial effect of HRT on fracture risk 
was suggested after HRT was stopped or when it was begun 
after the age of 60 years [156]. One of the RCTs included 
in this meta-analysis should be highlighted. The Women’s 
Health Initiative was a prevention trial investigating the 
risks and benefits of conjugated equine estrogen alone or 
in combination with medroxyprogesterone acetate in the 
prevention of chronic diseases [157]. In the first and second 
sub-study of this RCT, it was reported that women receiving 
conjugated equine estrogen alone or in combination with 
medroxyprogesterone acetate had a decreased risk of hip, 
vertebral, and total fractures compared to women receiv-
ing placebo [158–161]. However, the intervention phase of 
both studies was ended prematurely because an increased 
risk of stroke and breast cancer and an unfavorable risk-
benefit ratio was observed at interim analysis [158, 161]. 
In the years after ending the first and second sub-study, the 
benefits of the estrogen alone or combination therapy on 
fracture risk attenuated or disappeared [160, 162, 163]. This 
is also reported by the National Osteoporosis Risk Assess-
ment (NORA) study, an observational study including post-
menopausal women [164, 165].

There is much literature on the relationship between estro-
gens and BMD. For example, a double-blind, randomized, 
placebo-controlled clinical trial investigated the effect of 
transdermal estrogen on BMD and vertebral fractures in 75 
postmenopausal women aged between 47 and 75 years, with 
at least one vertebral fracture due to osteoporosis, show-
ing that transdermal estradiol plus oral medroxyprogester-
one acetate increased BMD [141]. Estrogen treatment also 
decreased bone turnover in this group of postmenopausal 
women. Two other RCTs including postmenopausal women 
showed that treatment with oral estrogen only or in combi-
nation with progestin increased BMD as well [166, 167]. 
In a randomized, double-blind, placebo-controlled trial of 

67 frail women aged 75 years or older, 9 months of 0.625 
mg/day conjugated estrogens plus 5 mg/day tri-monthly 
medroxyprogesterone acetate treatment increased BMD of 
the lumbar spine and hip regions [168]. Furthermore, several 
other studies showed similar results [169–173].

In conclusion, available literature suggests that estrogens, 
alone or in combination with progestins, decrease fracture 
risk and increase BMD, although caution is warranted when 
estrogens are solely prescribed for the prevention of osteo-
porosis, due to the observed unfavorable risk-benefit ratio.

4.2 � Raloxifene

Raloxifene is a selective estrogen receptor modulator 
(SERM) [174–176] and is the only SERM that is approved 
by both the EMA and the FDA for the treatment and pre-
vention of osteoporosis in postmenopausal women [176]. 
Another SERM, bazedoxifene, is also approved by the 
EMA, while the FDA only approved bazedoxifene as part 
of a combination medication with conjugated estrogens. The 
mechanisms of action of the SERMs are tissue-specific [17, 
175–177], meaning that SERMs can act as agonists or antag-
onists, depending on the tissue they are affecting [176]. The 
tissue-specific actions of SERMs can be explained by three 
different mechanisms that interact with each other, namely: 
differential estrogen-receptor expression in specific target 
tissues, differential ERα or estrogen receptor beta (Erβ) con-
formation as a reaction to ligand binding, and differential 
ERα or ERβ expression and estrogen receptor binding of 
co-regulator proteins [175, 176]. First, each tissue has its 
own estrogen receptors [175]. When estrogen binds to ERα, 
agonistic effects are mostly accomplished, while binding of 
estrogen to ERβ mostly leads to antagonistic effects [175]. 
In bone, both ERα and ERβ are present [178–180]; however, 
their localization in bone is different [180]. ERα is highly 
expressed in cortical bone where estrogen binding results in 
agonistic effects, while ERβ is highly expressed in trabecular 
bone where estrogen binding results in antagonistic effects 
[180]. The effects of the SERMs on bone are dependent on 
which receptor is bound: SERMs act as antagonists when 
binding to ERβ and as agonists when binding to ERα [181]. 
Second, binding of the SERM ligand can introduce different 
conformations of the ERα or ERβ [175]. The ERα or ERβ 
can transform to a confirmation that belongs to binding of 
an estrogen or to a confirmation that belongs to binding of 
an anti-estrogen or everything in between [175]. Third, dif-
ferent co-regulator proteins are available for binding to the 
receptors. Each of these co-regulator proteins can bind to the 
different confirmations of the estrogen receptor and regulate 
the receptor’s function [175]. Specific co-regulator proteins 
can act as co-activators or co-repressors [175]. Raloxifene 
can bind to both ERα and ERβ in bones [182], leading to 
activation and suppression of different genes and thereby 
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inducing tissue-specific effects [182]. Raloxifene inhibits 
the osteoclastogenesis by which bone resorption is reduced 
and stimulates the activity of the osteoblast, which results in 
modulation of bone homeostasis [183]. A potential mecha-
nism by which raloxifene affects the osteoclastogenesis is 
by modulating the levels of different cytokines, such as IL-6 
and TNF-α [184]. This is analogous to the mechanism by 
which estrogens can affect the osteoclastogenesis.

With regard to fracture risk, a meta-analysis of RCTs 
reported a significantly decreased risk of vertebral fractures 
in postmenopausal women on raloxifene [185]. One of the 
RCTs included in this meta-analysis was the Multiple Out-
comes of Raloxifene Evaluation (MORE) trial [185, 186], 
an important RCT investigating the effect of raloxifene on 
both vertebral and non-vertebral fractures. In this RCT, anti-
fracture efficacy for vertebral, but not for non-vertebral or 
hip fractures, was observed [186, 187]. Similar results were 
reported in another RCT in which 10,101 postmenopausal 
women with or at high risk for coronary heart disease were 
randomly assigned to raloxifene or placebo therapy [188]. 
Therefore, raloxifene is generally regarded as a mild antire-
sorptive medication compared to other medications such as 
bisphosphonates and denosumab.

With regard to BMD, multiple studies have been con-
ducted and a positive effect of raloxifene on BMD has been 
generally reported. In a multicenter, placebo-controlled trial, 
7,705 postmenopausal women were randomized to receive 
raloxifene in a dosage of 60 mg or 120 mg or placebo, and it 
was shown that raloxifene increased femoral neck and lum-
bar spine BMD [186]. An increase in BMD with raloxifene 
was also shown in several other RCTs conducted in post-
menopausal women, although the findings differed depend-
ing on the site at which BMD was measured [189–191]. 
In osteopenic postmenopausal women, raloxifene showed 
positive effects on BMD as well [192]. A case-control study 
of 508 women showed that raloxifene exerts positive effects 
on BMD, especially at the lumbar spine [193].

4.3 � Calcitonin 

Calcitonin is a 32-amino-acid, endogenous, peptide hormone 
[17] that is secreted by the parafollicular cells or C-cells of 
the thyroid gland [194, 195]. Human and salmon calcitonin 
can be used as antiresorptive medications in the treatment of 
osteoporosis [17, 195]. Calcitonin executes its effect on bone 
by binding to the calcitonin receptor (CTR) on the osteo-
clasts [13]. This receptor is not only present on osteoclasts, 
but also in the kidney and the hypothalamus [13, 196, 197]. 
By binding to the CTR on the osteoclast, calcitonin inhibits 
the activity and the development of the osteoclast [195, 198].

Three meta-analyses reported on the effect of calcitonin 
use on both vertebral and non-vertebral fractures, although 
conflicting results were reported [199–201]. The first 

meta-analysis included RCTs that investigated the effect of 
nasally or parenterally administered calcitonin on fracture 
risk in men and/or women [201]. This study showed that 
salmon calcitonin decreases the risk of any, vertebral, and 
non-vertebral fractures. The second meta-analysis, which 
also included RCTs conducted in men and/or women, 
showed that subcutaneously or nasally administered calci-
tonin had no significant effect on the risk of vertebral and 
non-vertebral fractures, although the lack of significance 
might be explained by the low number of fracture events 
in the included studies [200]. The third meta-analysis 
included RCTs conducted in postmenopausal women only 
and reported a significantly decreased vertebral fracture risk, 
but not non-vertebral fracture risk, with the use of calcitonin, 
where no distinction in administration route was made [199]. 
The largest RCT, including 1,255 postmenopausal women 
treated with different doses of nasal calcitonin (100, 200, 
and 400 IU), reported a significantly reduced risk of verte-
bral fractures only at a dose of 200 IU and of non-vertebral 
fractures only at a dose of 100 IU [202]. However, when 
combining the effects of the different doses, the vertebral 
fracture reduction remained borderline significant, while sig-
nificance was lost for the non-vertebral fracture reduction 
[199]. Because of the conflicting results of previous studies 
regarding the anti-fracture effectiveness of calcitonin, the 
effectiveness of calcitonin in the treatment of osteoporosis 
can be questioned.

Several observational and experimental studies have been 
conducted in order to investigate the effect of calcitonin on 
BMD in women [202–219]. For example, two RCTs have 
independently shown that treating women with calcitonin 
or salmon calcitonin nasal spray increased lumbar spine 
BMD [202, 216]. Furthermore, a randomized, double-blind, 
placebo-controlled phase III study showed that postmeno-
pausal women with osteoporosis receiving calcitonin had 
a significantly greater increase in lumbar spine BMD than 
women receiving placebo [218]. They also showed a small 
but positive effect of calcitonin on femoral neck and hip 
BMD. In contrast, in a 2-year, double-blind, randomized, 
placebo-controlled trial of 286 postmenopausal women, 
intranasal salmon calcitonin did not increase lumbar spine, 
femoral neck, trochanter, or Ward’s triangle BMD [219].

The effect of calcitonin on BMD was also studied in 
men with similar results. In a study of 28 men, calcitonin 
increased lumbar spine, but not femoral neck BMD [220]. 
In 71 men diagnosed with idiopathic osteoporosis, the use 
of calcitonin was found to increase lumbar spine and fem-
oral neck BMD [221]. However, no significant difference 
in radius BMD was found between the calcitonin and the 
placebo group. In a single-centered, open-label, prospective 
study, men with osteoporosis treated with intranasal salmon 
calcitonin had a significant increase in lumbar spine BMD as 
well, but no effect on femoral neck BMD was found [222]. In 
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conclusion, the available literature suggests that calcitonin 
increases lumbar spine BMD in both men and women, but 
does not increase BMD measured at other sites.

5 � Non‑osteoporotic Medications, Fracture 
Risk, and BMD

Medications that are approved for other indications than 
for the treatment of osteoporosis might also exert positive 
effects on fracture risk and BMD. However, it is also pos-
sible that some of these medications exert negative effects on 
fracture risk and BMD. An overview of the non-osteoporotic 
medications, including thiazide diuretics, loop diuretics, glu-
cocorticoids, prolactin-raising antipsychotics (PRA), cou-
marin anticoagulants, and anticonvulsants, and their effect 
on fracture risk and BMD is provided in Table 3.

5.1 � Thiazide Diuretics

Thiazide diuretics exert both direct and indirect effects on 
bone health and structure. The direct effects of thiazides on 
bone are explained by their effects on osteoblasts. Thiazides 
stimulate osteoblast differentiation and bone formation by 
stimulating the production of two different osteoblast mark-
ers, namely runt-related transcription factor 2 (RUNX2) and 
osteopontin [223]. This stimulation can result in an increase 
in serum osteocalcin, which is considered as a marker of 
osteoblast activity, bone formation, and bone turnover in 
general [224–226]. Conversely, bone histomorphometric 
studies have shown evidence for reduced bone resorption, 
and markers of bone resorption like N-telopeptide and of 
bone formation like osteocalcin were found to be reduced 
especially during the first 6 months of therapy with thiazide 
diuretics [227, 228]. Furthermore, thiazides inhibit the 
sodium-chloride co-transporter (NCC), which is present in 
human osteoblasts, resulting in increased osteoblast prolif-
eration and differentiation [223, 229]. The indirect effects of 
thiazides on bone are explained by the effect of thiazides on 
the kidney and the intestine. Thiazides cause an increase in 
the sodium excretion and a decrease in the calcium excretion 
[230–232] by the kidney, most likely through inhibition of 
the NCC, which is not only located in the osteoblast, but also 
in the distal convoluted tubule of the kidney [231]. Further-
more, the NCC is present in the human intestine and it has 
been suggested that this NCC is involved in the increased 
calcium uptake by the intestinal cells, which can be modi-
fied by thiazides [231]. So the indirect effects cause an 
increase in the serum calcium concentrations in the human 
body, leading to a decrease in PTH levels. However, thi-
azides have also been associated with decreased PTH levels 
independently of serum calcium levels [233]. PTH plays an 

important role in skeletal homeostasis, and lower levels of 
this hormone can lead to a decrease in bone remodeling [71].

Several meta-analyses of observational studies have 
reported a decreased risk of fractures with the use of thiazide 
diuretics, mainly involving hip fractures [234–238]. How-
ever, not all published meta-analyses on this topic report the 
same results. More specifically, a Bayesian meta-analysis 
observed that thiazide use was associated with a reduced 
risk of fractures in case-control studies, but not in cohort 
studies [239]. Furthermore, another meta-analysis includ-
ing 17 cohort studies showed that thiazide use was not sig-
nificantly associated with a reduced risk of fractures as well 
[240]. However, their results were subgroup-dependent, as 
a decreased risk of fractures with thiazide use was found in 
patients with new-onset stroke or spinal cord injury, but not 
in community-dwelling individuals or hypertensive patients. 
Individual cohort studies have suggested that the association 
between thiazide diuretic use and fracture risk might also 
depend on the duration of use [241, 242] and the presence 
of hyponatremia [243]. So far, evidence for the association 
between the use of thiazide diuretics and fracture risk mainly 
derives from observational studies. Only one RCT, includ-
ing 22,180 participants, has been published, and reported 
that chlorthalidone use resulted in a lower risk of hip and 
pelvic fractures when compared to amlodipine or lisinopril 
use [244].

Most studies involving thiazides and BMD were con-
ducted in patients with kidney stones or in postmenopausal 
women, all showing a positive effect of thiazide diuretics on 
BMD [51, 227, 245–252]. For example, a retrospective anal-
ysis including 299 kidney stone patients showed an increase 
in BMD after 1 year of treatment with hydrochlorothiazide 
[245], and similar results were found in a prospective study, 
but only after 2 years of treatment [51]. An increase in BMD 
and a decrease in bone turnover markers with thiazides was 
shown in an observational study of 636 post-menopausal 
women [247]. In another observational study, it was shown 
that lumbar spine and total body BMD were higher in the 
women using thiazide diuretics and that the relation between 
thiazide diuretics use and BMD was independent of serum 
PTH levels [248]. Recently, we published that past and cur-
rent use of thiazide diuretics was associated with an increase 
in lumbar spine BMD and our results suggest that this posi-
tive effect increases with increasing dosage and time of thi-
azide diuretics use [249].

However, a double-blind RCT with a duration of 2 years 
showed that women treated with hydrochlorothiazide had 
an increase in total body, leg, mid-forearm, and ultradistal 
forearm BMD, while no effect on lumbar spine and femoral 
neck BMD was found [251]. A 2-year extension of this RCT 
showed that the benefits of hydrochlorothiazide on BMD are 
sustained over 4 years of treatment [252]. Thiazide use was 
associated with the preservation of BMD at hip and spine in 
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another RCT, even with low doses of hydrochlorothiazide 
[227].

5.2 � Loop Diuretics

Loop diuretics have been suspected to have an effect on 
bone by inducing hypocalcaemia, as they increase renal 
calcium excretion [253–255]. In a cross-sectional study, 
treatment with loop diuretics was found to be associated 
with increased renal calcium excretion, increased plasma 
PTH levels, and possibly increased 1,25-dihidroxyvitamin 
D levels [254]. Another study investigating the serum con-
centrations of PTH, calcium, phosphorus, and alkaline phos-
phatase in subjects treated with furosemide or bumetanide 
showed increased levels of PTH and alkaline phosphatase, 
and decreased levels of serum calcium [255]. The increase 
in PTH levels can be explained by the decrease in calcium 
levels caused by the diuretics and the increase in alkaline 
phosphatase levels can be an indication of accelerated bone 
remodeling [255]. In addition, it was also shown that short-
term use of loop diuretics is associated with an increase in 
urinary free deoxypyridinoline, which can be a reflection of 
an increased bone resorption by osteoclasts [256].

One meta-analysis of observational studies reported no 
association between loop diuretic use and fracture risk, 
although an effect cannot be completely excluded because 
of the borderline non-significance together with the direc-
tion and magnitude of the effect estimate [236]. In two other 
meta-analyses of observational studies, loop diuretics were 
associated with an increased risk of total and hip fractures 
[238, 257]. In addition, several observational studies not 
included in the meta-analyses observed that the use of loop 
diuretics was associated with an increased risk of hip, ver-
tebral, and fragility fractures [258–261]. An observational 
study revealed similar results, although the increased risk 
of hip fractures with loop diuretic use was only observed 
in individuals aged below 80 years and in new users [262].

The effect of loop diuretics on BMD has been less well 
studied than the effect of thiazide diuretics, and studies have 
shown conflicting results. A prospective cohort study of 
women aged 65 years and older showed that users of loop 
diuretics had a greater loss of total hip BMD compared to 
non-users [263]. Similar results were found in a cohort study 
of older men, showing an increase in the average annual 
rate of decline in BMD of the total hip, the femoral neck, 
and the trochanter in loop diuretic users [264]. In a double-
blind RCT of 87 postmenopausal women,  treatment with 
bumetanide for 1 year showed a decrease of 2% in total hip 
and ultradistal forearm BMD and a decrease of 1.4% in 
whole body BMD compared to placebo [254]. Furthermore, 
this trial showed that users of bumetanide had higher levels 
of bone turnover markers. In summary, several observational 
and experimental studies have shown that loop diuretics are 

associated with a decrease in BMD. However, no association 
between loop diuretics and BMD was found in two other 
observational studies [265, 266]. Furthermore, a population-
based cohort study showed that past use of loop diuretics 
was associated with higher lumbar spine BMD compared 
to never use, while no significant association between cur-
rent use and lumbar spine BMD was found [267]. However, 
when studying the duration of use, a positive association 
between current use of loop diuretics and lumbar spine 
BMD was found in participants using the medications for a 
duration of use between 121 and 365 days. No association 
between loop diuretics and femoral neck BMD was found 
in this study.

In conclusion, previous literature points to an increased 
fracture risk in users of loop diuretics, although the literature 
is conflicting. The different studies investigating the associa-
tion between the use of loop diuretics and BMD reported 
inconsistent findings.

5.3 � Glucocorticoids

Glucocorticoids are widely used for a broad spectrum of 
disorders, including auto-immune diseases, pulmonary 
diseases, organ transplants, and cancer [268, 269]. Gluco-
corticoid use has multiple adverse effects, which includes 
bone fragility [270, 271] explained by the direct and indirect 
effects on bone [272]. Glucocorticoids mainly affect bone 
by impairing the differentiation, maturation, and function 
of osteoblasts and by inducing osteoblast apoptosis [268, 
273]. In addition, glucocorticoids distort the function of the 
osteocyte [274] and induce osteocyte apoptosis [272, 275, 
276], both directly and indirectly by decreasing muscle mass 
and mechanosensing [272].

Besides the effects on bone formation and bone remod-
eling, glucocorticoids have effects on bone resorption by 
osteoclasts as well. Osteoclasts are members of the mono-
cyte/macrophage family [277]. Two different molecules are 
important for the maturation of macrophages into osteo-
clasts, namely M-CSF and RANKL [278], and glucocor-
ticoids increase the expression of both [279, 280]. This in 
turns leads to an increase in the osteoclastogenesis. RANKL 
expression can be modified by glucocorticoids via indirect 
pathways as well, as glucocorticoids can cause a decrease in 
sex steroids and an increase in PTH by decreasing calcium 
absorption and resorption [272].

Corticosteroids are a class of steroid hormones that 
include both glucocorticoids and mineralocorticoids [281]; 
however, the term is mostly used to refer to glucocorticoids 
only [282]. Glucocorticoid use is one of the most common 
causes of secondary osteoporosis [283]. It has been well 
established that glucocorticoid therapy increases the risk 
of several types of fracture, including hip, vertebral, and 
non-vertebral fractures [238, 271, 284–287], and it has been 
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reported that approximately 30–50% of all individuals using 
glucocorticoids will experience an osteoporotic fracture 
[288, 289]. In addition, fracture risk depends on the dose, 
duration, type of administration, and continuity of corticos-
teroid therapy [238, 284–287], as well as on the underlying 
disease for which it is prescribed.

With regard to BMD, a meta-analysis including infor-
mation from 66 studies on 2,891 oral corticosteroid users 
with a BMD measurement concluded that daily treatment 
with more than 5 mg of oral corticosteroids decreases BMD 
[286]. Another meta-analysis investigated the effect of low-
dose corticosteroids on BMD in patients with rheumatoid 
arthritis and showed that even a low dose of corticosteroid 
treatment is able to cause BMD loss in these patients [290]. 
In addition, a small study that included 33 patients, of whom 
five were male, found that only 2 months of treatment with 
high-dose glucocorticoids decreases BMD at the lumbar 
spine, femoral neck, and total body [291].

Inhaled corticosteroids (ICS) are widely used in the 
treatment of asthma and chronic obstructive pulmonary 
disease (COPD) [292, 293]. Studies investigating the effect 
of ICS treatment on BMD have shown conflicting results. 
In patients with mild asthma, changes in BMD over time 
did not differ between patients treated with either inhaled 
budesonide, inhaled beclomethasone dipropionate, or an 
alternative non-steroid [294]. However, an inverse relation-
ship between the dose of ICS and BMD at the lumbar spine 
was found in the two groups treated with ICS. Similarly, a 
prospective study of premenopausal women showed a dose-
dependent, inverse association between the use of ICS and 
BMD, but only at the hip and not at the femoral neck or 
spine [295]. In addition, another study investigated the dose-
response relationship between cumulative ICS dose and 
BMD as well, and an inverse association between the two 
was found [296]. Furthermore, treatment with three different 
types of ICS treatment, including budesonide, beclometh-
asone dipropionate, and triamcinolone, was related to a 
decrease in BMD in patients with asthma and COPD [297]. 
In summary, all the above studies showed negative effects of 
ICS treatment on BMD. However, several other studies did 
not show an effect or only a small effect of ICS treatment on 
BMD [293, 298–300].

To summarize, glucocorticoids increase the risk of frac-
tures. In addition, oral corticosteroid use was consistently 
associated with decreased BMD, while literature on inhaled 
corticosteroids and BMD is contradictory. Furthermore, 
users of oral glucocorticoids who experience a fracture do 
not always have a decrease in BMD. Therefore, it has been 
suggested that the negative effects of glucocorticoids on 
bone and fracture risk could predominantly be explained by 
a distortion of bone architecture or collagen matrix, so bone 
quality, rather than by a decrease in BMD [301].

5.4 � Antipsychotics

Antipsychotics are typically used for the treatment of psy-
chiatric disorders with delusions and hallucinations such 
as schizophrenia [302]. However, they are also used in the 
treatment of delirium, for which older age is one of the 
important risk factors [303]. Antipsychotics can be divided 
into two groups: typical and atypical antipsychotics [304]. 
All typical antipsychotics can cause an elevation in prolac-
tin levels, called hyperprolactinemia, while not all atypical 
antipsychotics can cause hyperprolactinemia [305, 306]. 
More specifically, typical antipsychotics such as haloperi-
dol, chlorpromazine, and flupenthixol [305] and the atypical 
antipsychotics risperidone and paliperidone [307–309] are 
known to increase serum prolactin levels.

Prolactin is a polypeptide hormone, consisting of 199 
amino acids [310–312], which is secreted by cells that are 
located in the anterior pituitary, called the lactotrophs [311, 
312]. High levels of serum prolactin can have effects on 
several human organ systems [313], causing, for example, 
galactorrhea, sexual dysfunction, and amenorrhea [313]. 
Moreover, high serum prolactin levels can affect bone 
metabolism as well [313], and two potential underlying path-
ways have been proposed [314]. First, it was suggested that 
hyperprolactinemia can increase bone turnover directly, 
probably by stimulating bone resorption more than bone 
formation [315, 316], even though these two processes are 
normally linked. However, an effect of hyperprolactinemia 
on bone formation is also suggested, as it can reduce osteo-
blast differentiation through binding to the prolactin receptor 
on the human osteoblast [315, 317, 318]. Another cause for 
a direct effect of hyperprolactinemia on bone can be via the 
RANK-RANKL pathway, as it has been found that prolactin 
can increase the production of mRNA for RANKL [319]. 
Second, hyperprolactinemia can affect bone indirectly by 
a reduced production of sex steroids [314]. High levels of 
prolactin may decrease the release of gonadotropin-releasing 
hormone (GnRH) from the hypothalamus and may reduce 
the sensitivity of the pituitary to this GnRH [314, 320]. 
Stimulation of the pituitary by GnRH causes secretion of 
luteinizing hormone (LH) and follicle-stimulating hormone 
(FSH) [321, 322]. When secretion of GnRH from the hypo-
thalamus is decreased, secretion of LH and FSH will also 
decrease [314]. As a consequence, the production of sex 
hormones such as estrogen and testosterone will be inhibited 
[314], and a reduction of these sex hormones causes a distor-
tion in bone metabolism, which also occurs in postmenopau-
sal osteoporosis [323].

However, the question is whether prolactin increase is the 
only underlying mechanism explaining the potential effects 
of antipsychotics on bone. In a meta-analysis, the use of 
typical as well as atypical antipsychotics was associated with 
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an increased risk of hip fractures with a higher odds ratio 
for typical antipsychotics [324]. However, individual typical 
and atypical antipsychotics were not investigated. Similar 
results were observed in another meta-analysis, although no 
distinction between typical and atypical antipsychotics was 
made [325]. Similarly, two other meta-analyses reported an 
increased risk of hip fractures with both typical and atypical 
antipsychotics and antipsychotics in general [238, 326]. In 
addition, the typical antipsychotics thioridazine, haloperidol, 
and chlorpromazine and the atypical antipsychotic olanzap-
ine were significantly associated with an increased fracture 
risk. Furthermore, in a nationwide register-based cohort 
study, a higher risk of fractures was reported with the antip-
sychotics risperidone, olanzapine, quetiapine, zuclopen-
thixol, chlorprothixen, flupenthixol, and haloperidol, which 
do not all raise prolactin levels to a similar extent [261]. 
Therefore, other mechanisms might underlie the negative 
effect of antipsychotics on fracture risk, which could include 
an increased risk of gait abnormalities and falls with the 
use of antipsychotics [327–331] or the higher occurrence of 
fractures and falls related to the underlying mental disorders 
and their associated comorbidities [332–334].

In a meta-analysis investigating the effect of differ-
ent antipsychotic medications on BMD in schizophrenic 
patients, it was shown that BMD was significantly lower 
in schizophrenic patients than in healthy controls [335]. 
Furthermore, patients using PRA had lower BMD lev-
els than patients using prolactin-sparing antipsychotics. 
Similar results were found in two observational studies 
[336, 337]. Moreover, a negative correlation between 
the duration of antipsychotic therapy and the lumbar 
total, femoral neck, and femoral trochanter T-scores was 
found in one of the studies, indicating a larger decrease 
in BMD when using the antipsychotics for a longer 
period of time [336]. However, not all previously con-
ducted studies showed an association between the use of 
PRA and BMD. A longitudinal family study with a total 
follow-up time of 3 years included 30 psychotic patients, 
44 non-psychotic siblings, and 27 healthy controls, and 
found that current or past use of PRA was not associated 
with changes in BMD [338]. Similarly, use of PRA was 
not related to BMD in a cross-sectional study including 
schizophrenic patients [339].

Previous literature has implicated gender differences in 
the association between PRA and BMD [339–342]. In three 
of four studies, higher BMD loss or lower BMD values were 
seen in males compared to females, when both were treated 
with antipsychotics [339–341]. In the fourth study, a cross-
sectional study including 51 schizophrenic patients treated 
with antipsychotics and 57 healthy controls, lower BMD 
values were seen in schizophrenic females, but not in schizo-
phrenic males, when comparing them to healthy controls 
[342].

In conclusion, a higher risk of fractures has been reported 
in PRA users. Different studies investigating the effect of 
PRA on BMD have shown inconsistent results, but there 
may be a negative effect of PRA on BMD.

5.5 � Coumarin Anticoagulants

Coumarin anticoagulants, which are abbreviated as cou-
marins, are vitamin K (vitK) antagonists [343, 344] that are 
mainly used in the prevention or treatment of vascular throm-
bosis, pulmonary embolism, and atrial fibrillation [224, 343, 
345]. For a long period of time, vitK was considered as a 
factor that exclusively affects blood clotting [224], but now it 
is known that it can also play a role in other vitK-dependent 
physiological processes, including bone metabolism [224]. 
VitK occurs in two major forms: phylloquinone (vitK1) 
and menaquinone (vitK2) [346]. Phylloquinone is part of 
the human diet and is present in especially leafy green veg-
etables, several vegetable oils, and margarines [347–350]. 
In different cells in the human body, phylloquinone can be 
reduced to a co-factor called vitK quinol, which is needed 
for the post-translational carboxylation of glutamate residues 
[346], producing gamma-carboxyglutamate (Gla) [346]. In 
bone, there are three important Gla-proteins: osteocalcin, 
matrix Gla protein, and protein S [224]. Osteocalcin has 
been recognized as the most abundant Gla-protein in bone 
[351]. After being synthesized by the osteoblast, osteocalcin 
is secreted into the bone matrix [351, 352], where it changes 
its conformation [351]. Osteocalcin is then able to bind to 
calcium ions and hydroxyapatite crystals [225, 353]. Yet, the 
precise role of osteocalcin within the bone matrix is complex 
and remains unknown [224, 351], but it is suggested to play 
a role in the regulation of bone mineralization, maturation, 
and remodeling [224]. It is also considered as a marker of 
osteoblast activity, bone formation, and bone turnover in 
general [224–226], and can therefore be used to evaluate 
treatment effects of medications given for postmenopausal 
osteoporosis [354].

Current knowledge implies that vitK also supports bone 
formation and inhibits bone resorption [353], and thus not 
only affects bone through affecting levels of Gla-proteins. 
VitK exerts positive effects on bone formation by increasing 
osteoblast differentiation and decreasing osteoblast apop-
tosis [355]. Furthermore, vitK regulates the extracellular 
matrix mineralization via Y-glutamyl carboxylation [356]. 
On the other hand, vitK decreases bone resorption by inhib-
iting osteoclast differentiation [355]. However, these posi-
tive effects on bone are mainly described for menaquinones, 
which is a variant of vitK that is present in diet as well, 
but only in small amounts [355]. It has been shown that 
menaquinones have a greater effect on bone resorption and 
formation than phylloquinones [355].
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The potential positive effect of vitK on fracture risk and 
BMD has been investigated in several observational studies 
and RCTs, which are summarized in a review on the effect of 
vitK intake and blood levels on fracture risk and BMD [224]. 
In addition, a meta-analysis of Japanese RCTs observed 
that menaquinone supplementation was associated with a 
decreased risk of vertebral, hip, and non-vertebral fractures 
[357]. Furthermore, a meta-analysis of observational studies 
reported an inverse association between vitK intake, with all 
studies including phylloquinone, and fracture risk [358]. A 
community-based study conducted after this meta-analysis 
reported an increased risk of hip fractures with a low intake 
of phylloquinone as well, while no association between 
menaquinone intake and risk of hip fractures was observed 
[359]. With regard to BMD, a meta-analysis investigating 
the effect of vitK on BMD showed that vitK supplementa-
tion is associated with increased lumbar spine BMD, but 
not with femoral neck BMD [360]. However, heterogene-
ity between the included studies and possible publication 
bias may have influenced the results, which is supported by 
another meta-analysis and by a systematic review [361, 362].

Coumarins inhibit vitK epoxide reductase [363, 364], 
an enzyme that is needed in recycling vitK after oxidative 
metabolism [364–366]. Hereby, coumarins cause a depletion 
of vitK [364], which in theory will be followed by negative 
effects on bone and fracture risk [224]. Two meta-analyses 
investigating the association between vitK antagonist use 
and fracture risk revealed slightly contradictory results 
[367, 368]. The first meta-analysis of observational studies 
reported an increased fracture risk in individuals on vitK 
antagonist therapy when compared to medical controls, who 
were patients with similar diseases and/or clinical character-
istics to individuals on vitK antagonist therapy [367]. This 
association was shown both cross-sectionally and longitu-
dinally. However, the longitudinal association disappeared 
when individuals on vitK antagonist therapy were matched 
to their controls. In the second meta-analysis, no increase 
in fracture risk was observed in users of vitK antagonists 
when compared to controls or non-vitK antagonist oral anti-
coagulants users [368]. However, a significant association 
between the use of vitK antagonists and fracture risk was 
reported in females and in the elderly. Recently, two meta-
analyses have reported that the use of direct and non-vitK 
oral anticoagulants, such as rivaroxaban and apixaban, was 
associated with a lower risk of fractures when compared to 
the use of warfarin [369, 370], indicating that it might be 
better to choose for a direct oral anticoagulant in individuals 
at high risk for fractures.

A prospective observational study investigated the effect 
of warfarin, a commonly used coumarin, on bone in 6,201 
postmenopausal women [371]. The investigators did not 
find a decreased BMD in warfarin users; however, informa-
tion about the duration of warfarin use was not available. 

In a meta-analysis of cross-sectional studies, a significant 
decrease in ultradistal radius BMD was shown in users of 
oral anticoagulants; however, no significant decrease was 
found in BMD measured at other sites [372]. In all included 
studies, the mean or median duration of oral anticoagulant 
use was ≥ 1 year. In addition, no increase in fracture risk and 
no decrease in BMD values when using vitK antagonists was 
shown in another meta-analysis [367]. Furthermore, a small 
cross-sectional study investigated the effect of long-term 
(mean: 10 years) acenocoumarol use on BMD [373], and 
no difference in BMD was found between users and controls. 
Also, a prospective study did not find an effect of long-term 
(mean: 2 years) warfarin treatment on BMD [374]. On the 
contrary, two cross-sectional studies have found a reduction 
in BMD when treated with warfarin [375, 376].

In summary, the literature on the association of coumarin 
use with fracture risk and BMD is contradictory. However, it 
is suggested that the effects of coumarin treatment on bone 
depend on the duration of treatment and the skeletal site 
[224], which might explain part of the contradictory results.

5.6 � Anticonvulsants

Anticonvulsants (ACs) are mainly used for the treatment 
of epilepsy, and the association of these medications with 
bone disorders was first suggested in the late 1960s [377]. 
ACs can be divided into two groups: enzyme-inducing and 
non-enzyme-inducing ACs. Medications in the first group, 
the enzyme-inducing ACs including phenytoin, primidone, 
carbamazepine, and phenobarbital, induce cytochrome P450 
(CYP450) hydroxylase enzymes causing an increase in 
vitamin D catabolism [377, 378]. As active vitamin D, also 
called 1,25-dihydroxyvitamin D, enhances calcium absorp-
tion in the gastrointestinal tract [72, 379], an increased 
catabolism of this active vitamin D to inactive vitamin D 
metabolites will cause a decrease in the gastrointestinal 
absorption of calcium, hypocalcemia, and an increase in 
PTH. In reaction to a decrease in serum calcium levels, PTH 
acutely mobilizes skeletal calcium, increases renal calcium 
reabsorption, and stimulates 1-α hydroxylase in the kid-
ney [71, 72]. In addition, continuously high levels of PTH 
increase bone turnover, where bone resorption will prevail 
over bone formation [380]. However, low vitamin D levels 
have not been found in all studies describing the effect of 
ACs on bone and a correlation between low vitamin D and 
low BMD was not always present [378], which suggests that 
there should be other mechanisms explaining the potentially 
negative effect of ACs on bone. One of the other potential 
mechanisms is a direct effect of ACs on bone cells and bone 
turnover as higher levels of bone formation and bone resorp-
tion markers were found when treating epileptic patients 
with ACs [381, 382] and bone biopsies performed in treated 
patients showed an increase in osteoid formation, normal 
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calcification, accelerated mineralization rate, and decreased 
mineralization lag time, which is related to an increase in 
bone turnover [383]. In addition, hypocalcemia and hyper-
parathyroidism independent of vitamin D levels [377, 381, 
382] and calcitonin deficiency may play a role as well [377]. 
Moreover, not only the enzyme-inducing ACs have been 
shown to affect bone; for example long-term treatment with 
valproate, a medication belonging to the non-enzyme-induc-
ing ACs, has also been shown to cause a decrease in BMD in 
epileptic adults, although these medications inhibit CYP450 
enzymes [384, 385]. However, the underlying mechanism is 
unclear and further research is needed.

Previous (systematic) reviews have attempted to provide 
an overview of the association between AC use and fracture 
risk [386–388]. In addition, in a meta-analysis including 
22 observational studies, the use of ACs was significantly 
associated with an increased risk of fractures, especially 
with the use of enzyme-inducing ACs [389]. Furthermore, 
investigation of the individual ACs revealed an increased 
risk of fractures with the use of phenobarbiturate, topira-
mate, and phenytoin, but not with carbamazepine, valproic 
acid, lamotrigine, and gabapentin. Conversely, in a recent 
population-based study, the use of oxcarbazepine, car-
bamazepine, and gabapentin was found to be associated 
with a significant increase in fracture risk, while the use 
of phenobarbital, phenytoin, levetiracetam, valproic acid, 
lamotrigine, and topiramate were not significantly associ-
ated with fracture risk [390]. However, an effect cannot be 
completely excluded because of the size and direction of 
the effect estimates observed with especially phenobarbital, 
levetiracetam, and lamotrigine. Also, several other studies 
have reported an increased fracture risk with the use of ACs 
[391, 392]. The investigation of the association between AC 
therapy and fracture risk might be complicated by several 
factors. First, AC therapy has been associated with drowsi-
ness, dizziness, unsteadiness, and blurred or double vision 
[393], which could all lead to a higher risk of falls. This in 
turn could increase the risk of fractures, without the ACs 
having a direct effect on bone itself. Second, up to now, 
all studies investigating the association between AC use 
and fracture risk are observational, in which confounding 
by indication might play a role because seizures related to 
epilepsy increase the risk of falls and fractures [394]. Con-
sequently, RCTs are desirable to provide further insight in 
this association.

A recent systematic review and meta-analysis included 19 
studies reporting on the association between valproate mon-
otherapy and BMD in individuals with epilepsy, of which 
nine were carried out in adults [385]. In this study, lower 
BMD levels were found when comparing the adults with epi-
lepsy using valproate to the controls. It is important to note 
that the sample sizes of the studies in this meta-analysis were 
small. In addition, high heterogeneity between the studies 

was shown. In another study that was not included in the sys-
tematic review and meta-analysis but which also investigated 
the association between valproate monotherapy and BMD, 
it was shown that BMD did not differ between individuals 
with epilepsy who were treated with valproate and age- and 
sex-matched controls [395]. Furthermore, no correlation 
between the duration or dosage of valproate monotherapy 
and BMD was shown. Similarly, valproate monotherapy 
did not change both femoral neck and lumbar spine BMD 
in newly diagnosed patients with epilepsy after 2 years of 
treatment when compared to baseline, even though the levels 
of indicators of bone turnover seemed to increase [396]. In 
another study, valproate monotherapy did not change BMD 
as well, while an increase in serum osteocalcin levels with 
treatment of valproate was found, suggesting an effect on 
bone turnover as well [397]. The effects of lamotrigine and 
levetiracetam monotherapy on BMD have also been investi-
gated, and neither seemed to have an effect on BMD [396]. 
The effect of lamotrigine on BMD was also investigated in 
two other studies and similar conclusions were drawn [397, 
398], although one of the studies did show that lamotrigine 
increased the levels of serum osteocalcin [397]. The associa-
tion between carbamazepine monotherapy and BMD was 
also investigated in this study, and it was found that the use 
of this medication significantly decreased BMD, while no 
effect on serum osteocalcin levels was found [397]. How-
ever, no significant difference in BMD was found when 
comparing carbamazepine users to controls in a systematic 
review and meta-analysis investigating the effect of carba-
mazepine on bone health [399]. Furthermore, a decrease in 
femoral neck BMD after 1 year of treatment with phenytoin 
[398] and a greater rate of bone loss determined by BMD in 
users of phenytoin compared to non-users of ACs [400] was 
reported in previous literature.

In conclusion, AC use is associated with an increased risk 
of fractures. In addition, even though some studies inves-
tigating the association between the use of AC and BMD 
found no association between the two, a negative effect of 
ACs on BMD is generally shown.

5.7 � Other Non‑osteoporotic Medications

In this review, only the most important and well-studied 
medications possibly influencing fracture risk and BMD 
are discussed. Supplemental Table 1 (Online Supplemental 
Material) provides an overview of other medications that 
could have an effect on fracture risk and BMD, but which are 
not further discussed in the current review. The reason for 
not discussing them is a combination of the limited amount 
of literature available, the inconsistency of the results, and/
or the low prevalence of use in the elderly population. A 
complete overview of the different medications and their 
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effect on fracture risk and BMD, including the other non-
osteoporotic medications that are not discussed in the cur-
rent review, is given in Supplemental Table 2 (Online Sup-
plemental Material).

6 � Conclusion

Based on current literature, we can conclude that the osteo-
porotic medications including bisphosphonates, teripara-
tide, abaloparatide, denosumab, romosozumab, estrogens, 
raloxifene, and calcitonin exert positive effects on fracture 
risk and BMD. Furthermore, the non-osteoporotic thiazide 
diuretics exert positive effects on BMD as well, but the effect 
on fracture risk remains inconclusive. In contrast, literature 
on other non-osteoporotic medications including loop diuret-
ics and PRA points towards a negative effect of these medi-
cations on fracture risk, although literature regarding their 
effect on BMD is inconsistent. In addition, glucocorticoids 
have been shown to increase fracture risk. With regard to 
BMD, oral corticosteroids decrease BMD, while literature 
on the effects of inhaled corticosteroids on BMD is con-
tradictory. Furthermore, anticonvulsants have a negative 
effect on fracture risk and BMD, while literature regarding 
the effects of coumarin anticoagulants on fracture risk and 
BMD is inconsistent. Inconsistent results regarding the effect 
on fracture risk and BMD are also reported for potassium 
citrate, nitrates, calcium channel blockers, angiotensin-con-
verting enzyme (ACE)  inhibitors, and beta blockers. Incon-
sistent results regarding the effect on BMD are also reported 
for selective serotonin reuptake inhibitors (SSRIs), tricyclic 
antidepressants (TCAs), and proton pump inhibitors (PPIs), 
although an increased risk of fractures with the use of these 
medications is well established.
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