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Abstract

Objective: In AIDS Clinical Trials Group study A5338, concomitant rifampicin, isoniazid, and 

efavirenz was associated with more rapid plasma medroxyprogesterone acetate (MPA) clearance 

compared to historical controls without tuberculosis or HIV therapy. We characterized the 

pharmacogenetics of this interaction.

Methods: In A5338, women receiving efavirenz-based HIV therapy and rifampicin plus 

isoniazid for tuberculosis underwent pharmacokinetic evaluations over 12 weeks following a 

150-mg intramuscular injection of depot MPA. Data was interpreted with nonlinear mixed-effects 

modelling. Associations between individual pharmacokinetic parameters and polymorphisms 

relevant to rifampicin, isoniazid, efavirenz, and MPA were assessed.

Results: Of 62 A5338 participants in four African countries, 44 were evaluable for 

pharmacokinetic associations, with 17 CYP2B6 normal, 21 intermediate, and 6 poor metabolizers, 

and 5 NAT2 rapid, 20 intermediate, and 19 slow acetylators. There were no associations between 

either CYP2B6 or NAT2 genotype and MPA Cmin at week 12, apparent clearance, Cmax, 

AUC0–12wk or half-life, or unexplained interindividual variability in clearance, and uptake rate 

constant or mean transit time of the slow-release fraction (p>0.05 for each). In exploratory 

analyses, none of 28 polymorphisms in 14 genes were consistently associated with MPA 

pharmacokinetic parameters, and none withstood correction for multiple testing.

Conclusions: Study A5338 suggested that more frequent depot MPA dosing may be appropriate 

for women receiving rifampicin, isoniazid, and efavirenz. The present results suggest that 

knowledge of CYP2B6 metabolizer or NAT2 acetylator status does not inform individualized 

DMPA dosing in this setting.
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Introduction

Tuberculosis and human immunodeficiency virus (HIV) are leading causes of infection­

related deaths worldwide [1]. Women comprise more than half of the estimated 37 million 

persons living with HIV and are disproportionately affected by new infections among 

individuals over 15 years of age in sub-Saharan Africa [2]. Coinfection with M. tuberculosis 
and HIV in pregnancy markedly increases risk of maternal and child morbidity and mortality 

[3–5], thus access to effective contraception is critical. Depot medroxyprogesterone acetate 

(DMPA) is an intermediate-acting progesterone-only injectable contraceptive commonly 

used globally, including in sub-Saharan Africa because of its efficacy and convenience of 

administration [6]. Following a 150-mg intramuscular dose of DMPA, medroxyprogesterone 

acetate (MPA) concentrations exceed the therapeutic target (0.1 ng/mL) for approximately 

12 weeks and inhibit ovulation for up to 14 weeks [7]. The probability of ovulation increases 

when MPA concentrations fall below 0.1 ng/mL [8, 9]. MPA undergoes metabolism by 

hepatic CYP isoforms, primarily CYP3A4 [10].

Rifampicin and isoniazid are cornerstone drugs for treating drug-sensitive tuberculosis, 

while efavirenz is recommended for women of childbearing potential as an alternative to 

dolutegravir as component of first-line antiretroviral therapy in sub-Saharan Africa [11]. 

Rifampicin, isoniazid, and efavirenz are often used concomitantly in sub-Saharan Africa 

in patients living with HIV and tuberculosis. Rifampicin and efavirenz are potent inducers 

of cytochrome (CYP) P450 enzymes that metabolize MPA [10, 12], and have been shown 

to reduce concentrations and compromise efficacy of some hormonal contraceptives [13, 

14]. This raised concern that concomitant rifampicin and efavirenz would increase risk 

for contraceptive failure with DMPA, as compared to DMPA without such drug-drug 

interactions.

Study A5338 (NCT02412436) of the AIDS Clinical Trials Group (ACTG) was a 12­

week, phase II, open-label, single-arm study of steady-state pharmacokinetic interactions 

among HIV and tuberculosis coinfected women receiving efavirenz-containing ART, and 

continuation-phase tuberculosis treatment that included rifampicin and isoniazid [15]. Study 

A5338 tested the hypothesis that clearance of MPA would increase when given with 

rifampicin and efavirenz, increasing risk of ovulation. Among 42 pharmacokinetic-evaluable 

women from four African countries, the study showed that of the exposure of MPA was 

substantially decreased, with the AUC0–12wks being 33% lower than in historical controls 

[16, 17], and with MPA concentrations below the therapeutic target of 0.1 ng/mL at week 12 

in 12% of women, suggesting that more frequent DMPA dosing may be appropriate.

Plasma exposure of isoniazid and efavirenz vary significantly between individuals due 

to human genetic polymorphisms. Isoniazid acetylation by hepatic N-acetyltransferase 2 

generates hydrazine metabolites [18], and there are well-described loss-of-function NAT2 
alleles [18–21]. Individuals who carry one or two copies of such alleles have intermediate 

or slow acetylator phenotypes, respectively, and progressively greater plasma isoniazid 

exposure [18–21]. Plasma efavirenz exposure is predicted by CYP2B6 polymorphisms [22], 

especially CYP2B6 516G→T (rs3745274) [23–25], 983T→C (rs28399499) [25–27], and 

15582C→T (rs4803419) [25].

Haas et al. Page 3

Pharmacogenet Genomics. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02412436


Rifampicin is a potent inducer of hepatic CYP isoforms, and in a study of 11 healthy, 

HIV-negative volunteers modestly and variably reduced efavirenz plasma exposure [28]. 

However, some patients receiving tuberculosis therapy that includes isoniazid with 

rifampicin experience increased plasma efavirenz exposure, particularly in the presence 

of CYP2B6 and/or NAT2 loss-of-function polymorphisms [29–31]. This effect is likely 

mediated by isoniazid, as isoniazid alone has also been shown to reduce plasma efavirenz 

clearance among CYP2B6 poor metabolizers [30]. The mechanism has been suggested to 

involve isoniazid inhibition of CYP2A6, a minor pathway for efavirenz elimination that 

assumes greater importance in CYP2B6 poor metabolizers [30–34].

The present study seeks to determine whether selected human genetic polymorphisms were 

associated with plasma pharmacokinetics of MPA among women living with HIV, and 

who were receiving concomitant isoniazid, rifampicin and efavirenz during participation in 

A5338.

METHODS

Study Population

Study A5338 was a 12-week, phase II, open-label, single-arm study of steady-state 

pharmacokinetic interactions among HIV and tuberculosis coinfected women receiving 

efavirenz-based ART and rifampicin plus isoniazid for treatment of tuberculosis [15]. 

Eligible participants were 18 to 46 years of age, non-pregnant, had been on efavirenz 

plus two nucleoside reverse transcriptase inhibitors (NRTIs) for at least 28 days prior 

to study entry, and were receiving rifampicin (600 mg) and isoniazid (300 mg) at least 

5 days per week during the continuation phase of tuberculosis treatment. Participants 

were excluded if they had received DMPA or other injectable contraceptives within 180 

days, any other hormonal therapies within 30 days of study entry, were taking CYP3A4 

inducers or inhibitors within 30 or 7 days, respectively, before study entry, were pregnant 

or breastfeeding, or had a contraindication to DMPA administration. Participants provided 

written informed consent. Institutional review boards of the participating institutions 

approved the study, and participants gave written informed consent.

Procedures

A detailed description of A5338 procedures and primary results is provided elsewhere 

[15]. Briefly, at study entry DMPA was administered as a single 150-mg intramuscular 

injection. Plasma samples for MPA assays were obtained predose and 2, 4, 6, 8, 10, and 12 

weeks post-dose. Adherence to HIV and tuberculosis medications was assessed at all study 

visits using an ACTG self-report questionnaire [15]. Assays for MPA were performed at 

the University of Cape Town Pharmacology Specialty Laboratory, using a validated liquid­

liquid extraction method and liquid chromatography tandem mass spectrometry analysis 

(LC-MS/MS) with an AB Sciex API 5500Q mass spectrometer.

Genetic Polymorphisms

Human DNA extracted from whole blood was used to genotype 48 polymorphisms of 

interest, including 1 in ANO2 (anoctamin 2), 1 in CSK (C-terminal Src kinase), 2 
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in CYP19A1 (aromatase), 2 in CYP1A1, 7 in CYP1A2,1 in CYP2A6, 3 in CYP2B6, 

3 in CYP3A4, 1 in CYP3A43, 2 in CYP3A5, 9 in NAT2, 12 in SLCO1B1 (which 

encodes organic anion transporting polypeptide 1B1), 1 in TRIM4, 1 in UGT1A1, 

1 in LOC101927066, and 1 intergenic. These included CYP2B6 polymorphisms 

(rs3745274, rs28399499 and rs4803419) that predict plasma efavirenz exposure, and 

NAT2 polymorphisms (rs1801279, rs1801280, rs1799930 and rs1799931) that predict 

plasma isoniazid exposure. The other polymorphisms were selected based on showing 

genome-wide association (P < 5.0 × 10−8) with any estradiol trait in the GWAS Catalog, 

and CYP3A4, CYP3A5 and CYP1A1 polymorphisms genome-wide associated with any 

trait in the GWAS Catalog [35]. We also included functional polymorphisms in genes 

involved in estrogen metabolism [36], including CYP1A1, CYP1A2, CYP1B1, CYP3A4 
and CYP3A5. Genotyping was done in VANTAGE (Vanderbilt Technology for Advanced 

Genomics) using MassARRAY® iPLEX Gold (Agena Bioscience™, California, USA) and 

Taqman (ThermoFisher Scientific, Massachusetts, USA). Final assay design is available 

upon request. Ample blank assays were included to assure validity, and all samples were 

assayed in duplicate.

We excluded 13 monomorphic loci, and 7 with minor allele frequencies less than 

5%. Genotyping efficiency was 100% for all polymorphisms in all participants. All 

polymorphisms were in Hardy-Weinberg equilibrium (p>0.05). Association analyses 

ultimately included the 28 remaining polymorphisms (Supplemental Material).

Statistical analysis

A population pharmacokinetic model was developed to describe the concentrations on MPA 

using nonlinear mixed effects modelling in the software NONMEM applying first-order 

conditional estimation algorithm with eta-epsilon interaction (FOCE-I) [37]. The detailed 

description of the model is provided elsewhere [15, 38]. Briefly, MPA pharmacokinetics 

was modelled using a one-compartment disposition model with first-order elimination. To 

model the release of MPA from the depot in the injection site, a bi-phasic absorption model 

was used, with a fraction of the dose immediately available for uptake into the bloodstream 

with a first-order rate, while the remaining fraction is slowly released from the formulation 

crystals into the injection site, and only then is becomes available for uptake. The slower 

release process was modelled using a transit compartment model [39]. The model included 

the effect of body weight on all disposition parameters using allometric scaling [40], and 

random effects were included on the pharmacokinetic parameters to account for variability 

between subjects or visits. The model also included drug-drug interaction effects on MPA 

clearance for anti-tuberculosis treatment plus efavirenz, efavirenz alone, nelfinavir, and 

lopinavir/ritonavir. These effects were included as a categorical fixed effect for each arm, so 

all the values of clearance included in this analysis were centered around the typical value 

for the anti-tuberculosis treatment plus efavirenz arm.

From the final model, we extracted the individual values of the pharmacokinetic parameters 

(i.e., the empirical Bayesian estimates), and the associated “unexplained” variability random 

effect, which describe the differences between subjects after adjusting for the effect of body 

weight (which was included in the model as a fixed effect). Additionally, we obtained the 
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individual values of the exposure of MPA in terms of AUC0–12wk, terminal half-life, peak 

concentration (Cmax), and concentration at 12 weeks (Cmin), i.e., when the next injection of 

DMPA was administered.

These individual pharmacokinetic parameter values, random effects, and exposure metrics 

were then tested against the genotypes using linear regression models. Associations 

of CYP2B6 metabolizer group and NAT2 acetylator group with each individual 

pharmacokinetic parameter were assessed by Spearman’s rank correlation test using STATA 

version 15.1 (StataCorp, College Station, Texas, USA). Associations with the 28 individual 

polymorphisms were assessed by linear regression using PLINK version 1.07 [41].

Composite CYP2B6 genotype was defined based on combinations of three polymorphisms 

as follows: normal metabolizer (1: 15582CC-516GG-983TT or 2: 15582CT-516GG-983TT); 

intermediate metabolizer (3: 15582TT-516GG-983TT; 4: 15582CC-516GT-983TT; 5: 

15582CC-516GG-983CT; 6: 15582CT-516GT-983TT; or 7: 15582CT-516GG-983CT); 

and poor metabolizer (8: 15582CC-516TT-983TT; 9: 15582CC-516GT-983CT; 10: 

15582CC-516GG-983CC [25]. For NAT2, genotypes were categorized based on 

combinations of rs1801280 (NAT2*5), rs1799930 (NAT2*6), rs1799931 (NAT2*7), and 

rs1801279 (NAT2*14), as slow if homozygous for the variant allele at any locus (i.e., AA, 

CC, AA, AA, respectively), or heterozygous at 2 or more loci; intermediate if heterozygous 

at a single locus; or extensive if no variant allele at any locus [42]. Associations of 

pharmacokinetic measures with CYP2B6 and NAT2 genotype groups were assessed using 

the Jonckheere-Terpstra test for ordered alternatives. Associations with the 28 individual 

polymorphisms were assessed by linear regression. For associations with CYP2B6 and 

NAT2 genotype groups, we did not correct for multiple comparisons, as these were 

our primary focus. We used Bonferroni correction for multiple comparisons for the 28 

polymorphisms, giving a significance threshold of p = 1.8×10−3. We did not correct for 

comparing the multiple pharmacokinetic parameters, as these tended to correlate with each 

other. Two-sided tests were used.

RESULTS

Participant characteristics

Study A5338 enrolled 62 participants in Botswana (n=7), Zimbabwe (n=8), Kenya (n=12), 

Durban, South Africa (n=17) and Johannesburg, South Africa (n=18), from whom genotype 

data were available for all 62, and pharmacokinetic-evaluable data were available for 44. Of 

the 44 participants, 17 (39%) were CYP2B6 normal metabolizers, 21 (48%) were CYP2B6 
intermediate metabolizers, and 6 (14%) were CYP2B6 poor metabolizers. In addition, 5 

(11%) were NAT2 rapid acetylators, 20 (45%) were NAT2 intermediate acetylators, and 

19 (43%) were NAT2 slow acetylators. At weeks 10 and 12, all women reported 100% 

adherence to their HIV and tuberculosis medications. Two participants excluded from the 

primary A5338 publication because they lacked pharmacokinetic results at either week 10 

or week 12 [15] were included in the present analyses, as we allowed for participants with 

results for at least one of the two weeks.
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Genetic associations with MPA pharmacokinetics

Among the 44 evaluable participants, there were no significant associations between 

CYP2B6 metabolizer status and any primary pharmacokinetic parameter for MPA, including 

Cmin at week 12 (p=0.48), apparent clearance (p=0.60), Cmax (p=0.59), AUC0–12wk 

(p=0.99) and half-life (p=0.19). Similarly, considering only the interindividual variability in 

pharmacokinetic parameters after adjusting for covariate effects, there were no associations 

with CYP2B6 metabolizer status, including for clearance (p=0.56), uptake rate (p=0.19) 

and mean transit time of the slow release (p=0.89). The relationship between CYP2B6 
metabolizer status, MPA Cmin and MPA clearance is shown in the Figure. Individuals with 

CYP2B6 poor metabolizer genotypes were no more likely to have subtherapeutic MPA 

concentrations

Among the 44 evaluable participants, there was no significant associations between NAT2 
acetylator status and any primary pharmacokinetic parameter, including Cmin at week 12 

(p=0.94), apparent clearance (p=0.85), Cmax (p=0.21), AUC0–12wk (p=0.62) and half-life 

(p=0.18). Considering only the unexplained interindividual variability in pharmacokinetic 

parameters, there were no associations with NAT2 acetylator status, including for clearance 

(p=0.65), uptake rate (p=0.18) and mean transit time of the slow release (p=0.14). The 

relationship between NAT2 acetylator status, MPA Cmin and MPA clearance is shown in the 

Figure.

Exploratory analyses beyond CYP2B6 metabolizer and NAT2 acetylator status included 

28 polymorphisms. There were no consistent associations between any polymorphism and 

any MPA pharmacokinetic parameter, and none were statistically significant after correction 

for multiple comparisons. The lowest p-values for association were as follows: for Cmin 

at week 12, NAT2 rs1799929 (p=0.048); for apparent clearance, Cmax and AUC0–12wk, 

intergenic rs727428 (p=0.019, p=0.62 and p=0.0028, respectively); and for half-life, 

CYP2B6 rs28399499 (p=0.038). Considering unexplained interindividual variability in 

pharmacokinetic parameters, the lowest p-values for association were as follows: for 

clearance, CYP2B6 rs3745274 (p=0.036); for uptake rate, intergenic rs727428 (p=0.016); 

and for mean transit time of the slow release fraction, NAT2 rs1799929 (p=0.032). Complete 

association results for each MPA pharmacokinetic parameter with each polymorphism are in 

Supplemental Material.

DISCUSSION

Study A5338 was the first study to document the interaction between DMPA and rifampicin, 

albeit in combination with efavirenz [15]. It showed that, among HIV and tuberculosis 

coinfected women receiving efavirenz-containing ART and tuberculosis treatment that 

included rifampicin and isoniazid, and who were then administered as a single 150 mg 

intramuscular injection of DMPA, median clearance of MPA was substantially greater 

than in historical controls [16, 17], suggesting that more frequent DMPA dosing may 

be appropriate, most likely to every 8–10 weeks. The present study, based on 44 

evaluable participants from A5338, found no substantial associations between either 

CYP2B6 metabolizer status or NAT2 acetylator status and any clinically-relevant MPA 

pharmacokinetic parameter. Exploratory analyses involving 28 individual polymorphisms 
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found no consistent associations with MPA pharmacokinetic parameters, and no association 

withstood correction for multiple testing.

The lack of substantial associations of CYP2B6 metabolizer status with MPA 

pharmacokinetic parameters is unexpected. Efavirenz is a potent inducer of CYP450 

enzymes that metabolize MPA [12, 13], and efavirenz has been shown to interact with 

some hormonal contraceptives [13, 14]. When efavirenz-based ART was combined with 

a levonorgestrel-releasing contraceptive implant, CYP2B6 poor metabolizer genotype was 

associated with lower levonorgestrel Cmax and AUC [43]. Similarly, in ACTG study A5316, 

efavirenz reduced plasma concentrations of etonogestrel and ethinyl estradiol, given as a 

vaginal ring [13], and among 24 women in the efavirenz group in that study, CYP2B6 poor 

metabolizer genotype was associated with greater reductions [44]. In contrast, ACTG study 

A5093, which compared pharmacokinetics of DMPA and selected ART regimens among 

women living with HIV, found no difference in MPA AUC, Cmax or clearance between 

study groups [16, 17], while a study by Nanda et al. demonstrated higher plasma MPA 

AUC values among women receiving ART with zidovudine, lamivudine and efavirenz than 

those not on ART [45]. It is possible that any modest induction of MPA clearance by 

efavirenz could not be discerned in the context of the greater induction of CYP3A4 activity 

by rifampicin [46].

The lack of substantial associations with NAT2 acetylator status is also somewhat 

unexpected. There is markedly greater plasma isoniazid exposure with NAT2 slow acetylator 

genotypes [18–21]. Although MPA is not a substrate of NAT2, isoniazid is a mechanism­

based inhibitor of CYP3A4, CYP2A6, CYP1A2 and CYP2C19 [47], and MPA undergoes 

metabolism by hepatic CYP isoforms, primarily CYP3A4 [10]. Some patients receiving 

tuberculosis therapy that includes isoniazid with rifampicin experience increased plasma 

efavirenz exposure, particularly in the presence of CYP2B6 and/or NAT2 loss-of-function 

polymorphisms [29–31], which may involve isoniazid inhibition of CYP2A6 [30–32, 34]. In 

ACTG study A5279, which studied rifapentine plus isoniazid for preventing tuberculosis in 

patients living with HIV [48], NAT2 slow acetylators had higher plasma concentrations 

not only of efavirenz, but also of rifapentine, its 25-desacetyl rifapentine metabolite, 

and nevirapine [49], suggesting inhibitory effects of isoniazid beyond CYP2A6. In the 

present study, we observed no such increases in plasma MPA exposure among NAT2 slow 

acetylators. This study was not designed to distinguish inductive effects of rifampicin from 

possible inhibitory effects of isoniazid on MPA clearance.

The present study had limitations. Our sample size of 44 evaluable women limited our 

ability to more thoroughly define genetic associations. However, our small size should 

be sufficient for detecting pharmacokinetic associations with frequent polymorphisms with 

large effect sizes, as is true for CYP2B6 with efavirenz, and for NAT2 with isoniazid. 

For example, in ACTG study A5316, an analysis limited to 24 women in the efavirenz 

group showed a highly significant association (P = 6.7×10−4) between CYP2B6 poor 

metabolizer genotype and reduced plasma concentrations of etonogestrel and ethinyl 

estradiol, given as a vaginal ring [44]. The exploratory analyses only included 28 selected 

polymorphisms. Other variants may be associated with pharmacokinetics of MPA, including 

infrequent polymorphisms that were not included in this analysis. We did not assess whether 
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particular NRTIs affect genetic associations or MPA pharmacokinetic parameters, which 

seems unlikely. We did not genotype several polymorphisms that were recently associated 

(although not significant after correcting for multiple testing) with plasma etonogestrel 

concentrations [50], which is structurally similar to MPA.

In summary, study A5338 suggested that more frequent DMPA dosing may be appropriate 

for HIV and tuberculosis coinfected women receiving efavirenz-containing ART, and whose 

tuberculosis treatment included rifampicin and isoniazid. The present analyses suggest that 

knowledge of CYP2B6 metabolizer status or NAT2 acetylator status will not be useful in 

individualizing DMPA dosing frequency in this setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Relationships between CYP2B6 metabolizer status, NAT2 acetylator status, and 
selected medroxyprogesterone acetate pharmacokinetic parameters among 44 participants.
Top panel: associations of apparent clearance with CYP2B6 metabolizer status (left) and 

NAT2 acetylator status (right); Bottom panel: associations of trough concentration with 

CYP2B6 metabolizer status (left) and NAT2 acetylator status (right). The dashed line 

indicates the MPA therapeutic cut-off of 0.1 ng/mL. All participants received a single 

150 mg intramuscular injection of depot medroxyprogesterone acetate. Error bars indicate 

median and interquartile range. Jonckheere-Terpstra test P-values are shown. MPA = 

medroxyprogesterone acetate; Cmin = trough concentration.
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