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Abstract

Introduction: Prenatal exposure to fine particulate matter air pollution (PM2.5) is an important, 

under-studied risk factor for neurodevelopmental dysfunction. We describe the relationships 

between prenatal PM2.5 exposure and vigilance and inhibitory control, executive functions related 

to multiple health outcomes in Mexico City children.

Methods: We studied 320 children enrolled in Programming Research in Obesity, GRowth, 

Environment and Social Stressors, a longitudinal birth cohort study in Mexico City. We used a 

spatio-temporal model to estimate daily prenatal PM2.5 exposure at each participant’s residential 

address. At age 9-10 years, children performed three Go/No-Go tasks, which measure vigilance 

and inhibitory control ability. We used Latent class analysis (LCA) to classify performance 
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into subgroups that reflected neurocognitive performance and applied multivariate regression 

and distributed lag regression modeling (DLM) to test overall and time-dependent associations 

between prenatal PM2.5 exposure and Go/No-Go performance.

Results: LCA detected two Go/No-Go phenotypes: high performers (Class 1) and low 

performers (Class 2). Predicting odds of Class 1 vs Class 2 membership based on prenatal PM2.5 

exposure timing, logistic regression modeling showed that average prenatal PM2.5 exposure in 

the second and third trimesters correlated with increased odds of membership in low-performance 

Class 2 (OR =1.59 (1.16, 2.17), p=0.004). Additionally, DLM analysis identified a critical window 

consisting of gestational days 103 to 268 (second and third trimesters) in which prenatal PM2.5 

exposure predicted poorer Go/No-Go performance.

Discussion: Increased prenatal PM2.5 exposure predicted decreased vigilance and inhibitory 

control at age 9-10 years. These findings highlight the second and third trimesters of gestation 

as critical windows of PM2.5 exposure for the development of vigilance and inhibitory control 

in preadolescent children. Because childhood development of vigilance and inhibitory control 

informs behavior, academic performance, and self-regulation into adulthood, these results may 

help to describe the relationship of prenatal PM2.5 exposure to long-term health and psychosocial 

outcomes. The integrative methodology of this study also contributes to a shift towards more 

holistic analysis.
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1. Introduction

Air pollution is a major risk factor for neurocognitive impairment in children that creates 

enormous social, economic, and healthcare costs worldwide (Lee et al., 2020). In Mexican 

cities, where the average ambient concentration of fine particulates (PM2.5) is over three 

times the international guideline value of 10μg/m3 (Molina et al., 2009), over 25% of 

children suffer from cognitive difficulties (Gaytán Jiménez et al., 2015). Prior literature 

shows that prenatal PM2.5 exposure is associated with childhood academic and behavioral 

problems such as ADHD, in which poor impulse control is an important feature of 

pathology. (Allen et al., 2017; Zhang et al., 2018). However, research addressing the impacts 

Bansal et al. Page 2

Environ Res. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of early-life exposure to air pollution on the development of executive functions—most 

importantly, vigilance and inhibitory control— is lacking despite its potential to provide 

insight into neurodevelopmental disorders.

By altering fetal neurodevelopment, PM2.5 exposure in utero may contribute to long-term 

health, social, and economic disadvantage (Grandjean & Landrigan, 2006; Grandjean & 

Landrigan, 2014). According to fetal programming theory, toxic insults during gestational 

windows of rapid cell differentiation may alter organ and tissue formation, inducing somatic 

phenotypes that predispose to impaired functioning and elevated disease risk (Kwon & Kim, 

2017). Therefore, characterizing the role of prenatal PM2.5 exposure in shaping trajectories 

of childhood neurocognitive phenotypes is a paramount research question for understanding 

the root causes of maladaptive brain development.

Specifically, PM2.5 exposure in utero may alter brain morphology by increasing oxidative 

stress and inflammation in the central nervous system (Cowell et al., 2019; Calderón­

Garcidueñas et al., 2008; Calderón-Garcidueñas et al., 2011). However, there is limited 

evidence of how the timing and quantity of prenatal PM2.5 exposures translate into 

cognitive impairment during middle childhood, a time of critical neurodevelopment (Clifford 

et al., 2016; Cserbik et al., 2020). One cohort study of 783 Dutch children found that 

prenatal PM2.5 exposure was associated with changes in cerebral cortex structure and 

impaired inhibitory control at age 6-10 years (Guxens et al., 2018). The present study 

uses the Go/No-Go task, a validated, computerized test of inhibitory control through which 

vigilance, inhibitory control, and information processing abilities are measurable (Eagle et 

al., 2008).

Current literature primarily analyzes effects of PM2.5 exposure on child cognitive 

development through regression analyses of individual outcomes. To better understand 

how PM2.5 exposure simultaneously impacts multiple neurodevelopmental domains and 

influences children’s ability to perform complex tasks, holistic approaches are needed. 

In this study, we used latent class analysis (LCA) to identify distinct Go/No-Go task 

performance phenotypes among children at age 9-10 years. LCA permits detection of 

higher-order relationships among vigilance, inhibitory control, and information processing 

abilities, in order to capture how diverse cognitive functions manifest conjointly in children 

(Eagle et al., 2008). Most importantly, LCA allows us to relate Go/No-Go performance 

phenotypes to socio-environmental variables, namely PM2.5 exposure.

Although multiple health outcomes are associated with critical windows of prenatal 

PM2.5 exposure (Cowell et al., 2019; Rosa et al., 2020), few studies report critical 

windows that predict neurocognitive outcomes by accounting for both timing and quantity 

of PM2.5 levels across gestation (Chiu et al., 2016). Despite promise of considerable 

clinical and public health benefit, the identification of vulnerable prenatal periods for 

brain development is incomplete. Cerebral cortex cellularity is thought to increase most 

rapidly between gestational weeks 15 and 20 (Ackerman, 1992), yet fetal defenses against 

PM2.5 neurotoxicity-- such as the blood brain barrier and hepatic detoxification-- develop 

heterogeneously across trimesters (Goasdoué et al., 2017; Giancotti et al., 2019). To 

understand the role of exposure timing on child neurodevelopment, we applied distributed 
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lag models (DLMs) to characterize associations between daily prenatal PM2.5 levels and 

cognitive performance on the Go/No-Go task.

In summary, this longitudinal cohort study describes relationships between outdoor prenatal 

PM2.5 exposure and neurocognitive function at age 9-10 years, based on Go/No-Go task 

performance. By combining latent class analysis and distributed lag modeling, we present 

a novel analytical paradigm to study the associations linking PM2.5 exposure quantity and 

timing to neurocognitive metrics of the Go/No-Go task.

2. Materials & Methods

2.1 Study population

From July 2007 to February 2011, pregnant women receiving prenatal care through 

the Mexican Social Security System (IMSS) living in Mexico City were recruited 

into the Programming Research in Obesity, GRowth, Environment and Social Stressors 

(PROGRESS) birth cohort study in Mexico City (Rosa et al., 2016). IMSS provides 

healthcare for predominantly low- to middle-income working-class families. Women were 

recruited if they were at least 18 years old, less than 20 weeks pregnant at enrollment time, 

and had completed primary education. Other inclusion/exclusion criteria and recruitment 

procedures have been described previously in detail (Braun et al., 2014).

A total of 948 pregnant women who delivered a live birth were enrolled in PROGRESS and 

their children were followed after delivery, with 67% retention by child age 8-10 years (81% 

retention after the first postpartum year). More specifically, longitudinal data were collected 

for 634 mother-child pairs, from which 534 children fully completed the administered Go/

No-Go tasks at age 8-10 years. Given that most families in the study cohort lacked internet 

and automobile access, this retention rate is consistent with previous longitudinal studies 

of hard-to-reach populations (Booker et al., 2011). There were no significant differences in 

PM2.5 exposure between the full cohort of 948 mother-child pairs and the 534 pairs for 

which Go/No-Go tasks were fully completed (first trimester: p = 0.678; second trimester: p 

= 0.323; third trimester: p = 0.760; first postpartum year: p = 0.632).

Based on preliminary data from the geospatial PM2.5 exposure model (described in Section 

2.2), it is important to be mindful of potential confounding from changing pollution 

exposures after the shutdown of multiple factories in the study recruitment area beginning 

in 2009, due to the global economic recession in Mexico City (Villarreal, 2010; Sidaoui et 

al., 2010). For this reason, we restricted our analysis to mother-child dyads in which children 

were conceived on or before December 31, 2008 and therefore aged 9.00 to 10.99 years at 

the time of Go/No-Go task administration. Dyads in which children were conceived on or 

after January 1, 2009 were excluded from these analyses. In total, this study includes 320 

children who completed the Go/No-Go task and had complete data on relevant covariates 

(described below).

Procedures were approved by institutional review boards at Harvard School of Public 

Health, Icahn School of Medicine at Mount Sinai, and the Mexican National Institute of 

Public Health. Women provided written informed consent in Spanish.
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2.2 Prenatal PM2.5 exposure levels

We used a spatio-temporal model that incorporates Moderate Resolution Imaging 

Spectroradiometer satellite-derived Aerosol Optical Depth (AOD) measurements at a spatial 

resolution of 1 × 1 km2 described in detail in (Just et al., 2015). We layered this 

remote sensing data with traditional land-use regression predictors and a spatial smoothing 

technique to yield residence-specific estimates of PM2.5 exposure and a corresponding 

unique daily estimate of PM2.5 exposure for each participant. Overall, the model showed 

strong out-of-sample cross-validation (R2=0.724), which was calculated by excluding one 

monitor at a time to predict daily PM2.5 levels (including days when satellite data was 

unavailable) (Just et al., 2015). The model also has been externally validated and widely 

used (Huang et al., 2021; Wolffe et al., 2021; Zhang et al., 2021). Beginning at estimated 

date of conception, daily PM2.5 exposure levels were measured for all participants based on 

their residential address, which was tagged with a GPS device during each visit. Notably, 

most families in the study cohort lacked consistent automobile access, so all day-to-day 

activity is likely to have been confined to areas and environments around the home. 

Therefore, even on days when pregnant mothers may have been at work, their place of work 

would likely have been in nearby areas with similar exposures to pollutants. All participants 

were transported to and from their residential address by car for study visits.

2.3 Go/No-Go task

As part of the study follow-up visit, participants aged 8-10 years completed a computerized 

Go/No-Go task (Casey et al., 1997; Tottenham et al., 2011) to measure vigilance, inhibitory 

control, and information processing (Eagle et al., 2008). Stimuli were presented using 

E-Prime version 3 (Psychology Software Tools, Pittsburgh, PA). The task required 

participants to press the spacebar as quickly as possible when “go” stimuli were presented 

and to withhold response when “no-go” stimuli were presented. Three conditions for 

measuring the neurocognitive domains were administered (Figure 1): 1) Letter, for neutral, 

non-emotional context (the letter X served as the no-go stimulus and all other letters served 

as go stimuli); 2) Happy, for emotional context (happy faces of peers served as go stimuli 

and neutral faces of peers were the no-go stimuli); 3) Neutral, also for emotional context 

(neutral faces of peers served as go stimuli and happy faces of peers were the no-go stimuli). 

Faces used in conditions 2 and 3 were selected from the NIMH Child Emotional Faces 

Picture Set (NIMH-ChEFS) to match participant age and ethnicity (Egger et al., 2011).

In each of the three task conditions, 96 stimuli were presented (72 go stimuli and 24 no-go 

stimuli) in a pseudorandom order, such that no more than 2 no-go stimuli were presented 

in a row. This procedure is presented in Figure 1. In addition, 10 practice trials were 

administered before the start of each of the three task conditions. Before task administration, 

participants were also shown all faces used in the Happy and Neutral conditions and were 

asked to label the displayed emotion. Incorrect responses were corrected by the psychologist 

who administered the task.

Go/No-Go outcome measures include: false alarm rate (the number of presses when 

presented with a no-go stimulus divided by the total number of no-go stimuli; FAR), hit rate 
(the number of presses when presented with a go stimulus divided by the total number of 
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go stimuli; HR), the mean response time (MRT), and the standard deviation of the response 
time (SDRT). Results of these analyses reflect impulse control and vigilance. For example, 

lower HR and higher SDRT suggest poorer vigilance while higher FAR suggests poorer 

inhibitory control. Lower FAR, higher HR, lower MRT, and lower SDRT indicate stronger 

performance. In total, there are 3 Go/No Go task conditions (Letter, Happy, and Neutral) and 

4 outcome measures (FAR, HR, MRT, and SRDT) resulting in 12 Go/No Go outcomes.

2.4 Covariates

Covariates were selected based on previous neurobehavioral literature including prior 

PROGRESS studies (Aris et al., 2019; McGuinn et al., 2020). Biological sex, age at 

assessment, birth weight, and gestational age at birth of child participants were included 

as covariates. Date of conception and gestational age at birth were estimated from the date 

of last menstrual period (LMP) and a standardized physical examination of the newborn. 

Ultrasounds are not readily available for prenatal care in Mexico City, so gestational age 

at birth determined by physical examination was used when the two methods (LMP and 

physical examination) indicated ages differing by more than 3 weeks (Rosa et al., 2020).

Additionally, questionnaires administered at enrollment collected information on 

socioeconomic status (Carrasco, 2002), maternal age, maternal education level, maternal 

smoking, and secondhand household tobacco exposure (reported at third-trimester follow­

up and 3-months postpartum), which were likewise included as covariates. Season of 

conception was considered to account for exposure seasonality and defined as: dry cold 

(November–February), dry warm (March–April), or rainy (May–October). Finally, maternal 

blood lead levels obtained by serologic analysis during the second and third trimesters 

(Braun et al., 2014) were taken into account.

2.5 Statistical analysis

We first assessed univariate descriptive statistics and bivariate associations to explore 

distributions of variables and their relationships to one another. We then applied latent class 

analysis to detect functional groupings among participants based on Go/No-Go outcomes. 

We also modeled associations of prenatal PM2.5 exposure (measured cumulatively and 

in daily intervals) to Go/No-Go performance using linear and logistic regression and 

distributed lag modeling. All analyses were performed using R version 4.0.1 (R Core Team, 

Vienna, Austria, 2018). Details on these procedures follow.

2.5.1 Latent class analysis—Latent class analysis (LCA) is a statistical approach 

to identify group membership in the outcome of a study population outcome. LCA can 

define discrete, unobserved subgroups within a population that share similar performance 

phenotypes and was used to address Go/No-Go performance to both reduce dimensionality 

of the 12 Go/No-Go outcome measures, which consisted of four primary Go/No-Go 

outcomes (FAR, HR, MRT, and SDRT) for each of three task conditions (Happy, Neutral, 

and Letter). LCA also enabled characterization of overall participant performance into 

discrete categories for regression analysis. Participants were classified to a particular latent 

class if they shared a similar pattern of FAR, HR, MRT, and SDRT results relative to 

participants in the assigned latent class and a unique pattern relative to participants in other 
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latent classes. The ideal number of latent classes was determined via Bayesian Information 

Criteria (BIC) adjusted for sample size to maximize intraclass homogeneity and interclass 

heterogeneity on measured variables (Keribin, 1998). LCA was implemented using normal 

mixture modeling fitted via VVE algorithm for model-based clustering in the Mclust 
package in R.

2.5.2 Multivariable linear and logistic regression—Based on the LCA results, 

we used linear regression to characterize associations between prenatal PM2.5 exposure 

(trimester and whole pregnancy averages), as well as average postnatal exposure during 

the first year of life, with performance on Go/No-Go task outcomes. Logistic regression 

examined the relationship of trimester average prenatal PM2.5 exposure to LCA results 

describing overall Go/No-Go performance (membership in high-performance Class 1 versus 

low-performance Class 2). Models were adjusted for all covariates reported in Section 2.4. 

as well as average first-year postnatal PM2.5 exposure.

2.5.3 Distributed lag modeling—To identify important prenatal time points (critical 

windows of exposure) for the association of daily prenatal PM2.5 exposure to child Go/No­

Go task performance at age 9-10 years, we used distributed lag regression models (DLMs). 

In these models, a time-varying predictor is regressed against a dependent variable based 

on both the predictor’s cross-sectional value and the lagged (past) values of the predictor 

variable. DLMs create an exposure lag space to account for the magnitude and timing of all 

average daily PM2.5 exposures as well as correlations between average exposure levels on 

different days (Gasparrini et al., 2010).

We fit linear DLMs described as: Y i = β0 + j = 1
n αjAPij + β1x1 + β2x2 + ... + εi,, where APij 

is the estimated average PM2.5 level on day j of pregnancy and x1i, …, xpi, represent 

covariates for subject i. Because collinearity among daily pollution averages can confound 

estimated day-specific effects of prenatal PM2.5 exposures, we fit constrained DLMs with 

the assumptions outlined in (Gasparrini 2011; Gasparrini et al., 2010).

3. Results

3.1 Participant characteristics

Of the 543 subjects evaluated for the Go/No Go task, 320 were between 9-10 years old 

and had complete covariate data. A description of the cohort is included in Table 1. No 

systematic differences occurred along any covariate, except child age, between mother-child 

pairs included in these analyses versus the full PROGRESS cohort. Table 1 describes cohort 

characteristics including demographics, prenatal PM2.5 exposure, and child performance on 

Go/No-Go tasks (Happy, Neutral, and Letter) stratified by sex.

3.2 Latent class analysis

3.2.1 Model selection & interpretation—After testing models of two to six latent 

classes against standard model fit criteria, a two-class solution that minimized BIC was 

selected. Figure 2 presents standardized mean values for all outcomes of the Happy, Neutral, 

and Letter Go/No-Go tasks for the two identified latent classes, Class 1 (n = 220) and Class 
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2 (n = 100). Figure 3 presents absolute scores on measured Go/No-Go outcomes (HR, FAR, 

MRT, SDRT) by latent class.

For all Go/No-Go task conditions, comparisons of mean SDRT, HR, and FAR between Class 

1 and Class 2 were highly significant (Table 2), with Class 1 obtaining significantly more 

favorable performance than Class 2. Since Class 1 demonstrated consistently lower FAR, 

higher HR, and lower SDRT than Class 2, Class 1 was designated the high-performance 

reference group and Class 2 was termed the low-performance group. Of note, Class 1 vs 

Class 2 comparisons of mean MRT were significant for the Happy and Neutral tasks, with 

Class 1 participants recording slightly longer mean reaction times than Class 2 participants, 

but were not significantly different for the Letter task. Importantly, no covariates were 

statistically different between Class 1 and Class 2 participants.

3.2.2 Prenatal PM2.5 and Go/No-Go latent class membership—Multivariate 

logistic regression analysis using the above LCA results to define Go/No Go performance 

showed that increased average PM2.5 exposure in each prenatal trimester was associated 

with significantly increased odds of membership in the low-performing Class 2 (first 

trimester: OR=1.34 (1.12-1.59), p=0.001; second trimester: OR=1.14, (1.01-1.28) p=0.03; 

third trimester: OR=1.36 (1.14-1.62), p<0.001) at age 9-10 years. Importantly, no covariates 

significantly confounded the relationship between trimester PM2.5 exposures and latent 

class membership. These results are summarized in Table 3.

3.3 Distributed lag modeling

3.3.1 Predicting latent class membership based on prenatal exposure timing
—Figure 4 represents the relationship of daily prenatal PM2.5 exposure from conception 

to 43 weeks post-conception, the most advanced gestational age of any participant, to 

membership in Class 1 (high performance) vs Class 2 (low performance). A critical 

window for prenatal PM2.5 exposure was identified as gestational days 103-268 (gestational 

weeks 14.7-38.3). In conjunction with the multivariate logistic regression of latent class 

membership (Section 3.2.2), this result suggests that increased PM2.5 exposures from the 

second and third trimesters predict higher odds of membership in Class 2 relative to Class 1.

3.3.2 Predicting Go/No-Go SDRT based on prenatal exposure timing—We also 

used DLMs to explore the effects of prenatal exposure timing on individual Go/No-Go 

task parameters, controlling for all covariates. For the SDRT parameter, we observed the 

following CWs of prenatal PM2.5 exposure for each Go/No-Go task condition (higher 

SDRT indicates increased response time variability and worsened vigilance):

• Happy: Gestational days 135 to 265 (gestational weeks 19.3-37.9). This suggests 

increased PM2.5 exposures from middle second trimester to middle-late third 

trimester predict increased Happy SDRT, indicating decreased vigilance.

• Neutral: Gestational days 118 to 247 (gestational weeks 16.9-35.3). This 

suggests increased PM2.5 exposures from early-middle second trimester to late 

third trimester predict increased Neutral SDRT, indicating decreased vigilance.
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• Letter: Gestational days 6 to 259 (gestational weeks 0.9-37). This suggests 

increased PM2.5 exposures from early first trimester to late third trimester 

predict increased Letter SDRT, indicating decreased vigilance.

3.3.3 Regression modeling—As a robustness check, multivariable linear regression 

models were fit to predict Happy, Neutral, and Letter Go/No-Go task SDRT, based on 

average PM2.5 exposure level across the respective CWs (Figure 5) and stated covariates. 

Again, average PM2.5 exposure across the CW was significantly associated with increased 

Go/No-Go SDRT for all three stimulus types (Happy: Bcw = 2.61 (0.62-4.60) ms, p=0.01; 

Neutral: Bcw = 2.52 (0.52-4.52) ms, p=0.015; Letter: Bcw = 2.51 (1.74-4.85) ms, p=0.003).

Furthermore, we performed multivariate logistic regression modeling to predict class 1 vs 

class 2 membership based on average PM2.5 exposure across the identified CW (Figure 4) 

and stated covariates. This result (OR =1.59 (1.16, 2.17), p=0.004) further corroborates the 

latent classes described in Section 3.2.1. These results are summarized in Table 3.

3.3.4 Sensitivity analysis

Multiple sensitivity analyses were conducted to consider the effects of specific covariates 

on identified CWs. First, we re-modelled associations between prenatal PM2.5 exposures 

across gestation and Go/No-Go parameters without controlling for postnatal PM2.5 

exposure level; the magnitude and direction of SDRT associations did not change. No new 

associations between Go/No-Go parameters and prenatal PM2.5 exposure were detected.

Since prenatal lead exposure has been correlated with adverse neurodevelopmental outcomes 

in childhood (Fruh et al., 2019), we also re-modelled associations between prenatal PM2.5 

exposure and Go/No-Go parameters while adjusting for maternal blood lead levels in the 

second and third trimesters. The magnitude and direction of SDRT associations continued to 

remain the same, and no new associations were detected (Appendix, Figures A1–A2).

Because maternal smoking and household tobacco exposure data were not available for 

some participants, all DLMs and regression models were re-fitted without adjusting for 

these covariates. Results were very similar to those described above (Appendix, Figures A3–

A4). Finally, we explored effect modification by sex. Sex-stratified analyses yielded results 

closely resembling those of the full cohort for both male and female children (Appendix, 

Figure A5).

Discussion

In this prospective longitudinal study, increased prenatal PM2.5 exposure in the second and 

third trimesters of gestation predicted diminished child inhibitory control and vigilance in 

middle childhood (age 9-10 years). Based on neurocognitive outcomes derived from the Go/

No-Go task, LCA revealed a two-class solution separating high performers (Class 1) from 

low performers (Class 2). This result supports current literature in which heterogeneous 

neurocognitive phenotypes have been observed among children at age 9-10 years (Heeren 

et al., 2017). Notably, the grouping of children aged 9-10 years as neurodevelopmentally 
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comparable to one another yet different from children of other ages is highly consistent with 

existing literature (Farber & Petrenko, 2012; Artuso & Palladino, 2019; Zhan et al., 2020).

The FAR, HR, and SDRT parameters of the Go/No-Go task revealed highly significant 

differences in neurocognitive performance between Class 1 and Class 2. The Go/No-Go task 

integrates vigilance, inhibitory control, and information processing abilities, all of which 

can be measured during middle childhood (Bunge et al., 2002; Diaz et al., 2018; Karbach 

& Unger, 2014). Because Class 1 children outperformed Class 2 children on the Happy, 

Neutral, and Letter Go/No-Go tasks, our results suggest that inter-class cognitive differences 

may exist in response to both neutral and emotionally salient stimuli (Bunge et al., 2002; 

Schulz et al., 2007, Cohen et al., 2012).

In the Go/No-Go task, increased FAR indicates lower levels of inhibitory control, or 

the ability to repress impulsive and unreasoned behaviors. Along with working memory 

and flexible thinking, inhibitory control is one of the executive functions, a set of high­

level mental skills that develop throughout childhood and coordinate cognition, emotion, 

and behavior (Diamond, 2013). Executive functions are associated with long-term health, 

social wellbeing, educational attainment, and economic productivity because they enable 

motivation, concentration, reasoned behavior, appropriate response to novel stimuli, and 

resolution of unanticipated challenges and unfamiliar situations (Moffitt et al., 2011; Moffitt, 

2012). By demonstrating that Class 2 children with increased FAR were exposed to higher 

levels of prenatal PM2.5, our data support the hypothesis that early-life PM2.5 exposure 

longitudinally impacts the development of executive functions— specifically inhibitory 

control— at age 9-10 years, a time when executive functions are more highly expressed 

and thus more easily measurable in comparison to early childhood (Davidson et al., 2006; 

Diamond, 2013; Luna et al., 2004; Luna, 2009).

Furthermore, increased Go/No-Go SDRT (response time variability) reflects reduced 

vigilance, which is defined as the ability to maintain attention over time and has been 

linked to ADHD (Lewis et al., 2017). Consistent with our findings, increased third-trimester 

PM2.5 exposure has been linked to reduced corpus callosum volume— a classic finding of 

ADHD— at age 8-12 years (Mortamais et al., 2019). Given our findings, we propose that 

PM2.5 exposure at critical prenatal time points may increase the risk of childhood attention 

problems. However, additional research examining biomarker and cellular responses to air 

pollution is warranted both to corroborate these results and to elucidate mechanisms of 

action.

In addition, increased MRT suggests slower information processing speed, a lower-level 

cognitive function. Class 1 subjects have significantly lower FAR, lower SDRT, and 

higher HR than Class 2 subjects across task conditions, whereas MRT did not always 

differ between the two classes. Thus, our findings support existing evidence that higher­

order functions related to attention deficit (such as vigilance and inhibitory control) are 

preferentially impacted by prenatal PM2.5 exposure (de Prado Bert et al., 2018; Herting et 

al., 2019).
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Next, we note that our distributed lag analysis to predict Class 1 vs Class 2 membership 

based on daily prenatal PM2.5 exposures revealed a critical window from gestational days 

103 to 268— a period encompassing the second and third trimesters. This finding aligns 

with prior literature that highlights the second and third trimesters as vulnerable timepoints 

for air pollution exposure particularly with respect to autism, a disorder in which executive 

functions such as inhibitory control are frequently impaired (Jiang et al., 2014; Kalkbrenner 

et al.; 2015; Raz et al., 2015). Notably, short- and long- range functional connectivity 

between brain regions develops in the latter half of gestation, with short-range connections 

displaying most rapid gains in the early third trimester (Jakab et al., 2014). While replication 

and validation of these findings are needed, the second to third trimester window may 

represent a life stage at which targeted public health interventions to reduce PM2.5 exposure 

yields greatest benefit.

Combining LCA and DLMs contributes to the emerging precedent of analyzing health 

effects of air pollution in more integrative ways. Integrative data approaches are crucial to 

understanding the full impacts of exposure timing and the summation of cognitive domains 

into complex tasks such as Go/No-Go. While individual regressions between prenatal PM2.5 

exposure and FAR, HR, and MRT did not display significant critical windows for any 

Go/No-Go task type, applying LCA and DLMs allowed us to identify disparities in Go/No­

Go performance as well as exposure timing effects that were undetectable when analyzing 

these individual outcomes in isolation. This result argues against using a siloed approach 

to understand effects of exposure quantity and timing on neurocognitive parameters; 

research that attributes critical windows to individual cognitive functions without assessing 

overall phenotypes of cognitive performance may underestimate the interconnectedness of 

diverse areas of cognition in relation to environmental determinants. Our study applies 

an accessible methodology in which multiple cognitive outcome variables are combined 

to detect interrelationships between child vigilance, inhibitory control, and information 

processing abilities.

Additionally, because prenatal and postnatal PM2.5 exposures are correlated, it is 

important to parse out their differential effects. Statistical significance of prenatal 

exposures can dissipate after controlling for postnatal PM2.5 exposure (Bellinger, 2013), 

so postnatal exposure data were routinely included as covariates to discern prenatal 

exposures’ partial effects. All findings were robust to controls for postnatal conditions, 

and postnatal conditions themselves were not significantly associated with neurocognitive 

phenotypes. This result is reasonable, considering that prenatal conditions guide the earliest 

neurodevelopmental stages (Konkel, 2018) and that toxin clearance mechanisms of the 

central nervous system continue to develop postnatally (Rodier, 1995).

With regards to mechanism, prenatal exposure to air pollutants like PM2.5 may impact 

Go/No-Go task performance by inducing a hyperinflammatory state in the developing 

brain. Although multiple mechanisms likely contribute to toxin-elicited disruption of fetal 

development, current evidence suggests that PM2.5 exposures are associated with oxidative 

stress and inflammation in the fetal central nervous system (Costa et al., 2020; Allen et al., 

2017; Costa et al., 2017; Calderón-Garcidueñas et al., 2008). For instance, environmental 

insults that coincide temporally with vulnerable stages of brain development may trigger 
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increased inflammation (Block & Calderón-Garcidueñas, 2009), thereby disrupting specific 

sequences of development that impact downstream cell and tissue maturation (Jansson & 

Powell, 2007; Calderón-Garcidueñas et al., 2008). Our longitudinal findings lend support 

to the hypothesis that air pollution exposure at sensitive prenatal timepoints may override 

normal growth trajectories towards long-lasting, maladaptive neurobehavioral phenotypes 

that manifest as compromised executive functioning later in life (Calderón-Garcidueñas et 

al., 2014; Calderón-Garcidueñas et al., 2013). Indeed, a growing body of literature suggests 

that the prenatal and perinatal periods may be the most sensitive time periods in which 

pro-inflammatory exposures are linked to adverse neurobehavioral phenotypes such as 

learning disabilities and psychopathologies in later childhood and adulthood (Girchenko et 

al., 2020; Gumusoglu & Stevens, 2019; Goeden et al., 2016). While we found evidence for 

critical windows of PM2.5 exposure that affect inhibitory control and vigilance, additional 

studies are needed to replicate these findings and to better elucidate the pathophysiologic 

mechanisms driving them.

Our study benefits from numerous strengths, including high spatial resolution of PM2.5 

exposure measurements that cover every day of gestation and longitudinal covariate data 

and phenotype data spanning conception to middle childhood. Since cross-sectional studies 

cannot address longitudinal health effects of prenatal air pollution exposure, prospective 

studies such as the Programing Research in Obesity, Growth, Environment and Social Stress 

(PROGRESS) study in Mexico City offer an important opportunity to better understand fetal 

programming of executive functions. Relatedly, another strength of our study is its emphasis 

on methods that address life-stage effects, such as DLM for critical exposure windows. 

Regarding health equity, our study emphasizes the experiences of working-class women 

and children in a middle-income country, who are disproportionately exposed to neurotoxic 

environmental exposures (Catalán-Vázquez et al., 2009; Xu et al., 2016). While our results 

may not translate well to developed countries with lower levels of air pollution, levels of air 

pollution in Mexico City are similar to some large urban areas in the United States such as 

Los Angeles.

We also recognize potential limitations, such as residual confounding from unmeasured 

factors. While prioritizing working-class women and children is important for health equity, 

it also reduces data variability on covariates of maternal education and socioeconomic status. 

Prenatal smoking was also very infrequent within our cohort (less than one percent of 

participating women reported smoking in pregnancy), thereby limiting our ability to measure 

the hypothesized neurocognitive risk factor of active prenatal tobacco exposure (Holz et al., 

2014). We further acknowledge that ambient outdoor PM2.5 concentration using residential 

address only approximates true exposure and cannot fully account for time pregnant women 

spent indoors or away from home. Although the practice of keeping household windows 

open is custom in Mexico City, thereby allowing for equilibration of indoor and outdoor 

PM2.5 concentrations, additional indoor sources of PM2.5 such as cooking appliances may 

contribute to true PM2.5 exposure (Estévez-García et al., 2020; Vallejo et al., 2004). A 

related limitation of our study is the lack of data on whether mothers were working during 

pregnancy and the difficulty of pinpointing occupational pollution exposures due to varied 

work environments. However, as noted previously, it is likely that the majority of mothers 

remained at home while pregnant and those that continued working remained in areas 
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with similar pollution levels to their homes. In future research, applying our methodology 

to predict child educational, health, and psychosocial outcomes may provide a deeper 

understanding of the trajectory-shaping impacts of prenatal PM2.5 exposure.

In conclusion, this study demonstrates significant association between prenatal PM2.5 

exposure and neurocognitive functions such as inhibitory control in Mexico City children at 

age 9-10 years. Combining distributed lag modeling and latent class analysis, we found that 

increased PM2.5 exposure in gestational weeks 14.7 to 38.3 (second and third trimesters) 

predicted lower performance on the Go/No-Go task, a test of vigilance, inhibitory control, 

and information processing. To our knowledge, this is the first study that both identifies 

neurodevelopmental phenotypes spanning several cognitive processes and links critical 

gestational timepoints for PM2.5 exposure with the manifestation of these phenotypes 

in children. As such, this paper highlights how holistic, integrative analysis of cognitive 

performance metrics can provide a more rigorous understanding of the environmental 

determinants shaping child neurodevelopment.
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Appendix

Figure A1. 
Associations of daily prenatal PM2.5 levels to mean standard deviation of reaction time 

(SDRT) on three Go/No-Go tasks (Happy, Neutral, and Letter), accounting for prenatal 

maternal blood lead concentrations.
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Figure A2. 
Associations of daily prenatal PM2.5 levels to odds ratio of membership in Class 2 (vs Class 

1), accounting for prenatal maternal blood lead concentrations.
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Figure A3. 
Associations of daily prenatal PM2.5 levels to mean standard deviation of reaction time 

(SDRT) on three Go/No-Go tasks (Happy, Neutral, and Letter), without accounting for 

maternal smoking and household tobacco exposure.
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Figure A4. 
Associations of daily prenatal PM2.5 levels to odds ratio of membership in Class 2 (vs Class 

1), without accounting for maternal smoking and household tobacco exposure.
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Figure A5. 
Sex-specific associations of daily prenatal PM2.5 levels to mean standard deviation of 

reaction time (SDRT) on three Go/No-Go tasks: Happy, Neutral, and Letter.

Abbreviations:

PM2.5 Particulate matter of aerodynamic diameter less than 2.5μm

LCA Latent class analysis
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DLM Distributed lag modeling

FAR False alarm rate

HR Hit rate

MRT Mean reaction time

SDRT Standard deviation of reaction time

PROGRESS Programming Research in Obesity, GRowth, Environment, and 

Social Stressors Study
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Figure 1. 
Trial procedure of the Go/No-Go task.

Bansal et al. Page 24

Environ Res. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Latent class analysis (LCA) of child Go/No-Go performance at age 9-10 years. Orange: 

Class 1 (high performance; n = 220). Blue: Class 2 (low performance; n = 100).
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Figure 3. 
Child Go/No-Go task performance by latent class. A) Hit rate (HR); B) False alarm rate 

(FAR); C) Mean reaction time (MRT); D) Standard deviation of reaction time (SDRT). 

Orange: Class 1 (high performance; n = 220). Blue: Class 2 (low performance; n = 100).
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Figure 4. 
Associations of daily prenatal PM2.5 levels to odds ratio of membership in Class 2 (vs Class 

1. Class 1 = High Performance (Reference) Group. Class 2 = Low Performance Group. 

X-axis represents days of gestation and y-axis shows changes in odds of Class 2 membership 

(relative to Class 1) associated with a 10μg/m3 increase in PM2.5 exposure. Black lines 

graph the expected change in odds of Class 2 membership at each day of gestation; gray 

shadings show pointwise 95% CIs. A critical window (CW) is defined as a range of days 

over which the 95% CI excludes zero.
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Figure 5. 
Associations of daily prenatal PM2.5 levels to mean standard deviation of reaction time 

(SDRT) on three Go/No-Go tasks: Happy, Neutral, and Letter.
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Table 1.

Characteristics of participating mother-child pairs from the Programming Research in Obesity, Growth, 

Environment, and Social Stressors (PROGRESS) study in Mexico City.

Characteristics PROGRESS Cohort (n = 543) Subset Included in Analysis (n = 320) p-value

Demographics, Median (IQR)

Child Age, years 9.67 (9.27-10.27) 10.03 (9.67-10.37) < 0.001

Maternal Age at Birth, years 28 (24-32) 28 (23-32) 0.96

Maternal IQ* 86 (76-94) 84 (74-93) 0.13

Maternal BMI 28.11 (25.5-31.7) 27.97 (25.31-31.21) 0.46

Socioeconomic Status, n (%) 0.996

Low 290 (53) 169 (53)

Medium 199 (37) 121 (38)

High 54 (10) 30 (9)

Maternal Education, n (%) 0.92

Low 225 (41) 130 (41)

Medium 196 (36) 119 (37)

High 122 (22) 71 (22)

Average Daily PM2.5 Exposure (μg/m3), Median 
(IQR)

Whole Pregnancy 22.81(20.75-24.18) 23.63(22.74-24.77) < 0.001

1st Trimester 21.89(19.13-25.82) 24.19(19.62-27.95) < 0.001

2nd Trimester 21.1(18.96-25.45) 22.94(19.69-26.71) < 0.001

3rd Trimester 22.4(18.97-27.53) 25.08(20.19-28.64) < 0.001

1st Postpartum Year 22.71(20.41-23.80) 22.63(20.02-24.04) 0.95

Go/No-Go Task Performance, Median (IQR)

Happy

False Alarm Rate, % 21 (12-29) 17 (8-29) 0.46

  Hit Rate, % 93 (89-97) 94 (89-99) 0.24

 Reaction Time (ms) 571.3 (526.8-616.1) 583.2 (535.7-632.2) 0.07

Reaction Time SD (ms) 165.9 (138.9-223.6) 147.7 (129.8-168.6) < 0.001

Neutral

 False Alarm Rate, % 21 (12-29) 21 (12-33) 0.98

  Hit Rate, % 92 (86-96) 93 (88-97) 0.26

  Reaction Time (ms) 572.3 (531.3-620.7) 591.3 (545.6-649) 0.003

Reaction Time SD (ms) 171.9 (140.7-234.9) 149.9 (130.3-173.7) < 0.001

Letter

 False Alarm Rate, % 21 (12-33) 21 (12-33) 0.47

  Hit Rate, % 97 (93-99) 97 (94-99) 0.09

 Reaction Time (ms) 498.1 (455.4-536.8) 501.4 (455.4-543.4) 0.46

Reaction Time SD (ms) 148.7 (124.4-184.8) 136.8 (116.7-161.7) < 0.001

*
The Spanish version of the Wechsler’s Adult Intelligence Scale-III was administered. Results are similar to other Latin American populations with 

similar levels of education (Sierra Sanjurjo et al., 2015).
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Table 2.

Comparisons of mean Go/No-Go outcome score between Class 1 (high performance) and Class 2 (low 

performance)

Mean (SD)

False Alarm Rate (FAR) Class 1 Class 2 p-value

Happy 0.18 (0.12) 0.29 (0.18) < 1.0 x 10−5

Neutral 0.19 (0.11) 0.32 (0.18) < 1.0 x 10−5

Letter 0.21 (0.13) 0.28 (0.15) 1.3 x 10−4

Hit Rate (HR)

Happy 0.95 (0.04) 0.86 (0.12) < 1.0 x 10−5

Neutral 0.94 (0.05) 0.85 (0.12) < 1.0 x 10−5

Letter 0.97 (0.02) 0.91 (0.07) < 1.0 x 10−5

Mean Reaction Time, ms

Happy 588.29 (71.99) 562.12 (80.19) 0.027

Neutral 603.43 (70.17) 564.70 (84.88) 7.7 x 10−5

Letter 500.02 (69.30) 502.70 (75.37) 0.97

Standard Deviation of Reaction Time, ms

Happy 139.75 (22.83) 203.09 (60.41) < 1.0 x 10−5

Neutral 140.22 (21.66) 211.70 (63.06) < 1.0 x −5

Letter 127.59 (24.68) 178.05 (50.61) < 1.0 x 10−5

Performance parameters of Class 1 (high performance; n = 220) and Class 2 (low performance; n = 100) participants on three Go/No-Go tasks: 
Happy, Neutral, and Letter, p values reflect Wilcoxon t-test of Class 1 vs Class 2 sample means.
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Table 3.

Odds ratio of membership in Class 2 (low Go/No-Go task performance) versus Class 1 (high Go/No-Go task 

performance), based on average prenatal PM2.5 exposure over particular gestational timepoints

Gestational Timepoint Odds Ratio 95: CI: Lower Bound 95% CI: Upper Bound p value

Trimester 1 1.34 1.12 1.59 0.001

Trimester 2 1.14 1.01 1.28 0.03

Trimester 3 1.36 1.14 1.62 <0.001

Days 103-268 (critical window) 1.59 1.16 2.17 0.004
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