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Summary

Cancer-associated fibroblasts (CAFs) are highly heterogeneous. With the lack of a comprehensive 

understanding on CAFs’ functional distinctions, it remains unclear how cancer treatments could 

be personalized based on CAFs in a patient’s tumor. We have established a living biobank 

of CAFs derived from biopsies of patients’ non-small lung cancer (NSCLC) that encompasses 

a broad molecular spectrum of CAFs in clinical NSCLC. By functionally interrogating CAFs 

heterogeneity using the same therapeutics received by patients, we identify three functional 

subtypes: 1) robustly protective of cancers and highly expressing HGF and FGF7, 2) moderately 

protective of cancers and highly expressing FGF7, and 3) those providing minimal protection. 

These functional differences among CAFs are governed by their intrinsic TGF-β signaling 

which suppresses HGF and FGF7 expression. This CAF functional classification correlates with 

patients’ clinical response to targeted therapies and also associates with the tumor immune 

microenvironment, therefore provides an avenue to guide personalized treatment.

Graphical Abstract

eTOC Blurb

Hu et al. identify that cancer-associated fibroblasts (CAFs) derived from non-small cell 

lung cancer (NSCLC) patients are functionally heterogeneous. These functional distinctions 
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directly impact response to clinical anticancer treatment and associate with the tumor immune 

microenvironment. Thus, CAFs functional heterogeneity defines a unique parameter for designing 

more personalized treatments.

Introduction

The current personalized cancer treatment paradigm is largely based on molecular features, 

e.g., oncogenic mutations, of cancer cells (Herbst et al., 2018). However, patients rarely 

achieve complete remissions and both the depth and the duration of patients’ responses vary 

widely (Jänne et al., 2015; Sequist et al., 2015). Reasons underlying these differences are not 

fully understood. It is yet to be determined if functional differences among cancer-associated 

fibroblasts (CAFs) play a major role in the diverse clinical responses observed and if 

analyzing CAFs heterogeneity can improve cancer therapy (Junttila and de Sauvage, 2013).

CAFs constitute a substantial part of the tumor microenvironment and are recognized as an 

important component of the cancer’s ecosystem (Kalluri and Zeisberg, 2006; Sahai et al., 

2020). Recent single-cell RNA-sequencing (scRNA-seq) studies of solid tumors, including 

non-small cell lung cancer (NSCLC), suggest that CAFs are a collection of cells with 

diverse molecular features (Bartoschek et al., 2018; Elyada et al., 2019; Lambrechts et al., 

2018; Li et al., 2017; Qian et al., 2020). Furthermore, a few rare but biologically unique 

fibroblasts subtypes have been reported in breast and pancreatic cancers (Costa et al., 2018; 

Dominguez et al., 2020; Öhlund et al., 2017; Su et al., 2018). This diversity in CAFs 

raises increasing interest in exploiting CAFs to improve personalized cancer treatment. 

However, to what extent CAFs are functionally distinct and what clinical impacts different 

CAFs may have remain largely unknown. The lack of a comprehensive understanding of 

CAFs’ functional heterogeneity has hindered the development of more personalized cancer 

treatment, with previous studies based on various CAF definitions yielding inconsistent 

results (Koliaraki et al., 2015; Pallangyo et al., 2015; Wagner, 2016). Similarly, previous 

attempts to universally target and broadly deplete CAFs rarely improved patient’s outcome 

(Catenacci et al., 2015; Hofheinz et al., 2003; E. J. Kim et al., 2014; Narra et al., 2014). 

Thus, it remains unclear whether and how improved treatment strategies could be developed 

based on CAFs’ heterogeneity. In order to answer these questions, it is crucial to fully 

understand functional underpinnings of the broad spectrum of CAFs in a specific cancer 

type and their impacts on the current treatments of that cancer type.

Currently, the broad survey and characterization of the landscape of CAFs’ functions are 

challenging. Flow cytometry-based studies require predetermined CAF markers for CAFs 

differentiation, but a growing number of studies show that canonical CAF markers are 

often insufficient to distinguish CAFs’ functions (Dominguez et al., 2020; Eckert et al., 

2019; Su et al., 2018). Although scRNA-seq studies have clearly demonstrated various 

molecular phenotypes among CAFs, they are less effective in demonstrating CAFs’ different 

functions. Notably, however, results from scRNA-seq studies challenge how we should 

investigate CAFs biology, i.e. whether a small collection of CAF models would be sufficient 

to represent different groups of CAFs in a specific cancer type (Bartoschek et al., 2018; 

Elyada et al., 2019; Lambrechts et al., 2018; Li et al., 2017; Qian et al., 2020). Furthermore, 
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most current fibroblast models available for cancer research are not obtained from patients 

in the same clinical context, e.g., fibroblasts derived from fetus tissue or CAFs obtained 

from tumors with unrelated oncogenic backgrounds or from patients receiving unrelated 

treatments. Thus, it is often difficult to validate the clinical importance of the findings.

In order to address these critical needs, we have established a biobank of CAFs derived 

from biopsies of patients’ NSCLC harboring specific oncogenic alterations, such as 

EGFR mutations and ALK fusions. This large CAFs collection allows us to adequately 

recapitulate a broad spectrum of NSCLC CAFs with diverse molecular features. Here we 

have functionally characterized the landscape of NSCLC CAFs, revealed how they function 

differently, and demonstrated their potential clinical utilities.

Results

Establishment of a PDFs library adequately capturing NSCLC CAFs heterogeneity

To capture the diversity of CAFs in NSCLC for functional studies, we prospectively 

established a large collection of patient-derived fibroblast (PDF) cultures from biopsies of 

NSCLC harboring targetable oncogenic drivers such as EGFR mutations or ALK fusions 

(Figure 1A, S1A-B). We successfully derived PDF cultures from about 80% of biopsies 

(Figure S1C, Methods). Notably, it has been shown that fibroblasts’ phenotype can be 

affected by factors such as aging and site-of-origin (Chang et al., 2002; LeBleu and Kalluri, 

2018; Mahmoudi et al., 2019; Pereira et al., 2019). The high success rate in culture 

establishment enabled us to encompass a large variety of unique demographic features 

(Figure 1B) in our PDF collection (n=60, Table S1). After lineage confirmation of the 

cultures (Figure S2A-B, Methods), we immortalized the early PDF cultures with hTERT as 

previously described (Morales et al., 1999) (Figure S2C) to allow faithful long-term culture 

and prevent senescence-associated secretory phenotype emergence (Coppe et al., 2010). 

Immortalized PDFs maintained good fidelity with their parental lines as demonstrated by the 

expression of established CAF markers (Figure S2D) and were used for subsequent studies.

We first examined the degree of phenotypic heterogeneity in NSCLC CAFs. Similar to 

variable pathohistological presentations of stroma across different tumors (Figure 1A), PDFs 

exhibited considerable variability with respect to their morphology and growth patterns 

(Figure 1C). Molecularly, CAFs’ expression of the myofibroblast marker αSMA (encoded 

by ACTA2) (Kalluri and Zeisberg, 2006) was found to be divergent across different 

biopsies, and this diversity was conserved in the corresponding PDF cultures as tested 

by RNAscope (Figure 1D, S2E). Similar results were observed for another CAF marker 

S100A4 (Kalluri and Zeisberg, 2006) (Figure S2E). Thus, we do not observe a systematic 

change in previously defined fibroblast activation markers between a PDF culture and the 

biopsy from which it was derived from. To gain more insight into the variety and fidelity 

of these models, we characterized the expression of 10 CAF markers among these PDF 

models (Figure 1E). While transcriptional regulatory networks dictating fibroblasts identity 

are not well understood (De Jaeghere et al., 2019), previous studies suggested that fibroblast 

state can be affected by clinical factors such as patients’ age or site-of-origin of tumors 

(Chang et al., 2002; LeBleu and Kalluri, 2018; Mahmoudi et al., 2019; Pereira et al., 

2019). Intriguingly, the expression of collagen type 1 alpha 2 (COL1A2, a subunit of type I 
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collagen heterotrimers) and of αSMA strongly correlated with patients’ age, reminiscent of 

the normal aging process (Figure 1F), whereas the expression of PDGFRA and of S100A4 
correlated with the site of tumor biopsy (Figure 1F, S2F), consistent with previous findings 

(Lawson et al., 2005; Österreicher et al., 2011). We did not observe a systematic variation 

in these markers between EGFR and non-EGFR (mostly ALK) tumor CAFs (Figure S2F), 

similar to the lung CAFs in previous datasets (Figure S2G) (N. Kim et al., 2020; Laughney 

et al., 2020; Maynard et al., 2020).

A growing number of studies have indicated that canonical fibroblast markers are 

insufficient to dissect fibroblasts’ functional differences (Dominguez et al., 2020; Eckert 

et al., 2019; Su et al., 2018). Our findings support this observation. For example, although 

PDFs derived from five independent liver metastases of an autopsy case show consistent 

expression of some CAF markers (e.g., FAP), they also show profound variation in the 

expression of others (e.g., PDGFRA) (Figure 1G, S2H), suggesting that factors beyond 

site-of-origin and a patient’s genetics are responsible for these differences. The phenotypic 

presentation, mechanistic cause, as well as biological impact of such variations of CAFs 

may not be predictable with the current knowledge. Therefore, the PDF library provides 

a valuable resource for investigating these key questions to understand functional CAFs 

heterogeneity.

Although the PDF library adequately captures a wide range of clinical and pathological 

varieties with a focus on EGFR and ALK NSCLCs (mostly adenocarcinoma in non

smokers), we attempted to compare the phenotypic heterogeneity of PDFs with that 

of NSCLC CAFs in real-world clinical datasets. We analyzed 1,465 fibroblast cells 

from a representative scRNA-seq dataset of resected NSCLCs, including CAFs in lung 

adenocarcinoma, squamous cell carcinoma, and large cell carcinoma (Lambrechts et al., 

2018). Uniform Manifold Approximation and Projection (UMAP) revealed seven molecular 

classes, UMAP 1–8 with UMAP-4 being excluded due to poor quality single cells 

designation in the dataset (Figure 1H). Intriguingly, UMAP 8 was marked by the expression 

of type II human leukocyte antigen (HLA) and resembles a recently reported antigen 

presenting CAFs (apCAFs) (Figure S3A-B) (Chen et al., 2021; Elyada et al., 2019; Xing 

et al., 2021). We then mapped PDFs to these UMAP classes based on their expression of 

top expressed genes specific to each UMAP class (Figure S3A-B, Methods). These analyses 

demonstrated that PDFs differentially expressed unique UMAP marker genes (Figure S3C) 

and together recapitulated all seven molecular classes of clinical NSCLC CAFs (Figure 

1I). Further supporting that PDFs faithfully recapitulate the overall molecular repertoire of 

CAFs, the signature proximity among PDF UMAP classes mirrored that among CAF single 

cells (Figure S3D). Together, this PDF library largely captures the molecular heterogeneity 

of CAFs existed in NSCLC in patients.

NSCLC CAFs heterogeneity determines TKI treatment efficacy

Oncogenic mutations in EGFR and fusions in ALK are present in about 20% and 5%, 

respectively, of advanced NSCLC and tyrosine kinase inhibitors (TKIs) constitute the 

backbone of the standard-of-care of patients having these tumors (Herbst et al., 2018). 

However, patients whose tumors carrying the same genetic alteration do not benefit equally 
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from the same treatment, only a few achieve maximum remission whereas the majority 

of patients show different degrees of response or even no response (Jänne et al., 2015; 

Sequist et al., 2015). While mechanisms intrinsic to malignant cells in determining treatment 

response are important, the role of CAFs is less clear. In order to decipher whether and 

to what degree CAFs affect response to EGFR TKI treatment, we co-cultured the EGFR 
mutant (herein EGFR+) cancer cell line MGH707 with various PDFs. In the absence of 

PDFs, the EGFR TKI osimertinib (EGFRi) potently blocked the cancer cells’ growth (Figure 

2A, top). Co-culturing with certain PDFs substantially maintained the proliferation of cancer 

cells upon EGFRi treatment, while other PDFs provided only modest to no protection 

(Figure 2A, top). The diversity of PDFs’ impact can be sufficiently phenocopied by the 

corresponding PDFs’ conditioned media (Figure 2A, bottom), which was confirmed in 

a cohort of seven PDFs coupled with six cancer models (overall Spearman correlation, 

rs=0.80, Figure 2B). These results suggest that PDFs play a significant role in determining 

the overall efficacy of EGFRi treatment. However, this effect is heterogeneous and is 

PDF-dependent, supporting the diversity in PDFs’ function. These results also indicate that 

the rescue effect of PDFs is mainly mediated by soluble factors, whereby we leveraged 

conditioned media for high throughput analysis on PDFs.

We further surveyed 38 PDFs derived from EGFR+ NSCLC biopsies and assessed their 

ability to rescue three EGFR+ cancer models treated with EGFRi (Figure 2C). We found that 

there was a wide range of rescue afforded by these PDFs. Moreover, PDFs that provided 

strong rescue (rescue above the average level across all tested PDFs) also varied among 

cancer models. Specifically, 8 PDFs conferred strong rescue to all three cancer cell lines, 

18 PDFs rescued only 1 or 2 of cancer cell lines, and 12 PDFs had a negligible effect on 

all three cancer cell lines (Figure 2C and Figure 2D, top). PDFs from NSCLCs with ALK

fusions (herein ALK+) similarly demonstrated a range of rescue effect to ALK+ NSCLCs 

cell lines treated with the ALK TKI lorlatinib (ALKi), wherein a few PDFs rescued all 

ALK+ cancer models and other PDFs rescued only some of ALK+ cancer cell lines (Figure 

2D, bottom and Figure 2E). Several cancer-CAF crosstalk machineries have been reported 

to affect different aspects of cancer biology (Ghesquière et al., 2014; Gieniec et al., 2019; 

Quail and Joyce, 2013; Sethi and Kang, 2011). Our data here support that cancer cells have 

differential capacities and preferences to utilize CAF-derived secreted factors. Importantly, 

the heterogeneity in CAFs function is a key factor determining the specific context and the 

strength of the cancer-CAF crosstalk that contributes to the overall TKI response.

NSCLC CAFs recurrently rescue EGFR+ cancers via activating MET and/or FGFR

To better characterize the functional landscape of NSCLC CAFs and to unveil the potential 

cancer-CAF crosstalk related to TKI response, we used two approaches. First, we performed 

a large-scale secretome profiling of PDF cultures by using a 448-analyte multiplexed ELISA 

(Figure S4A, Table S2). Second, we compiled functional analysis on PDFs (n=38 EGFR+, 

n=22 non-EGFR+) with a large panel of patient-derived cancer models (n=12 EGFR+, n=4 

non-EGFR+) aiming to recapitulate a myriad of unique cancer-CAF combinations that may 

exist in patients.
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Multiplexed ELISA revealed a number of factors with diverse expression across PDFs 

(Figure S4A, Table S2). By comparing secreted factors with PDFs’ rescue capacities, we 

found that top correlates were highly enriched for growth factors, among which the MET 

ligand HGF ranked the highest (Figure 3A, S4B). Notably, activation of the MET receptor 

tyrosine kinase by gene amplification is known to mediate EGFRi resistance in the clinic 

(Engelman et al., 2007; Piotrowska et al., 2018; Sequist et al., 2011b). We confirmed 

that HGF is heterogeneously expressed by NSCLC PDFs in cell cultures (Figure S4C) 

as well as in clinical biopsies (Figure S4D). Similar to previous reports (Straussman et 

al., 2012; Turke et al., 2010; Wang et al., 2009; Wilson et al., 2012), we confirmed that 

exogeneous HGF could activate cancer cells’ MET and downstream signaling, such as 

PI3K-AKT and MAPK, despite inhibition of EGFR (Figure S4E). These results indicate 

that CAFs may protect cancer cells by activating tyrosine kinase receptor-mediated signaling 

to bypass the requirement for EGFR signaling (Figure S4F). Indeed, HGFhigh PDFs (i.e., 

PDFs secreting above the medium level of HGF among PDFs assessed by ELISA) conferred 

higher rescue than HGFlow PDFs (Figure S4G). Interestingly, however, combining the MET 

inhibitor INC280 (METi, Figure S4E) with EGFRi fully reversed resistance driven by 

recombinant HGF but only partially reversed the resistance driven by PDFs (Figure 3B, 

S4H). Notably, the addition of the METi abrogated rescue provided by HGFhigh PDFs more 

prominently, but a widespread HGF/MET-independent rescue effect remained across PDFs 

(Figure 3B, Figure S5A-B). Together, these results showed that only some CAFs mediated 

EGFRi resistance through activating MET, whereas many CAFs could also mediate EGFRi 

resistance through other soluble factor(s).

To uncover PDF-derived factors other than HGF that protect cells from EGFRi, we 

interrogated cancer cells in both the absence of presence of PDF-conditioned media in a 

focused drug combination screen (Figure 3C). Among the 16 compounds targeting key 

cancer signaling pathways tested (Table S3), the pan-fibroblast growth factor receptors 

(FGFR) 1–3 inhibitor BGJ398 (FGFRi) was most effective at negating HGF-independent 

rescue by PDFs (Figure 3C, S5A-D). FGFRi and METi together blocked the reactivated 

downstream signaling mediated by PDF190 (HGFhigh) upon EGFRi, and FGFRi alone was 

sufficient to suppress the downstream signaling in EGFRi resistance induced by PDF731 

(HGFlow) (Figure 3D). Indeed, we found the same CAF have the potential to promote MET 

and/or FGFR activation, dependent on the cancer cell; conversely, the same cancer cell 

may be rescued by either MET or FGFR, dependent on the CAF (Figure S5E). Together, 

these data revealed that FGFR in addition to MET is an essential bypass signaling pathway 

activated in cancer cells by CAFs in NSCLC.

To identify if there’s other recurrent cancer-CAF crosstalk contributing to EGFR TKI 

resistance, we surveyed 38 EGFR+ tumor-derived PDFs and tested them across 12 EGFR+ 

cancer cell lines. This matrix, comprising 456 unique PDF-cancer combinations, uncovered 

widespread PDF-driven EGFRi resistance that was only partially overcome by METi for 

HGFhigh PDFs (Figure 4A). The FGFRi-based combination had an even broader impact 

across most of the PDFs, and almost fully reversed resistance by HGFlow PDFs (Figure 

4A). In a few cancer cell lines, the rescue by HGFhigh PDFs was more impacted by the 

FGFRi combination than the METi combination, suggesting that some EGFR+ cancers 

may be more poised to take advantage of FGFR-mediated resistance. The PDFs’ overall 
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rescue is highly consistent with the additive effects of FGFR-mediated plus MET-mediated 

rescue (Figure S5F); and combining EGFRi with both FGFRi and METi abrogated PDF

mediated resistance in almost all PDF-cancer combinations (Figure 4A). Collectively, these 

data elucidate that MET and FGFR recurrently and potently mediate CAF-driven EGFRi 

resistance. CAFs heterogeneously activate one or both of these pathways, whose combined 

effect determines the CAFs overall rescue levels.

Next, we validated if CAF-derived activation of MET and FGFR pathways were sufficient 

to mediate EGFRi resistance in vivo. Given that human fibroblasts do not persist in mice 

(references (Blomme et al., 2018; Cassidy et al., 2015; Olsen et al., 2010) and Figure 

S5G), we examined the effect of fibroblasts on signaling and cell cycle of co-injected 

cancer cells in response to TKIs. Cancer cells (MGH707) were implanted either alone or 

together with CCD19-Lu, a fast-growing human lung fibroblast line that rescued cancer cells 

from EGFR inhibition robustly in vitro (Figure S5H). Co-injection of fibroblasts mitigated 

EGFRi-mediated suppression of cancer cell proliferation (Ki67) and downstream signaling 

(phosho-S6) (Figure 4B). METi or FGFRi added separately to EGFRi had no significant 

impact on cell proliferation or downstream signaling. In contrast, the triple combination 

significantly reduced both proliferation and signaling (Figure 4B). These data show proof 

of concept that fibroblasts can activate both MET and FGFR to confer EGFRi resistance 

in vivo and that in some cases inhibition of both is necessary for re-sensitization, which 

provides a starting point to identify more effective treatment by further tailoring it based on 

the impact of CAFs.

Expression of HGF and FGF7 define three subtypes of CAFs marked with distinct 
therapeutic strategies

Because MET and FGFR recurrently and potently mediated CAF-driven EGFRi resistance, 

we next classified PDFs based on their capacities to activate these pathways. We first tested 

the PDF rescue capacity in another genetic context (ALK+) and found that PDFs conferring 

substantial resistance to EGFRi, regardless of their original tumor’s oncogenic background, 

are also robust rescuers of ALKi (Figure S6A). We therefore analyzed the EGFR TKI 

rescue profile of all 60 PDFs, including 22 PDFs from non-EGFR+ NSCLCs (Table S1) 

and identified three distinctive functional subtypes of CAFs: subtype I robustly and broadly 

rescued EGFRi via MET, with or without involving FGFR (including CCD19-Lu), subtype 

II conferred more modest rescue primarily via FGFR, and subtype III had a minimal rescue 

effect (Figure 5A-B, Methods). By analyzing the PDF-matched patients, we found this 

functional classification of CAFs was independent with patients’ age, biopsy site, or tumor 

oncogene status (Figure S6B), suggesting this classification is not only limited to EGFR+ 
lung cancer. Therefore, we also assessed whether the CAF functional subtypes affected 

other NSCLC targeted therapies such as ALKi in ALK+ NSCLCs. Using a cohort of 19 

PDFs (including 13 from ALK+ tumors), we consistently found that subtype I and II PDFs 

conferred rescue to ALK+ cancers upon ALKi whereas subtype III PDFs permitted a better 

response (Figure 5C).

The three functionally defined CAF subtypes illustrate distinct treatment strategies to 

overcome CAF-mediated therapy resistance: MET plus FGFR pathway blockade is needed 
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to counter the impact of subtype I CAFs, FGFR pathway blockade is needed for subtype 

II CAFs, and no combination is needed for subtype III CAFs (Figure S6C). While EGFRi 

plus METi combination is currently being investigated in clinical trials and is well tolerated 

(Scagliotti et al., 2015; Sequist et al., 2020; 2011a), the feasibility of combining the pan

FGFR inhibitor, especially in the setting of the triple TKI combination, is less clear. To 

inform more precise, and potentially more clinically tolerable, targeting of CAF-mediated 

protection, we determined if there were specific FGF and FGFR isoforms responsible for 

mediating EGFRi resistance. Among 18 FGF ligands (Ornitz and Itoh, 2015), FGF7 was 

the most prevalently expressed one in lung tumor stroma (Figure S6D) and was highly 

expressed by PDFs (FigureS6E). Compared with other FGFs, FGF7’s level in PDFs best 

correlated with FGFR-mediated rescue (Figure S6F-G). Recombinant FGF7 significantly 

maintained cancer cell growth (Figure 5D) and restored downstream signaling (Figure S6H) 

upon EGFRi treatment. While nonselective FGFR ligands FGF1 and FGF2 (Ornitz and Itoh, 

2015) also had the potential to rescue cancer cell growth (Figure 5D), only specific targeting 

of FGF7, but not other FGFs, in conditioned media with blocking antibodies substantially 

alleviated PDF-mediated rescue (Figure 5E). Consistent with EGFR+ cancers, recombinant 

HGF and FGF7 were also protective to ALKi in ALK+ cancers (Figure S6I). Furthermore, 

the expression of HGF and FGF7 were also detected in the xenograft model used above 

(Figure S6J), confirming that the expression of HGF and FGF7 is valid in both cell cultures 

and in vivo. Together, these data point to FGF7 as a key CAF-derived rescue factor, in 

addition to HGF.

FGFR2, and more specifically the IIIb isoform of FGFR2, has been identified as the major 

receptor for FGF7 (Ornitz and Itoh, 2015). Indeed, only knocking down FGFR2, but no 

other FGFRs, broadly abrogated rescue by PDFs (Figure 5F). Consistently, we found the 

expression of FGFR2 IIIb, but not other FGFRs, in cancer cells correlated with FGF7’s 

rescue effect (Figure 5G). In EGFR+ tumors specifically, FGF7 was present in 90% of 

the biopsy cohort, and the expression of FGFR2 was detected in 40% of these samples 

(Figure 5H, S6K), further supporting that this FGF7-FGFR2 axis could be prominent in 

the clinic. Moreover, some cancer cells upregulate FGFR2 in response to EGFRi treatment 

when co-cultured with matched PDF derived from the same patient biopsy (Figure S6L). 

Additionally, some cancer cells alone also increase FGFR2/3 expression upon EGFRi 

addition (Ware et al., 2010). Together, there is a considerable potential impact of this 

FGF7-FGFR2 bypass signaling on designing more precise and tolerable treatments (eg, 

FGF7 or FGFR2 specific blockade) to overcome CAF-mediated TKI resistance.

In accordance with the functional classification, subtype I PDFs expressed the highest 

HGF and subtype I and II PDFs expressed high FGF7, in contrast to subtype III PDFs 

(Figure 5I). As an independent validation, the proportion of the three functionally defined 

PDFs was similar to that of lung CAFs with high HGF, low HGF/high FGF7, and low 

HGF/low FGF7 levels in previous NSCLC scRNA-seq datasets (Figure S6M) (N. Kim et al., 

2020; Lambrechts et al., 2018; Laughney et al., 2020; Maynard et al., 2020; Travaglini et 

al., 2020). We next examined the overlap between molecular classifications in scRNA-seq 

and CAFs’ functional subtypes. Based on the scRNA-seq analysis, UMAP-5 fibroblasts 

expressed higher HGF and FGF7 (Figure 5J). Indeed, PDFs having the UMAP-5 signature 

best matched the subtype I PDFs (high HGF and FGF7) and had the highest EGFRi rescue 
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capacity (Figure 5J). By analyzing the canonical CAF markers, the subtype I PDFs had 

higher expression of PDGFRA but lower expression of ITGA1, which was also observed in 

UMAP-5 single cells (Figure S6N-O). Conversely, UMAP categories other than UMAP-5 

did not sufficiently delineate differential CAFs rescuing phenotypes. This observation 

reveals the limitations of using molecular phenotypes alone to decipher CAFs heterogeneity 

(Dominguez et al., 2020; Eckert et al., 2019; Su et al., 2018) and highlights the value of our 

functional approach to directly delineate different CAFs’ therapeutic effects.

Intrinsic TGF-beta signaling contributes to CAF functional heterogeneity by suppressing 
HGF and FGF7 expression

In order to investigate the mechanism underlining HGF and FGF7 overexpression in 

subtypes I and II PDFs in contrast to subtype III PDFs, we performed RNA sequencing 

of 21 PDFs and carried out unguided clustering based on the top 1000 variably expressed 

genes. The result showed that subtypes I and II PDFs were more closely clustered together 

whereas the majority of subtype III PDFs were evidently distinct from others (Figure 6A, 

Data S1), suggesting that the overexpression of HGF and FGF7 in subtype I and subtype 

II PDFs (Figure 6B, Table S4) was likely a part of a global transcriptional variation. To 

identify potential signaling pathways associated with HGF and FGF7 overexpression, we 

annotated the genes overexpressed in subtypes I and II PDFs by Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analysis. Three pathways were identified commonly 

related with genes overexpressed in subtype I and II PDFs compared to subtype III, 

including transforming growth factor beta (TGF-β) signaling pathway that showed a high 

statistical significance (Figure 6C, Table S4). Intriguingly, we found that it was mainly the 

genes upstream, but not downstream, of TGF-β1 that were overexpressed in subtypes I and 

II PDFs, including decorin (DCN), fibromodulin (FMOD), and latent-transforming growth 

factor beta-binding protein 1 (LTBP1) (Figure 6D), all of which were known to suppress 

TGF-β1 activation in the extracellular space (Costanza et al., 2017). Of note, TGF-β1 itself 

was expressed similarly among all three subtypes of CAFs (Figure 6D, S7A). Thus, we 

surmised that subtypes I and II PDFs may had lower TGF-β signaling activity given their 

overexpression of these suppressors.

Signaling profiling confirmed that phospho-SMAD2 and phospho-SMAD3, two key 

mediators of TGF-β signaling, were prominently present in subtype III PDFs but only 

minimal in subtypes I and II PDFs (Figure 6E). Interestingly, subtypes I and II PDFs 

also seem to have higher variability in total SMAD2 and SMAD3 levels compared to 

subtype III PDFs (Figure 6E). TGF-β signaling was previously identified to mediate 

the fibroblast to myofibroblast transformation during the wound healing process (Kalluri, 

2016; Midgley et al., 2013). Additionally, pancreatic stellate cells may be transformed 

into inflammatory fibroblast (iCAF) phenotype upon activation of JAK/STAT pathway or 

myofibroblast (mCAF) phenotype if TGF-β signaling is alternatively activated (Biffi et al., 

2019). Nonetheless, despite exogeneous TGF-β1 could potentiate its downstream signaling 

activity and enhance αSMA expression in all NSCLC CAFs, we found the baseline αSMA 

(ACTA2) level was not significantly different across the three subtypes of NSCLC CAFs 

(Figure S6N, S7B). Furthermore, we found phospho-STAT3 level was not significantly 

associated with any particular CAF functional subtype either (Figure S7B). Collectively, 
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these data support that the NSCLC CAFs functional classification is associated with an 

intrinsically regulated TGF-β signaling and that this functional distinction is independent 

of the canonical myofibroblast status identified in the wound healing process or the 

iCAF-mCAF classification in pancreatic stellate cell studies. Next, we examined if TGF-β 
signaling governed HGF and FGF7 expression. Loss of TGF-β signaling in fibroblasts is 

associated with increased HGF secretion and paracrine MET activation in mice (Bhowmick 

et al., 2004). In human lung CAFs, TGF-β1 treatment suppressed HGF and FGF7 expression 

in subtypes I and II PDFs (Figure 6F-G) and diminished their capacity to confer EGFRi 

resistance (Figure S7C). Conversely, treating subtype III PDFs with the TGF-β receptor type 

I inhibitor vactosertib (TGFBR1i) increased the expression of HGF and, to a lesser extent, 

FGF7 (Figure 6H). Therefore, CAFs’ intrinsic TGF-β signaling has an important role in 

determining HGF and FGF7 levels, and HGF, FGF7, and phospho-SMAD2 can be used as 

functional markers to differentiate CAF subtypes (Figure 6I, S7D). As a complementary 

approach, analysis of the most variably expressed genes from PDF RNA sequencing data, 

also identified molecular markers to distinguish CAF functional subtypes (Figure 6I, Table 

S4).

We speculated that transcription factors may be involved in regulating the expression of 

growth factors. Further interrogation of CAFs differentially expressed genes, we identified 

four transcription factors to be potentially overexpressed in subtypes I and II PDFs 

compared to subtype III PDFs (Figure 6J). We confirmed the down regulation of TBX2 

and ETV1 in CAFs exposed to TGF-β1 (Figure 6K). ETV1 has been reported to be 

suppressed by TGF-β signaling and to contribute to HGF expression in dermal fibroblasts 

(Bordignon et al., 2019). Consistently, we showed that knocking down ETV1 reduced 

HGF expression in subtypes I and II PDFs whereases overexpression of ETV1 enhanced 

HGF expression in subtype III PDFs (Figure S7E-G). The role of TBX2 in fibroblasts is 

still unclear. TGF-β1 treatment reduced not only TBX2 mRNA level (Figure 6K) but also 

TBX2 nuclear concentration in subtype I PDF (Figure 6L). Conversely, the TBX2 nuclear 

concentration was increased upon TGFBR1i treatment in subtype III PDFs (Figure 6L). 

Additionally, knocking down TBX2 suppressed HGF and FGF7 expression in subtypes I 

and II PDFs (Figure 6M, S7H), whereas overexpressing TBX2 increased HGF and FGF7 

levels in subtype III PDFs (Figure 6N). Meanwhile, knockdown of ETV1/TBX2 reduced, 

although not fully abolished PDF-driven resistance (Figure S7I), suggesting that additional 

TFs altering CAF function may exist and warrant further studies in the future. Collectively, 

these data show that CAFs’ intrinsic TGF- β signaling contributes to fibroblast functional 

heterogeneity, at least in part via transcriptional networks including ETV1 and TBX2.

CAFs functional classification correlates with patients’ clinical outcome

We next examined whether functional subtypes of CAFs correlated with patients’ clinical 

response by analyzing three patient cohorts. In the first cohort, we obtained the secretome 

in the conditioned media from the first week of culturing pre-treatment biopsies (thus, 

containing the secretory profile more similar to the original tumor’s) from 12 EGFR+ 

NSCLC patients who subsequently received covalent EGFR TKI treatment (Figure 7A, 

Table S5). In line with our findings, patients with poor response to EGFR TKI were 

associated with higher HGF and FGF7 levels in their tumor secretome (Figure 7A). For 
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the second cohort of 13 patients (Figure 7B, Table S5), we established PDFs from their 

biopsies before their initial treatment with covalent EGFR TKI. By comparing the PDFs’ 

ex vivo rescue phenotype with the corresponding patient’s clinical response, we found that 

patients whose tumors harbored subtype III CAFs were more likely to respond to EGFR 

TKI than patients whose PDFs were classified as subtype I or II (Figure 7B). For the third 

independent EGFR+ NSCLC cohort, we analyzed a public RNAseq dataset obtained from 

biopsies both before and after osimertinib treatment from 11 patients (Roper et al., 2020). 

We further confirmed that NSCLC patients with limited response (progression-free survival, 

PFS < 12 months) had higher expression of HGF and FGF7 in their pre-osimertinib biopsies 

(Figure 7C). Intriguingly, for patients with a better response (PFS > 12 months), HGF and 

FGF7 expressions often increased in the post-osimertinib (resistance) biopsies (Figure S7J). 

Consistently, we found that stromal abundances of HGF and FGF7 were dynamic over the 

course of disease and treatment (Figure 7D). These findings suggest an evolution of tumor 

microenvironment in response to treatment pressure and/or disease progression. Thus, we 

further analyzed PDFs derived from longitudinal biopsies from 6 patients who received at 

least one line of TKI treatment between two biopsies. Interestingly, PDFs derived from later 

biopsies were generally stronger rescuers than PDFs from the initial biopsies (Figure 7E), 

supporting a plausible functional evolution of CAFs either selected for or modified by the 

treatment and/or disease progression. Further work will be needed to validate these findings 

in additional patients and to distinguish between these possibilities.

Subtype III CAFs are also chemoattractant to immune cells

Immune checkpoint blockade has become a prominent option for NSCLCs. Asides from 

cancer cells’ intrinsic factors (e.g. mutation burden), fibroblast is also implied to affect 

tumor’s immune background (De Jaeghere et al., 2019; Sahai et al., 2020). We investigated 

whether CAFs functional classification was associated with the tumor immune status in 

patients. EGFR+ and ALK+ NSCLC have significantly lower tumor mutation burden (Willis 

et al., 2019) and the immune cell infiltration in these tumors is generally low (Gainor et al., 

2016). Thus, investigating EGFR+ and ALK+ NSCLCs may provide a cleaner background 

to understand CAFs’ impact on immune cell infiltration.

To this end, we analyzed the CD8+ tumor infiltrating lymphocyte (TIL) status in a cohort 

of EGFR+ NSCLC (Table S5) and compared them with PDF models established from 

corresponding tumors. We found that all TIL+ biopsies had subtype III PDFs whereas 

subtypes I and II PDFs were present only in TIL- biopsies, although the difference is 

not statistically significant probably due to small sample size (Figure 8A). To gain insight 

into CAFs’ impact on immune cell migration, we performed an immune focused ELISA 

array assay consisted of 100 immune related factors across the three subtypes of PDFs. 

Interestingly, compared to subtypes I and II PDFs, subtype III PDFs expressed multiple 

chemokines with chemoattractant properties for T-lymphocytes and monocytes, including 

CXCL11, CXCL12, CCL14, CCL17, and CCL20, at higher levels (Figure 8B, Table S6). In 

order to functionally analyze and validate CAFs’ impact, we devised an ex vivo microfluidic 

assay to recapitulate the immune cell migration process. In short, PDFs were embedded 

in type I collagen, the major type of collagen expressed in lung cancer tissue (Naba et 

al., 2016); and then the immune cells were suspension cultured in a peripheral channel in 
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mimicry of tumors capillaries (Figure 8C-D). This assay allowed us to monitor immune cells 

penetrating through collagen to enter the matrix following the chemogradients generated 

by fibroblasts. Using peripheral blood mononuclear cells (PBMC) and peripheral blood 

CD8+ T cells from two healthy donors, we found that the subtype III PDFs exhibited the 

most chemoattraction (Figure 8E-F). Similarly, subtype III PDFs also demonstrated superior 

capacities to recruit Jurkat cells (T-cell lineage leukemia) and THP-1 cells (monocytic 

leukemia model) (Figure S7K-L). While the mechanism underlining the difference in 

PDFs’ chemotaxis capacities is still to be determined in additional models and immune 

contexts, one plausible explanation is that subtypes I and II PDFs express higher peroxisome 

proliferator activated receptor (PPAR) γ and multiple PPAR pathway effectors (Figure 6C), 

which are known to inhibit the expression of inflammatory cytokines and to direct the 

differentiation of immune cells towards anti-inflammatory phenotypes (Straus and Glass, 

2007). Collectively, these data show that CAFs functional classification is also associated 

with different levels of immune cell infiltration, in addition to determining targeted therapy 

response (Figure 8G). With further understanding on its biological and clinical impact, the 

phenomenon observed here could also aid in designing cancer immune therapies.

Discussion

Herein, we report establishing a living biobank of CAFs that enables us to recapitulate 

a broad spectrum of NSCLC CAFs with diverse molecular phenotypes and allows us to 

systematically survey CAFs’ functions in an unbiased manner (Figure 8G). By leveraging 

this PDF library, we identify three major functional subtypes of CAFs that exhibit distinct 

impacts on treatments using EGFR and ALK TKIs. Further, we are able to demonstrate a 

link between a NSCLC patient’s clinical response and the functional classification of CAFs 

from that patient’s tumors, thus providing evidence supporting that this CAFs functional 

classification may have considerable value in future clinical management of cancer patients.

Unlike cancer cells that can be readily distinguished based on genomic aberrations, the 

characterization of CAFs heterogeneity has been challenging given their variations in both 

molecular features and functions. Importantly, mechanisms leading to CAFs’ heterogeneity 

are still largely unclear. Leveraging this collection of patient-derived CAF models, we show 

that CAFs’ phenotypic and functional presentations have intriguing connections with several 

patients’ clinical characteristics, including age, anatomic site, smoking status, and even 

treatment history. However, we did not observe a significant difference in CAFs’ molecular 

and functional features between tumors with different oncogene backgrounds. This is 

perhaps not surprising given that our current PDF library is mostly representative of EGFR+ 
and ALK+ NSCLC, which share similar demographic features, such as adenocarcinoma 

in non-smokers, and signaling pathway activation. Therefore, this PDF library provides 

valuable insights in understanding the causes of CAFs heterogeneity and can be further 

expanded to include CAFs from tumors with additional oncogene and histological types in 

the future.

Reactivation of signaling downstream of EGFR and ALK, such as PI3K-AKT and MAPK, 

independent of these receptors is a major mechanism of resistance to EGFR and ALK TKI 

treatments, respectively (Gainor and Shaw, 2013). A growing number of growth factors with 

Hu et al. Page 13

Cancer Cell. Author manuscript; available in PMC 2022 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this bypass potential have been identified, including HGF Wang 2009 and Wilson 2012 and 

FGF7 discovered in this study. Beyond the effect of these factors, the current study provides 

substantial evidence supporting that the CAFs functional category determines the overall 

TKI response. Thus, in cases with subtype I CAFs, combined suppression of both MET and 

FGFR2 is necessary to successfully control the disease, as we demonstrated both in vitro 
and in vivo. EGFR TKI in combination with MET TKI has proven clinically well tolerable 

but the feasibility of additionally adding a pan-FGFR TKI is less clear. The FGF7-FGFR2 

signaling axis identified in this study, alone or together with the HGF-MET signaling axis, 

may help to mediate adaptive resistance up front or nurture cancer cells until full acquired 

resistance develops. Thus, it is important to design more precise and tolerable treatments, 

such as FGFR isoform specific inhibition.

We demonstrate that high HGF and FGF7 expression in subtypes I and II PDFs is a part of 

a global transcription variation, at least in part, governed by an intrinsically regulated TGF-β 
signaling and downstream transcription factors. Moreover, HGF and FGF7 are also key 

factors in fetal lung development (Chang et al., 2002; Ohmichi et al., 1998) and are readily 

prevalent in a subset of normal lung fibroblasts as evident in previous scRNA-seq studies 

(N. Kim et al., 2020; Laughney et al., 2020; Travaglini et al., 2020), suggesting that the lung 

fibroblasts heterogeneity could be present even before oncogenesis. Therefore, these three 

functional CAF subtypes extends the understanding of fibroblasts heterogeneity beyond the 

canonical classifications, such as the myofibroblast status discovered in the wound healing 

process (Kalluri, 2016; Midgley et al., 2013) and the iCAF-mCAF classification identified in 

pancreatic stellate cells (Biffi et al., 2019).

Apart from targeted therapy, we show that this CAF classification also has a potential for 

evaluating patients in the context of immune therapy and may also aid in the research 

in other aspects of cancer biology. It is possible that the current definition of functional 

subtypes of CAFs may be less applicable in the context of other treatment regiments. 

However, the platform described here can be used as a paradigm and that additional CAF 

classification depending on the treatment of choice can be adapted from direct functional 

studies. Additionally, we mainly focus on characterizing the secretion function of CAFs in 

this study. It’s possible that other factors such as extracellular matrix (Lo et al., 2015) and 

the metabolism process (Eckert et al., 2019) may have additional impacts on TKI response. 

However, the CAFs’ impact identified in vitro using conditioned media can be validated 

in vivo, suggesting that CAFs secretion may play a predominant role. Notably, fibroblast 

heterogeneity has also become increasingly apparent as revealed by reports on other cancers 

(Bartoschek et al., 2018; Elyada et al., 2019; Lambrechts et al., 2018; Li et al., 2017; Qian 

et al., 2020) and other diseases, such as fibrotic diseases (Peyser et al., 2019; Shook et al., 

2018; Xie et al., 2018), rheumatologic diseases (Croft et al., 2019; Wohlfahrt et al., 2019), 

and aging (Mahmoudi et al., 2019). Our approach in exploring and exploiting fibroblast 

heterogeneity may also provide a valuable paradigm for these disciplines to further improve 

clinical patient management.
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STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources, reagents and samples 

should be directed to and will be fulfilled by the Lead Contact, Haichuan Hu 

(hhu5@mgh.harvard.edu).

Materials availability—Materials and reagents used in this study are listed in the Key 

resources table. Reagents generated in our laboratory in this study are available upon 

request.

Data and code availability—PDF RNAseq data (Data S1) and PDF secretome data are 

provided in the supplementary of this paper. A Jupyter notebook (Data S2) is provided to 

reproduce the UMAP analysis of NSCLC CAF sc-RNAseq shown in this paper.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

PDF cell line establishment—A systematic approach was used to culture the cancer

associated fibroblasts from biopsies (Figure S1C). This allowed a high success rate 

in fibroblasts establishment (80% in biopsies except for fluid samples, Figure S1C). 

Specifically, biopsy samples were received from patients at Massachusetts General Hospital 

(MGH) and processed as previously described (Kodack et al., 2017). All patients signed 

informed consent to participate in a protocol approved by the Institutional Review 

Board giving permission for research to be performed on their samples. Processing in 

the laboratory began approximately 30 minutes after sample collection. Biopsies were 

mechanically minced with sterile disposable scalpels and enzymatically digested with 25 

mg/mL liberase for 1 hour in a 37°C MultiTherm shaker (Benchmark Scientific) set at 1,000 

rpm. Larger samples (such as those from resection procedures) were dissociated according 

to Miltenyi Biotec’s Tumor Dissociation Kit with the gentleMACs instrument. After 

digestion or lysis, in most cases (76%), cells were seeded on dishes coated with mitotically 

inactivated feeder cells (irradiated with 5,000 rad and are unable to undergo division 

(Shamblott et al., 1998; Siegfried et al., 1991)) with nutrient enriched media(Kodack et 

al., 2017), or also attempted on non-feeder cell-based culture media only for larger tissue 

samples. To enable fibroblast separation in different cultures, cell growth for each sample 

was monitored to determine if separation techniques were necessary to isolate a pure 

fibroblast population. In most cases (78%), the fibroblast cells were naturally selected as 

they grew over and competed out other cell types. Additional methods included differential 

trypsinization, which took advantage of the observation that fibroblasts trypsinized from 

and adhered to plates faster than other cell types; in some experiments, to acquire 

purer fibroblast populations, we employed magnetic-activated cell sorting (MASC) with 

anti-fibroblast microbeads or single clone selections using cloning cylinders. Once a pure 

fibroblast population grew to confluence and were transitioned into R10 on a normal plastic 

plate (85% of cultures takes 5 passages or less from initial plating to reach this stage), 

the cells were then used for immortalization. To verify that the PDFs were not epithelial

to-mesenchymal transformed cancer cells, the finished PDF cell lines were then Sanger 

sequenced to confirm the absence of oncogenic mutations (e.g. EGFR activating mutation 
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for PDFs derived from EGFR mutant biopsy samples and ALK translocation for PDFs 

derived from ALK rearranged biopsies), and PDF RNA were further tested by qRT-PCR to 

confirm they were negative for epithelial marker expression, but positive for CAF markers 

(Figure S2A-B).

PDF cell line immortalization and lentiviral infection—PDF immortalization was 

performed by ectopic expression of telomerase (hTERT) because it is efficient and does 

not result in changes typically associated with malignant transformation (Morales et al., 

1999). The hTERT (NM_198253, plasmid from Applied Biological Materials) coding 

sequence was PCR amplified for ligation into the pLenti6/V5-D-TOPO vector including a 

Blasticidin resistance gene for mammalian cell selection. Virus was made by transfecting the 

pLenti6/V5 constructs along with helper plasmids (ViraPower Lentiviral Directional TOPO 

Expression Kit) in 293FT cells. Filtered (0.45µm) and concentrated (Lenti-X Concentrator) 

virus was used for PDF infection in the presence of 8µg/mL Polybrene. The infected PDF 

cells were selected beginning at least 48 hours after infection using Blasticidin (10 µg/mL). 

The hTERTinfected, Blasticidin-selected PDFs were then expanded on a 1:2–1:4 ratio for 

each passage. In general, immortalized cell cultures of the first ten passages, and no more 

than the first twenty passages (for the best growers), were used for further experiments. The 

same lentivirus generation approach was used for overexpressing ETV1, TBX2, and vehicle 

plasmid in the immortalized PDFs. These infected cells were then allowed to rest for at least 

72 hours before further use.

Cancer cell culture—A total of 12 EGFR mutant, osimertinib sensitive lung cancer 

cell lines were used. These included four commercial cancer cell lines H1975, HCC4006, 

HCC827, PC9, and eight cancer cell lines established from patients at MGH: MGH119–

1, MGH121–1, MGH134–1, MGH154–1, MGH164–1, MGH707–1, MGH708–1, and 

MGH805–1. Also a total of 4 ALK rearranged, lorlatinib sensitive lung cancer cell lines 

were used. These included a commercial cancer model H3122 and three patient-derived 

models: MGH006–1, MGH021–5, and MGH048–1. The patient-derived cancer models were 

developed under the same IRB-approved protocol for PDF establishment. All experiments 

were performed in R10. All cells were routinely tested and verified to be free of 

mycoplasma contamination.

TRAPeze Telomerase Activity Detection—Briefly, telomerase extension was 

performed by adding 200 ng of fibroblast cell extract per sample and incubating at 30°C 

for 30 minutes; then the reaction mix was subjected to 3-step PCR at 94 °C/15 seconds, 

59 °C/30 seconds, and 72 °C/1 minute for 30 cycles. The resultant PCR products were 

separated on a 12% polyacrylamide gel and stained with 0.5 mg/ml ethidium bromide 

(Sigma) for 30 minutes before imaging.

PDF immunofluorescence staining—PDFs were seeded at a density of 500 cells/

well in 384-well plates. After growing in R10 for 7 days, the PDFs were fixed in 3.7% 

formaldehyde. Then the PDFs were stained with anti-Vimentin (1:100), and on the next 

day Alexa Fluor 647 Donkey anti-Mouse secondary antibody (1:100), both of which were 

incubated overnight at 4°. All antibodies were prepared in 1% BSA, 0.1% Triton-X. Finally, 
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cell nuclei were stained with 4 mg/mL Hoechst 33342 and images were acquired with the 

ImageXpress Micro XL High-Content Imager from Molecular Devices.

In situ fibroblast marker gene expression analysis—Formalin-fixed paraffin

embedded (FFPE) clinical biopsy samples were sectioned at 4µm and kept at −80 °C 

before use. Corresponding PDF cultures were prepared according to the Advanced Cell 

Diagnostics’ protocol for cultured adherent cells using RNAscope analysis. Cells were 

seeded in plastic chamber slides for 24 hours. The chamber walls were then torn down, 

and the slides were fixed with 10% neutral buffered formalin, serially dehydrated with 

ethanol, and kept at −20 °C before use. The FFPE sections and PDF culture slides were then 

subjected to detection for ACTA2 and S100A4 mRNA expression by RNAscope (RNAscope 

2.5 HD Detection Kit-Brown), and counter stained with Hematoxylin. The stromal area 

of the FFPE clinical sections and PDF culture slides were then further scored based on 

Advanced Cell Diagnostics’ semi-quantitative criteria: 0: No staining or <1 dot/10 cells; 1: 

1–3 dots/cell; 2: 4–9 dots/cell and none or very few dot clusters; 3: 10–15 dots/cell and 

<10% dots are in clusters; 4: >15 dots/cell and >10% dots are in clusters. At least six 40X 

fields were randomly captured and evaluated to generate the final score for each sample.

PDF-mediated EGFR TKI resistance screening via co-culturing with cancer 
cells—Patient-derived fibroblasts (PDFs) were seeded at a density of 500 cells/well 

in 384-well plates, cancer cells were seeded at equal density 24 hours later, then the 

co-cultures were incubated overnight before drugging. Cells were drugged with EGFRi 

(osimertinib, 200nM) using a Tecan D300e drug dispenser. Six days after treatment, cells 

were fixed in 3.7% formaldehyde and stained with anti-Cytokeratin 8/18 (1:100) and anti

Vimentin (1:100) overnight at 4°. Secondary antibodies were added the next day: Alexa 

Fluor 488 Goat anti-Rabbit IgG (1:100) and Alexa Fluor 647 Donkey anti-Mouse IgG 

(1:100) and incubated overnight at 4°. All antibodies were prepared in 1% BSA, 0.1% 

Triton-X. Finally, cell nuclei were stained with 4 mg/mL Hoechst 33342. Fluorescent 

images were automatically acquired with the ImageXpress Micro XL High-Content Imager 

(Molecular Devices) for channels corresponding to Cytokeratin 8/18, Vimentin, and nuclei 

staining. Image analysis was performed with Molecular Devices’ MetaXpress software as 

previously described (Kodack et al., 2017), and the number of cancer cells (Hoechst+ and 

Cytokeratin 8/18+ cell count, denoted as N) were quantified. PDF-mediated growth rescue 

was calculated as:

Rescue % =
(N drug

witℎ PDF − N drug
no PDF )

(Nno drug
no PDF − N drug

no PDF )
× 100%

All screens were carried out in quadruplicate.

PDF-mediated TKI resistance screening via conditioned media (CM)—To 

prepare CM, PDF cells were cultured with R10 in 10cm or 15 cm plates, dependent on 

their proliferation rates. CM was harvested six days after media refreshment, when plates 

were 70–90% confluent. One day before treatment, cancer cells were seeded at a density of 

1,000 cells/well in 384-well plates. On the day of treatment, for conditions with PDF CM, 
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CM was added so that cancer cells were in 50% PDF CM / 50% R10. Human recombinant 

HGF was prepared in R10 and added to a final concentration of 10ng/mL. For controls, only 

R10 was added so that cells were in 100% R10. Based on the treatment conditions, EGFRi 

(osimertinib, 200nM), METi (INC280, 200nM), and FGFRi (BGJ398, 500nM) were added 

alone or in combination via the drug dispenser as previously described. For the testing of 

ALK rearranged cancer models, ALKi (Lorlatinib, 300nM) was used under the same culture 

condition with PDF CM, or with recombinant HGF and FGF7 added to a final concentration 

of 10ng/mL. After 72 hours of treatment, cells were fixed in 3.7% formaldehyde and 

cell nuclei were stained with 4 mg/mL Hoechst 33342. Plate imaging was performed as 

described in the co-culture screen, and the Hoechst+ nuclei counts were treated as the total 

number of cells (N). Similar to the co-culture, PDF-mediated growth rescue was calculated 

by:

Rescue % =
(N drug

PDF CM − N drug
R10 )

(Nno drug
R10 − N drug

R10 )
× 100%

All screens were carried out in quadruplicate. By surveying a total of 60 PDFs and 

their impacts on EGFR TKI resistance (assessed across 12 EGFR+ NSCLC cancer cell 

models), Subtype I PDFs are defined as those strongly conferring EGFR TKI resistance 

predominantly via activating HGF-MET signaling (i.e., Resistance % to EGFRi+FGFRi 

> Resistance % to EGFRi+METi, and the additive effect of the two is above average 

level); Subtype II PDFs are defined as those strongly conferring EGFR TKI resistance 

predominantly via activating FGF7-FGFR2 signaling (i.e., Resistance % to EGFRi+METi > 

Resistance % to EGFRi+FGFRi, and the additive effect of the two is above average level); 

and Subtype III PDFs are defined as those conferring no resistance or below the average 

level.

Recombinant FGF-mediated EGFR TKI resistance—Experiments were set up 

according to the protocol previously described in the conditioned media experiment, with 

the following changes: 1) On the day of treatment, recombinant human FGF proteins were 

serially diluted with R10 and added with a final concentration from 0 to 10ng/mL. 2) Cancer 

cells were drugged with EGFRi (osimertinib, 200nM). After 72 hours of treatment, cells 

were fixed, stained, and imaged. Rescue was calculated using the same method as above.

Neutralizing antibodies blocking PDF CM-mediated resistance—Experiments 

were set up according to the protocol previously described in the conditioned media 

experiment, with the following changes: 1) On the day of treatment, after adding in PDF 

CM, all neutralizing antibodies were added at a concentration of 3 mg/mL (based on 

previous neutralization titration tests, antibodies at this concentration block at least 50% 

of the EGFR TKI resistance mediated by recombinant FGFs (10ng/mL)). 2) To interrogate 

the HGF-independent resistance, cancer cells were treated with EGFRi + METi combo 

(osimertinib + INC280, both 200nM). After 72 hours of treatment, cells were fixed, stained, 

and imaged. Rescue was calculated using the same method as above.

Hu et al. Page 18

Cancer Cell. Author manuscript; available in PMC 2022 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Knocking down experiments using siRNA—FGFRs knocking down experiments 

were set up according to the protocol previously described in the conditioned media 

experiment, with the following changes: 1) After seeded for 24 hours, cancer cells were 

transfected with 10nM siRNAs by using Lipofectamine RNAiMAX and incubated overnight 

before treatment. 2) On the day of treatment, media was refreshed with 50% PDF CM / 

50% R10, or 100% R10. 3) To interrogate the HGF-independent resistance, cancer cells 

were treated with EGFRi + METi combo (osimertinib + INC280, both 200nM). After 72 

hours of treatment, cells were fixed, stained, and imaged. Rescue was calculated using 

the same method as above. ETV1, and TBX2 knocking down experiments using the ON

TARGETplus siRNA Pool system and individual siRNAs from Qiagen was performed on 

PDFs per the manufactuer’s instruction with negative siRNAs used as the control. PDFs 

were treated with 50nM of the siRNA Pool or 25nM of each individual siRNAs, then 

media was refreshed 24 hours after siRNA treatement, and RNA was prepped 72 hours after 

treatment.

Drug combination screening to identify by-pass signaling in cancer cells—
Experiments were set up according to the protocol previously described in the conditioned 

media experiment, with the following changes: 1) PDF CM was added on the drugging day 

so that cells were in 50% CM / 50% R10 or in 100% R10. 2) Cancer cells were treated with 

serial doses of test drug alone or in combination with EGFRi + METi combo (osimertinib + 

INC280, both 200nM). The top concentration for each compound was set based on known 

activity and the concentrations decreased in half-log increments. The top concentration for 

each compound was 32 uM (SH-4–54), 10uM (Cilengitide, GDC0941, R406, SB431542), 

3.2uM (ABT263, AEW541, AZD0530, BGJ398, LEE011, MLN8237, Ruxolitinib, TAE226, 

TP0903), or 320nM (Rapamycin, Trametinib). After 72 hours of treatment, cells were fixed, 

stained, and imaged using the same protocol as above. The cancers’ dose-response to the 

test drug with or without EGFRi + METi was fit to a nonlinear regression model using 

a three-parameter analytic method in GraphPad Prism 7.0. The half maximal inhibitory 

concentration (IC50) for each drug was extracted, and the relative efficacy was calculated by 

subtracting the IC50 with EGFRi + METi from the IC50 without EGFRi and METi (∆IC50). 

All screens were carried out in quadruplicate.

Western blotting and antibodies—Cells were seeded in six-well plates overnight 

before treatment (see treatment conditions below). After 24 hours of drug treatment, 

lysates were collected, and protein levels were quantified via BCA assay (Thermo 

Scientific). Protein electrophoresis was performed using 4–12% NuPAGE Bis-Tris gels 

(Thermo Scientific) in MOPS SDS running buffer (Thermo Scientific) before transferring to 

nitrocellulose membranes. In conditions using PDF CM, media was changed to 50% PDF 

CM / 50% R10 on the day of treatment. Growth factors (HGF, FGF7, TGF-β1) are used 

as 10ng/mL unless specified. Small molecule inhibitors are used as EGFRi (200nM), METi 

(200nM), FGFRi (500nM), and TGFBR1i (1μM) unless specified. Primary antibodies were 

prepared at a 1:1,000 dilution and were then probed with HRP-linked secondary antibody 

(1:50,000). Nuclear extraction is performed per the manufacturer’s instruction.
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Tumor secretome (biopsy early primary culture supernatant) collection—
Supernatant was collected from early primary cultures of biopsy tissues. The primary culture 

condition is the same as described in the cell line establishment session, and the supernatant 

was collected after the first week of culture. As a control, media from the same seeding 

conditions were also banked.

Enzyme-linked immunosorbent assay (ELISA)—The HGF and FGF7 levels in PDF 

conditioned media and tumor secretome (early primary culture supernatant) samples were 

measured via ELISA. Given that early primary cultures from biopsies have divergent 

number of cells, the HGF and FGF7 were further normalized to IGFBP-6, a stably expressed 

cytokine with levels directly proportional to the raw count of CAF cells.

Quantitative proteomics array—Quantitative proteomics array was performed by 

RayBiotech (Norcross, GA) using a Quantibody array, with the analytes listed in Table 

S2. Background levels in a media control were subtracted from those in test samples to 

calculate protein concentrations. The result is then further normalized by the total number of 

cells (ng/mL per 100,000 cells) evaluated by fibroblast cells seeded in parallel in a 96-well 

plated and stained with Hoechst for nuclei counting. An immune-focused array is performed 

in the same manner and listed in Table S6.

In situ analysis of FGF and HGF RNA expression—FFPE clinical biopsy samples 

and xenograft samples were both sectioned at 4µm and were subjected to detection for HGF, 

FGF7, FGFR2, and/or KRT18 RNA expression by RNAscope (RNAscope 2.5 HD Duplex 

Assay), and counter stained with Hematoxylin. At least six 40X regions per slide were 

randomly captured and analyzed using HALO software (ISH v2.2 algorithms). Cells with 

one or more detectable FGF7 dots and no detectable FGFR2 dots were considered as FGF7+ 

cells; cells with one or more detectable FGFR2 dots regardless of the FGF7 status were 

considered as FGFR2+ cells. Samples with more than 10% FGF7+ cells were considered as 

FGF7 positive, and samples with more than 10% FGFR2+ cells were considered as FGFR2 

positive.

In vivo study—All mouse studies were approved by the Institutional Animal Care and Use 

Committee at Massachusetts General Hospital in accordance with institutional guidelines. 

For generating tumor bearing mouse models, ten million MGH707 cancer cells were 

injected subcutaneously with or without CCD19Lu fibroblast cells in a 1:2 ratio into flanks 

of 6–8 weeks old athymic nude mice. Treatment was started 10 days after injections when 

palpable tumors were formed. Mice bearing cancer alone xenografts were randomized into 

two groups to receive vehicle or EGFRi (10mg/kg osimertinib, once daily(Cross et al., 

2014)) treatment; and mice bearing cancer plus fibroblast xenografts were randomized into 

five groups to receive vehicle, EGFRi, EGFRi + METi (10mg/kg INC280, twice daily(Jia 

et al., 2016)), EGFRi + FGFRi (15mg/kg BGJ398, once daily(Guagnano et al., 2012)), and 

EGFRi + METi + FGFRi treatment. On the third day of treatment, mice were sacrificed 3 

hours after the last drug administration and tumors were harvested and fixed in 10% neutral 

buffered formalin for immunohistochemistry (IHC) analysis. IHC analysis was performed at 

the Histopathology Research Core at Massachusetts General Hospital by sectioning FFPE 
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tumor samples at 4µm and staining for phospho-S6 and Ki67. At least six 20X regions per 

slide were randomly captured and analyzed by using HALO software (Cytonuclear IHC 

v1.6 algorithms). The algorithm for calling a positively-stained cancer cell was trained in 

a pre-test and was applied to all the samples assessed in the experiment. The number of 

positively-stained cancer cells was then divided by the total number of cancer cells analyzed 

to generate the percentage of pS6- or Ki67-expressing cells per sample.

Single cell analysis of lung cancer fibroblast database to uncover 
subpopulations and marker genes—Lambrechts et al. analyzed resected NSCLC 

tumor tissues in 5 patients via single cell RNA sequencing (scRNA-seq) (Lambrechts et 

al., 2018), whereby their t-Distributed Stochastic Neighbor Embedding (tSNE) analysis 

identified 7 fibroblast molecular subpopulations and proposed limited marker genes for 

each subpopulations. We reanalyze the data by using Scanpy with Uniform Manifold 

Approximation and Projection (UMAP) visualization, and we found the new analysis had 

improved capacity to distinguish molecular subpopulations (i.e. we identified UMAP-7 

and UMAP-8 which are two new fibroblast molecular classes that were not discovered 

by the reported tSNE analysis). Therefore, we decided to leverage this new analysis to 

systematically identify key marker genes per each molecular subpopulation for analyzing the 

PDF models as described in the following.

The processed fibroblasts scRNA-seq dataset of 1465 cells and 33693 genes was 

downloaded, and cell annotations and raw count matrix were extracted from the loom file. 

We used Scanpy (v1.4.3) (Wolf et al., 2018) to perform single cell clustering analysis and 

to visualize the results with UMAP. More specifically, genes expressed in less than three 

cells were first filtered out. Then for each cell, its expression matrix was normalized by 

the total read count. The normalized gene expression matrix was further multiplied by the 

scale factor 10,000 and log-transformed. We selected highly variable genes and regressed 

out effects of total counts per cell and the percentage of mitochondrial genes expressed. 

Then principal component analysis (PCA) was performed and top 30 principal components 

(PCs) were chosen to compute the neighborhood graph (n_neighbors = 15). A community

detection-based method Louvain (Blondel et al., 2008) was used to cluster the neighborhood 

graph of cells (resolution = 0.5). Finally, the graph of cells was embedded in two dimensions 

using UMAP (McInnes et al., 2018). Based on Louvain clustering solution, the cells within 

each group (cluster) were contrasted with the rest of cells. Then t-test was used to rank genes 

within each group to identify marker genes. A Jupyter notebook (Data S2) is provided to 

reproduce the analysis results shown in this paper.

The processed scRNA-seq dataset of fibroblasts in lung lesions (normal and tumor) from 

another four studies (N. Kim et al., 2020; Laughney et al., 2020; Maynard et al., 2020; 

Travaglini et al., 2020) are downloaded from the reported portal, respectively.

Mapping PDFs based on UMAP classification and validation—Based on the top 

marker genes per UMAP class, we assessed the RNA express of the top 3 marker genes 

in every UMAP class (21 marker genes in total, UMAP-4 was excluded from analysis as 

poor quality cells) in PDFs via qRT-PCR. The expression of each marker gene (normalized 

by reference gene) was then standardized across the PDFs. The average level of the top 3 
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marker genes per each UMAP class was then calculated and used to represent the signal 

of the corresponding UMAP class in each PDF. By comparing the signal between UMAP 

classes in each PDF, the PDF is mapped based on the highest UMAP signal it expressed 

(standardized value).

Validation of the PDF mapping was first performed based on comparing key marker genes’ 

expression in PDF-UMAP classes (assessed by mean value of PDFs mapped to the same 

UMAP class, qRT-PCR) and in single-cell-UMAP classes (assessed by mean value of single 

cells in the same UMAP class, log10 transformed scRNA-seq counts). In further validation, 

the proximity between PDF-UMAP classes (data matrix of PDF expression, UMAP signal 

per UMAP class per PDF is the mean value of the top 3 marker genes, qRT-PCR) was also 

compared with the proximity between single-cell-UMAP classes (data matrix of fibroblast 

single cells, UMAP signal per UMAP class per single cell is the mean value of the top 

3 marker genes, log transformed scRNA-seq counts). Unguided hierarchical clustering on 

UMAP classes in PDFs and single cells was performed based on Spearman’s r.

Cancer-PDF pair co-culture—MGH805–1 (cancer) and PDF805–1 (PDF) are paired 

cancer and PDF lines derived from the same biopsy tissue using the same platform (see 

above PDF cell line establishment section). Cancer cells (at a density of 150,000/ chamber) 

and PDF cells (at a density of 200,000/ chamber) are seeded separately one day before 

the treatment in the top and bottom chambers of a 6-well transwell system, respectively. 

The 0.4µm transwell pore size allows the exchange of secreted soluble factors but prevents 

cells migration from contaminating the counterpart. On the day of treatment, the cancer 

cells (top chamber) are either left alone or co-cultured with PDFs (bottom chamber in the 

same unit), and treated with no drug (R10 media) or osimertinib (EGFR TKI added to a 

final concentration of 200nM) for 5 days with two biological replicates per each condition. 

Then the cancer cells are immediately separated from the co-culture system by unloading 

the top chambers for total RNA extraction (RNeasy Mini Kit). RNA library preparation 

and next-generation sequencing are performed and analyzed by BGI America (Cambridge, 

Massachusetts) by using DNBseq platform, resulting in approximately 46.8 million reads 

per sample on average. HISAT2 was used to map sequencing reads to transcripts in the 

human hg19 reference genome. Based on the gene expression level, differentially expression 

genes (DEG) between osimertinib-treated cancer cell samples with and without PDF co

culture were reported by using the DEseq2 algorithms (Love et al., 2014).

PDF RNAseq analysis—We performed bulk RNAseq on a total of 21 PDFs with 

each one in duplicates. Average expression of the PDFs are used in performing unguided 

clustering, and the dupilicates are used for identifying differentially expressed genes (DEG) 

analysis. Analysis is done by using iDEP.91 tool (Ge et al., 2018) with all parameters set 

to default. In specific, the DEG genes are considered by false discovery rate less than 0.1, 

and minimal fold change more than 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis on the DEG genes are performed by using ShinyGo v0.61 too1(Ge et al., 2020).

qRT-PCR—Total RNA from PDF and cancer cell line cultures was extracted as per 

standard protocols (RNeasy Mini Kit, Qiagen) and reverse-transcribed into cDNA with the 

Biorad iScript Reverse Transcription Supermix. Reactions were run on a LightCycler 480 
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instrument (Roche) for quantitation. Primers used for each gene of interest are listed below. 

The housekeeper gene TATA-box binding protein gene (TBP) was selected as a reference 

gene because it was reported to have the most reliably identical and stable expression 

between tumor and normal lung tissues (Hu et al., 2016; Søes et al., 2013), as well as 

stable expression in human pulmonary fibroblasts (Stock et al., 2011). The FGFR2 isoform 

specific primers were selected according to Drugan et al. (Drugan et al., 1998). The mRNA 

expression for each gene was calculated by –∆Ct = – (Ct gene of interest – Ct housekeeper gene). 

When comparing gene expression of PDF lines to cancer cell lines, –∆∆Ct [(–∆Ct PDF lines) 

– (–∆Ct Cancer cell lines)] was used to quantify the expression level in PDF lines relative to 

cancer cell lines. The primers used for qRT-PCR are listed in Table S7.

In silico analysis of the stromal enrichment of FGFs—To analyze the correlation 

between the abundance of tumor stroma and gene expression, stromal score was extracted 

from Yoshihara et al.’s previous work (Yoshihara et al., 2013), in which the level of 

infiltrating stromal cells was calculated by the “ESTIMATE” method. The corresponding 

TCGA tumors’ RNA expression data (RNAseq V2, RSEM) was extracted from the 

cBioPortal (Cerami et al., 2012). A total of 228 TCGA lung adenocarcinoma samples 

available for both RNA expression and stromal score were included in this analysis.

Immune profiling and immune cell migration assay—Tumor infiltrating lymphocyte 

(TIL) profiling is performed as previously described (Gainor et al., 2016). CD8 staining 

by immunohistochemistry is used for immune cell enumeration. CD8+ TILs were 

semiquantitatively evaluated on a scale of 0 to 3 based on the extent of positive lymphocytes 

infiltrating within tumor cells. Each score was defined on the basis of the fraction of tumor 

cells on top of which CD8+ T cells were present: score 0, none or rare; score 1, <5%; score 

2, >5% and <25%; and score 3, >25%. Then the scores were dichotomized into positive 

(scores 2–3) and negative (scores 0–1) TIL status.

Frozen human peripheral blood mononuclear cell (PBMC) and peripheral blood CD8+ 

T cells are thawed out two days before the experiment and culture in T-cell media 

supplemented with 100IU/mL IL-2. On the day of experiment, both cells are treated with 

DNase I (0.1mg/mL), and filterd through a 40μm strainer.

In the ex vivo assay to assess PDFs chemoattractant capacities to immune cells, a 

microfluidic chip (AIM biotech) was used to recapitulate the immune cell migration process. 

PDFs and immune cells were first stained with 3μM CellTracker in green (CMFDA) 

or in red (CMTPX) at 37 for 30 minutes. After washing with PBS, the PDFs were 

three-dimensionally embedded in type I collagen (2mg/mL) at a final concentration of 1 

million/mL. Allowing collagen polymerization for 30 minutes, the peripheral channels were 

primed with R10 media. Then a total of 120,000 PBMC, CD8+ T cells, Jurkat cells, or 

THP-1 cells were reconstituted in R10 and injected to a peripheral channel. After 7 days of 

culture, the immune cell (green fluorescence) was imaged with fluorescent microscope. The 

immune migration is scored based on the depth of migration (0–3, from passing the interface 

to passing the middle line), as well as the scale of migration (all interfaces were evaluated 

and a final score was the average of all evaluations). Migration score is assessed across all 

interfaces in the chip and averaged by three replicates.
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Clinical cohorts—Clinical cohort 1 (n=12, Table S5) was consisted of patients meeting 

the following criteria: the patient subsequently received a third-generation EGFR TKI 

treatment (osimertinib or equivalent); no other bona fide resistance mechanism is identified 

prior to the next third-generation EGFR TKI treatment (e.g. MET amplification). Tumor 

secretomes are derived from biopsies that precedes the patient’s treatment. Clinical response 

of the tumor to treatment is based on the Response Evaluation Criteria in Solid Tumors 

(Eisenhauer et al., 2009). A distinctive clinical cohort 2 (n=13, Table S5) was consisted 

of patients meeting the following criteria: the patient receives their first third-generation 

EGFR TKI treatment (osimertinib or equivalent); no other bona fide resistance mechanism is 

identified prior to the third-generation EGFR TKI treatment (e.g. MET amplification). PDFs 

models are derived from biopsies that precedes the patient’s treatment. An independent 

clinical cohort 3 consisted with EGFR+ NSCLC cases were also analyzed. This public 

RNAseq dataset contains RNAseq result from biopsies both before and after osimertinib 

treatment from 11 patients (Roper et al. (Roper et al., 2020)). For cases with multiple 

samples at the same timepoint (eg, post-psimertinib biopsy), the average value is used.

Statistics—Statistical analysis was performed by using GraphPad Prism 7.0. The 

following analysis, and format of data presentation were applied unless specified: Mean 

value comparison in-between groups were analyzed using an unpaired two-tailed Student’s 

t-test; correlation between two datasets was achieved by Spearman’s r method and p < 0.05 

was considered to be statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A living biobank of CAFs from NSCLC patients recapitulates clinical CAF 

heterogeneity

• Therapeutic profiling of the NSCLC CAFs reveals three distinctive functional 

subtypes

• Subtype I and II CAFs have high HGF and FGF7 expression and protect 

cancer cells

• Subtype III CAFs associate with better clinical response and immune cell 

migration
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Figure 1: Establishment of a living biobank adequately capturing NSCLC CAFs heterogeneity
A. Workflow of patient-derived fibroblast (PDF) development. PDF library is symbolized 

with different PDFs (staining of Vimentin) on the shelf. B. Clinical features of patients 

whose tumors were used for developing PDFs. C. Images from immunofluorescence 

staining of Vimentin and Hoechst of representative PDFs. D. Images and quantification 

of αSMA (encoded by ACTA2) mRNA in two EGFR+ lung cancer samples and their 

corresponding PDFs detected by using RNAscope. E. mRNA levels of canonical CAF 

markers in PDFs and in lung cancer cell lines measured by qRT-PCR. The arrowhead 

indicates the average expression level of the five PDFs in (G). F. Correlations between the 

mRNA level of COL1A2 or ACTA2 and patients’ age at the time of biopsy across PDFs 

(left two graphs) and the mRNA level of S100A4 or PDGFRA according to the site of 

tumor biopsy. * p < 0.05, *** p < 0.001, Spearman’s r and two-tailed t-test are used. G. 
Expression of indicated CAF markers (red) in PDFs established from liver metastases in 

Hu et al. Page 33

Cancer Cell. Author manuscript; available in PMC 2022 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an autopsy case. H. Uniform Manifold Approximation and Projection (UMAP) analysis of 

1,465 single fibroblasts in NSCLC (from Lambrechts et al., 2018) showing seven molecular 

classes, excluding UMAP-4 (*) due to poor quality cells. I. PDFs are mapped based on 

their top UMAP signal. Red blocks on the top indicate clinical features of the corresponding 

PDFs. See also Figures S1-S3 and Table S1.
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Figure 2: CAFs determine the TKI treatment efficacy on NSCLC
A. Representative images and quantification of rescue % of MGH707 NSCLC 

cells co-cultured with indicated PDFs (top) or PDF conditioned media (bottom).

Resistance % = [(N drug
with PDF − N drug

no PDF)/(Nno drug
no PDF − N drug

no PDF) × 100%.B. The viability outcome 

of cancer cells (n=6) evaluated in the presence of EGFRi and either a PDF co-culture (n=7) 

or a PDF conditioned media. Rescue obtained in the two settings are plotted against each 

other. C. Viability rescuing effect against EGFRi across three EGFR+ NSCLC cell lines 

by conditioned media from PDFs derived from 38 EGFR+ NSCLC. Each bar corresponds 

to a PDF’s effect tested in four replicates, mean values and 95% CI are plotted. D. Venn 

diagram showing PDFs conferring robust resistance (above average level per cancer model) 

in EGFR+ (C) and ALK+ (E) tumor-derived PDFs. E. Viability rescuing effect against ALKi 

across different ALK+ NSCLC cell lines by conditioned media from PDFs derived from 13 

ALK+ NSCLC. Results shown as in (C).
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Figure 3: NSCLC CAFs recurrently rescue EGFR cancers via bypass signaling
A. PDF-secreted factors profiled by a 448-analyte multiplexed ELISA, and the gene 

ontology of the top 30 PDF rescue correlates (ranked by Spearman’s r). B. Effects of 

METi on diminishing rhHGF-driven (10ng/ml) and PDF conditioned media-driven EGFRi 

resistance. PDFs’ rescue against EGFRi + METi treatment (red bars) is superimposed over 

PDFs’ rescue against EGFRi (blue bars). Effect of each PDF conditioned medium (dots 

on the left and bars on the right) is tested across 12 EGFR+ cancer cells. HGFhigh and 

HGFlow indicate PDF conditioned media with HGF level above and below the median value, 

respectively. Mean with 95% CI. ns, not significant; **, p < 0.01, ***, p < 0.001, ****, p < 

0.0001, two-tailed t test. C. A screening across 16 compounds to identify pathway-specific 

inhibitors that can negate HGF/MET-independent resistance. Relative efficacy is measured 

by comparing cancer cells’ response to the indicated compound alone and their response to 

the compound in the presence of dual EGFR and MET inhibition (IC50 shift). Two cancer 

models (MGH134 and MGH707, average is shown) are used and are tested both in the 

absence and presence of conditioned media from two different PDFs (HGFhigh and HGFlow). 

D. Western blotting in two cancer cell lines showing rescue of ERK and S6 phosphorylation 

by PDFs and the effect of the addition of FGFRi and METi on cancer cell signaling. Bars 

correspond to the matched resistance effect in the presence of the indicated inhibitors. See 

also Figures S4-S5 and Table S2-S3.
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Figure 4: HGF-MET and FGF-FGFR are two mainstream CAF-cancer crosstalk contributing to 
resistance
A. A set of 38 PDFs (all derived from EGFR+ NSCLC) conditioned media was tested across 

12 EGFR+ cancer cell lines in the presence of EGFRi (E) alone or EGFRi in combination 

with METi (M), FGFRi (F) or both. Top bars are average resistance level of a given cancer 

cell line tested across all PDFs, and side bars are average rescue effect of a given PDF 

tested across all cancer lines. B. Nude mice implanted with MGH707 cancer cells alone or 

together with CCD19-Lu fibroblasts were treated as indicated 10 days after injection for 3 

days. Given the extra tumor volume due to fibroblasts, Ki67 and phospho-S6 IHC staining in 

cancer cells, instead of the tumor size, were measured. Six xenograft tumors were quantified 

in each treatment group. * p < 0.05, ** p < 0.01, **** p < 0.0001, two-tailed t test. See also 

Figures S5.
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Figure 5: Expression of HGF and FGF7 define three subtypes of CAFs marked with distinct 
therapeutic strategies
A. Sixty PDFs (dots) are classified according to their rescue effect mediated by MET and 

FGFR: MET-predominant rescue (red), FGFR-predominant rescue (green), and minimum 

rescue (blue). “MET – FGFR effect” (x-axis) is calculated by MET effect (resistance to 

EGFRi+FGFRi) minus FGFR effect (resistance to EGFRi+METi). “MET+FGFR effect” 

(y-axis) is calculated by MET effect plus FGFR effect. B. The overall EGFRi resistance 

(plain effect against EGFRi) conferred by PDFs is then plotted based on the functional 

subtypes defined in (A). (A-B), Effect of each PDF (dot) is tested across 12 EGFR+ 

NSCLC cancers. C. The rescue level of 19 PDFs on ALK+ NSCLC cell lines against 

ALKi. Results are shown by PDFs’ functional subtypes defined in (A). D. The average 

effect of indicated recombinant FGF on resistance to EGFRi across 5 cancer cell lines. 

E. The effect of neutralizing indicated FGF in PDF conditioned media on diminishing 

cancer cells’ resistance to EGFRi plus METi (HGF-independent resistance). F. The effect 
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of knockdown FGFR1, FGFR2 and FGFR3 in cancer cells on diminishing cancer cells’ 

resistance to EGFRi plus METi in the presence of PDF conditioned media. (E-F), Effect 

of each PDFs (dots, n = 9) is tested across 5 cancer models. (B-F), Mean with 95% CI 

are shown. G. Correlations between cancer cells’ expression of indicated receptors and 

their resistance level conferred by recombinant FGF7 (10ng/mL). Two-tailed Spearman’s 

r is used. H. Prevalence of FGF7 and FGFR2 expression in EGFR+ NSCLC biopsies 

(n=11). I. Schematics showing that HGF and FGF7 mediate the bypass activation of cancer 

downstream signaling and resistance (left). HGF and FGF7 RNA levels are assessed in 

PDFs based on their functional subtypes by qRT-PCR (right). Whiskers are maximum and 

minimum values, two-tailed t test based on single group compared to all other PDFs. 

J. Comparison between CAF molecular classes defined by scRNA-seq analysis and CAF 

functional subtypes revealed by PDF analysis. The PDFs’ functional profiles are plotted 

by the UMAP classes (right). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, 

two-tailed t test. See also Figures S6.
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Figure 6: Intrinsic TGF-beta signaling contributes to CAF functional heterogeneity by 
suppressing HGF and FGF7 expression
A. Heatmap with unsupervised clustering showing the top 1000 differentially expressed 

genes across a total of 21 PDFs. B. Volcano plots show the over-expressed genes (red) and 

under-expressed genes (blue) in subtype I or II PDFs compared with subtype III PDFs. 

C. Venn diagram showing pathways (KEGG annotation) related with genes over-expressed 

in subtypes I and II PDFs. D. RNAseq expressions of TGF-β1 and TGF-β1 upstream 

suppressors DCN, FMOD, and LTBP1(schematics on the left) in subtypes I (red), II (green), 

and III PDFs (blue). Mean with 95% CI. Two-tailed t test is used. E. Western blotting shows 

TGF-β signaling (phospho-SMAD2/SMAD3) in PDFs. Lysates were also probed in Figure 

S7B. F-G. HGF (F) and FGF7 (G) RNA expression measured by qRT-PCR in subtypes I 

(red) and II (green) PDFs upon activating TGF-β signaling using TGF-β1 (10ng/mL) for 

24 hours. H. HGF and FGF7 RNA expression in subtype III (blue) PDFs after TGFBR1 

inhibitor vactosertib (1μM) treatment for 24 hours. I. Function markers (HGF, FGF7, and 
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phospho-SMAD2) and molecular markers (most variably expressed genes identified by PDF 

RNA sequencing, top four genes are shown) to distinguish CAF functional subtypes. J. 
Venn diagram shows transcription factor genes commonly over-expressed in subtype I and 

subtype II PDFs. K. RNA expression change of the indicated transcription factors genes 

in subtype I PDFs after treating with TGF-β1 for 24 hours. Mean with standard error are 

shown. L. Western blotting shows the nuclear TBX2 in a subtype I PDF upon TGF-β1 

treatment and in a subtype III PDF upon TGFBR1i treatment. Histone H3 is used as a 

loading control. M. HGF and FGF7 expression in subtypes I (red) and II (green) PDFs upon 

TBX2 knockdown (siRNA pool). N. HGF and FGF7 expression in subtype III (blue) PDFs 

upon ectopic expression of TBX2. (M-N), knockdown and overexpression are confirmed by 

western blotting (left) and qRT-PCR (right),. (F-H, K, M-N), Paired one-tailed t-test is used. 

* p < 0.05, ** p < 0.01. See also Figures S7 and Table S4.
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Figure 7: CAFs functional classification correlates with patients’ clinical outcome
A. Normalized FGF7 and HGF secretion in 12 tumor secretome samples derived from 

EGFR+ NSCLC biopsies before the covalent EGFR TKI (osimertinib or equivalent) 

treatment. Results are compared based on patients’ clinical response, progressive disease 

(PD)/stable disease (SD) vs. partial response (PR). Average with 95% CI are shown, 

one-tailed Mann-Whitney U test. B. The functional subtypes of PDFs established from 

13 NSCLC patients before receiving a covalent EGFR TKI treatment (osimertinib or 

equivalent) are plotted against patients’ response to their treatment. C. RNAseq data of 

pre-osimertinib biopsies from 11 EGFR+ NSCLC patients (from Roper et al., 2020). The 

HGF and FGF7 RNA levels are shown based on patients’ progression-free survival (PFS) 

on the treatment. Average and 95% CI are shown, one-tailed t-test. D. RNA expression 

of HGF and FGF7 are stained by RNAscope in pre- and post-treatment biopsy samples 

from two patients. E. The functional heterogeneity in a collection of PDFs established from 

longitudinal biopsies from same patients. PDFs are colored by functional subtypes. Bottom: 

the proportion of PDF subtypes according to early (a) and later biopsies (b/c). (B and E), 

two-tailed Fisher’s exact test is used. See also Figures S7 and Table S5.
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Figure 8: Subtype III CAFs are chemoattractant to immune cells
A. The status of tumor-infiltrating lymphocytes, based on CD8 staining, in EGFR+ NSCLC 

(n=10) according to functional subtypes of PDFs. Two-tailed Fisher’s exact test is used. B. 
The expression of indicated chemokines with chemoattractant properties for T-lymphocytes 

and monocytes in subtype III PDFs compared with subtypes I and II PDFs. Mean with 

95% CI. * p < 0.05, two-tailed t test is used. C. Schematics of an ex vivo microfluidic 

assay to recapitulate the immune cell migration process. D. Representative images showing 

minimal (left) and substantial (right) immune cell migration in the microfluidic chip. E-F. 
Example images and summary of non-subtype III PDFs (subtypes I and II, n=4, example of 

a subtype I PDF is shown) and subtype III PDFs (n=4) in chemoattracting peripheral blood 

mononuclear cells (PBMC) (E) and peripheral blood CD8+ T cells (F) from two healthy 

donors. One of the representative interface areas is shown. Average level with 95%CI is 

shown. *, p < 0.05, one-tailed t-test is used. G. A graphic summary of the current study. See 

also Figure S7 and Table S5-6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa Fluor 488 Goat anti-Rabbit secondary 
antibody ThermoScientific Cat# A11008

Alexa Fluor 647 Donkey anti-Mouse secondary 
antibody ThermoScientific Cat# A-31571

anti-FGF1 neutralizing antibody R&D System Cat# AF232

anti-FGF2 neutralizing antibody R&D System Cat# AF-233-NA

anti-FGF5 neutralizing antibody R&D System Cat# AF-237-NA

anti-FGF7 neutralizing antibody R&D System Cat# AF-251-NA

anti-FGF9 neutralizing antibody R&D System Cat# MAB273–100

anti-Mouse IgG HRP-linked secondary antibody Cell Signaling Technology Cat# 7076

anti-Rabbit IgG HRP-linked secondary antibody Cell Signaling Technology Cat# 7074

CD8 Leica Biosystems RTU Clone 4B11

Cytokeratin 8/18 Dako Cat# M3652

EGFR Santa Cruz Cat# sc-373746

Erk1/2 Cell Signaling Technology Cat# 9102

Histone H3 Cell Signaling Technology Cat# 4499

Ki67 Leica Biosystems IVT Clone K2

Normal IgG Control R&D System Cat# AB-108-C

Normal IgG Control R&D System Cat# MAB002

phospho-EGFR (Y1068) Abcam Cat# ab5644

phospho-Erk 1/2 (Thr202/Tyr204) Cell Signaling Technology Cat# 9101

phospho-MET (Tyr1234/1235) Cell Signaling Technology Cat# 3129

phospho-S6 (Ser240/244) Cell Signaling Technology Cat# 5364

phospho-SMAD2 (Ser465/467) Cell Signaling Technology Cat# 3108

phospho-STAT3 (Tyr705) Cell Signaling Technology Cat# 9145

phosphor-SMAD3 (Ser423/425) Invitrogen Cat# 710756

S6 Cell Signaling Technology Cat# 2217

SMAD2 Cell Signaling Technology Cat# 3103

SMAD3 Abcam Cat# ab40854

TBX2 Abnova Cat# H00006909-M01

Vimentin Dako Cat# M0725

α-SMA Abcam Cat# ab5694

β-Actin Cell Signaling Technology Cat# 4970

Biological samples

NSCLC biopsy tissue Massachusetts General Hospital, 
Boston, MA IRB #13–416

Human peripheral blood mononuclear cell STEMCELL Cat# 70025

Human peripheral blood CD8+ T-cells STEMCELL Cat# 200–0164
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Osimertinib Selleckchem Cat# S7297

INC280 Selleckchem Cat# S2788

BGJ398 Selleckchem Cat# S2183

Lorlatinib Selleckchem Cat# S7536

SH-4–54 Selleckchem Cat# S7337

GDC0941 Selleckchem Cat# S1065

R406 Selleckchem Cat# S2194

SB431542 Selleckchem Cat# S1067

ABT263 Selleckchem Cat# S1001

AEW541 Selleckchem Cat# S1034

AZD0530 Selleckchem Cat# S1006

LEE011 Selleckchem Cat# S7440

MLN8237 Selleckchem Cat# S1133

Ruxolitinib Selleckchem Cat# S1378

TAE226 Selleckchem Cat# S2820

TP0903 Selleckchem Cat# S7846

Rapamycin Selleckchem Cat# S1039

Trametinib Selleckchem Cat# S2673

Vactosertib Selleckchem Cat# S7530

Cilengitide MedChemExpress Cat# HY-16141

HGF Peprotech Cat# 100–39

FGF1 Peprotech Cat# 100–17A

FGF2 Peprotech Cat# 100–18C

FGF5 Peprotech Cat# 100–34

FGF7 Peprotech Cat# 100–19

FGF9 Peprotech Cat# 100–23

TGF-β1 Peprotech Cat# 100–21

IL-2 STEMCELL Cat# 78036.1

DNase I STEMCELL Cat# 07900

Type-I collagen Nitta Gelatin Cat# 631–00651

Liberase Roche Cat# LIBDH-RO

Blasticidin Gibico Cat# A1113903

Critical commercial assays

Tumor Dissociation Kit, human Miltenyi Biotec Cat# 130–095-929

Anti-fibroblast microbeads, human Miltenyi Biotec Cat# 130–050-601

pLenti6/V5 Directional TOPO Cloning Kit Invitrogen Cat# K495510

ViraPower Lentiviral Directional TOPO 
Expression Kit Invitrogen Cat# K495000

Lenti-X Concentrator TaKaRa Cat# 631232
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REAGENT or RESOURCE SOURCE IDENTIFIER

3D Cell Culture Chips AIMbiotech Cat# DAX-1, HOL-1

CellTracker Green CMFDA Dye Invitrogen Cat# C7025

CellTracker Red CMTPX Dye Invitrogen Cat# C34552

Hoechst 33342 ThermoScientific Cat# H3570

BioCoat Transwell (0.4 µm) Corning Cat# 354570

RNeasy Micro Kit Qiagen Cat# 74004

TRAPeze Telomerase Detection Kit Millipore Cat# S7700

Nunc Lab-Tek Chamber Slide System ThermoScientific Cat# 177429PK

RNAscope 2.5 HD Detection Kit-Brown Advanced Cell Diagnostics Cat# 322370

RNAscope 2.5 HD Duplex Reagent Kit Advanced Cell Diagnostics Cat# 322430

Nuclear Extraction Kit Abcam Cat# ab113474

ELISA tests for HGF, FGF7 RayBiotech Cat# ELH-HGF-1, EHFGF7

ELISA tests for IGFBP6 Invitrogen Cat# EHIGFBP6

Customized quantitative proteomics array RayBiotech NA

Deposited data

NSCLC sc-RNAseq (Lambrechts et al., 2018)
https://gbiomed.kuleuven.be/english/
research/50000622/laboratories/54213024/
scrnaseq_tutorial/fibroblasts

NSCLC sc-RNAseq (N. Kim et al., 2020) GSE131907

NSCLC sc-RNAseq (Laughney et al., 2020) GSE123904

NSCLC sc-RNAseq (Maynard et al., 2020) PRJNA591860

Normal lung sc-RNAseq (Travaglini et al., 2020) EGAS00001004344

RNAseq of NSCLC biopsies (Roper et al., 2020) NA

Stromal score in TCGA LUAD tumors (Yoshihara et al., 2013) NA

TCGA lung adenocarcinoma RNAseq (LUAD) cBioPortal http://www.cbioportal.org

Experimental models: Cell lines

293FT Invitrogen Cat# R70007

CCD-19Lu ATCC Cat# CCL-210

Jurkat ATCC Cat# TIB-152

THP-1 ATCC Cat# TIB-202

NCI-H1975 MGH Center for Molecular 
Therapeutics Cell Bank NA

NCI-H3122 MGH Center for Molecular 
Therapeutics Cell Bank NA

HCC4006 MGH Center for Molecular 
Therapeutics Cell Bank NA

HCC827 MGH Center for Molecular 
Therapeutics Cell Bank NA

PC9 MGH Center for Molecular 
Therapeutics Cell Bank NA

MGH006–1 MGH patient-derived cell line (Crystal 
et al., 2014) NA
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REAGENT or RESOURCE SOURCE IDENTIFIER

MGH021–5 MGH patient-derived cell line (Crystal 
et al., 2014) NA

MGH048–1 MGH patient-derived cell line NA

MGH119–1 MGH patient-derived cell line (Jia et 
al., 2016) NA

MGH121–1 MGH patient-derived cell line (Jia et 
al., 2016; Niederst et al., 2015) NA

MGH134–1 MGH patient-derived cell line (Jia et 
al., 2016) NA

MGH154–1 MGH patient-derived cell line NA

MGH164–1 MGH patient-derived cell line NA

MGH707–1 MGH patient-derived cell line 
(Kodack et al., 2017) NA

MGH708–1 MGH patient-derived cell line NA

MGH805–1 MGH patient-derived cell line NA

PDF cell lines MGH patient-derived cell line NA

Experimental models: Organisms/strains

Female athymic nude (Nu/Nu) mice MGH Gnotobiotic Mouse Core NA

Oligonucleotides

Individual siRNA for FGFR1 Ambion Cat# s5164, s5165, s5166

Individual siRNA for FGFR2 Ambion Cat# s5173, s5174, s5175

Individual siRNA for FGFR3 Ambion Cat# s5167, s5168, s5169

Negative control siRNA Ambion Cat# 4390844

ON-TARGETplus Human ETV1 siRNA Pool Horizon Cat# L-003801–00-0005

ON-TARGETplus Human TBX2 siRNA Pool Horizon Cat# L-012196–00-0005

ON-TARGETplus Non-targeting Control Pool Horizon Cat# D-001810–10-05

Individual siRNA for ETV1 Qiagen Cat# 1027416-GS2115

Individual siRNA for TBX2 Qiagen Cat# 1027416-GS6909

Negative control siRNA Qiagen Cat# 1022076

RNAscope probe for ACTA2 Advanced Cell Diagnostics Cat# 311811

RNAscope probe for S100A4 Advanced Cell Diagnostics Cat# 422071

RNAscope probe for HGF Advanced Cell Diagnostics Cat# 310761

RNAscope probe for FGF7 Advanced Cell Diagnostics Cat# 443441

RNAscope probe for FGFR2 Advanced Cell Diagnostics Cat# 311171

RNAscope probe for KRT18 Advanced Cell Diagnostics Cat# 310211

q-PCR primers This paper (Table S7) NA

Recombinant DNA

hTERT (NM_198253) Applied Biological Materials Cat# LV808298

pLenti6/V5-hTERT This paper NA

Lenti ORF clone: TBX2 Origene Cat# RC208558

Lenti ORF clone: ETV1 Origene Cat# RC210533

Lenti ORF clone: vehicle Origene Cat# PS100001
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

HALO ISH v2.2 Indica Labs NA

HALO Cytonuclear IHC v1.6 Indica Labs NA

iDEP.91 (Ge et al., 2018) http://bioinformatics.sdstate.edu/idep

ShinyGo v0.61 (Ge et al., 2020) http://bioinformatics.sdstate.edu/go/

GraphPad Prism v7.0 GraphPad Software Inc. NA

Other

Bel-Art™ Cloning Cylinders FisherScientific Cat# 07–907-10

Polybrene Millipore Cat# TR-1003-G

Lipofectamine RNAiMAX Invitrogen Cat# 13778150

T-cell Media STEMCELL Cat# 10981

40μm Strainer FisherScientific Cat# 08–771-1
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