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Abstract

Molecular dynamics (MD) simulations based on atomic models play an important role in the 

drug-discovery process to screen molecules, estimate binding free energies, and optimize lead 

compounds in chemical space. Accurate computations of thermodynamic and kinetic properties 

using MD simulations are highly dependent on the accuracy of the underlying atomic force 

field. In this context, going beyond nonpolarizable fixed-charge model by accounting explicitly 

for induced polarization is highly desirable. The CHARMM polarizable force field based on 

classical Drude oscillators, in which an auxiliary charged particle is attached via a harmonic 

spring to its parent nucleus, offers both a computationally convenient and rigorous framework 

to model explicitly induced electronic polarization in MD simulations. For any molecule of 

interest, electrostatic partial charges, atomic polarizabilities and Thole shielding factors, as well 

as bonded parameters can either be determined from ab initio calculations or ascribed from 

the knowledge-based library of the CHARMM Generalized force field (CGenFF). While this 

approach is fairly reliable in general, it is well understood that the overall accuracy of the models 

with respect to thermodynamic properties such as bulk density, enthalpies, and solvation free 

energies is particularly sensitive to the nonbonded Lennard-Jones (LJ) parameters. In the present 

study we systematically refined the set of LJ parameters for the atom types available in the Drude 

force field to best match the experimental thermodynamic properties for 416 small drug-like 

organic molecules. To further test the transferability of the optimized parameters, the hydration 

free energy of 372 molecules was computed. The calculations resulted in a small average error of 

0.46 kcal/mol and a Pearson R of 0.9, representing a significant improvement over the additive 

GAFF force field in our previous study, where an average error of ~2 kcal/mol was obtained. 
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Such an improvement is consistent with the ability of the polarizable Drude model to more 

accurately model interactions in different environments. The effort provides a roadmap for the 

global optimization of force field parameters using experimental data. It is hoped that the present 

effort will further the application of the Drude polarizable force field in molecular simulations 

including drug design and discovery.

Graphical Abstract

INTRODUCTION

Molecular dynamics (MD) simulation has been the workhorse to compute thermodynamic 

and kinetic properties of biological systems while gaining atomistic insights.1 More recent 

development in scalable free energy perturbation (FEP) calculations have been encouraging 

to improve the speed of free energy simulations.2–4 However, the accuracy of these 

simulations is also highly dependent on the accuracy of the force field used. A force field 

aims to represent the quantum mechanical (QM) Born-Oppenheimer (BO) potential energy 

surface using simple functional forms with multiple parameters such as harmonic potentials 

for bond and angle terms and cosine functions for the dihedral term. These simple functional 

forms are usually fitted to map to the QM surface and experimental observables.5–7 Given 

the simplicity of the potential energy functions it is of the utmost importance to properly 

parametrize the models to maximize the accuracy of the computed molecular properties.8

The construction and optimization of a force field is a complex and involved process. 

Generating an accurate force field applicable to a wide range of small molecules is even 

more challenging given the vastness of chemical space.9 While there is a finite number 

of amino acids and associated atom types for proteins, small organic molecules contain 

a much wider range of possibilities. Atom typing attempts to broadly define an atomic 

environment and serves as the basis for parameter assignment, though the quality of the 
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assigned parameters need verification and careful revision. For instance, the CHARMM 

generalized force field (CGenFF) provides a penalty score to indicate problematic terms that 

need further refinement.10,11 To enable such refinement, we have previously established the 

General Automated Atomic Model Parameterization (GAAMP)12 and FFParam13 utilities 

to facilitate the parameters optimization of small molecules. Recent development in the 

application of SMARTS pattern to automatically detect and apply force field parameters is 

also useful to improve the acuracy of parameter assignement.14

The Drude polarizable force field is computationally efficient to model the polarization 

response of the electronic degrees of freedom, thereby providing a better physical 

representation of the molecular interactions than additive fixed-charge force fields.15–19 

Because of its computational efficiency and ease of implementation,20–22 it has been widely 

used in the context of molecular dynamics simulations for various biologically important 

systems such as ion channels, lipids, proteins, and nucleic acids.23–28 Efforts towards 

developing parameters for the Drude model applicable towards drug design and discovery 

domain are actively underway.13 A recent advance is the application of machine learning 

to derive the partial charges in the context of the Drude polarizable force field.29 Our fully 

automated parameter refinement framework, GAAMP, optimizes the molecular properties 

and parameters in the context of both additive and polarizable force fields.12 GAAMP is 

an objective approach where the parameters are derived systematically using an algorithmic 

procedure. Indeed, the GAAMP framework is the only publicly available automated tool 

available to refine the Drude polarizable model going beyond the analogy-based approaches 

usually applied to assign the force field parameters to small organic molecules.30

GAAMP starts with molecular coordinates as input. The refinement process begins with 

accessing the initial guesses of the parameters based on analogy using traditional sources 

such as CGenFF,7 GAFF,6,31 or MATCH.32 Quantum mechanical (QM) calculations are 

carried out to successively refine the bond, angle, partial charge, and dihedral molecular 

mechanics (MM) parameters. The QM calculations involve optimizing geometry, computing 

electrostatic potential, (ESP) and scanning potential energy surfaces. These QM calculations 

provide target data to refine the MM parameters using gradient directed optimization 

techniques. The partial charge refinement is done in an environment aware manner where 

along with the ESP fitting, the interaction of hydrogen-bond donor and acceptor groups 

with water are taken into account during the refinement. Within GAAMP, a chi-squared 

objective is defined, analytical derivates are computed, and the MM parameters are refined 

by L-BFGS33,34 optimizer. The framework is applicable for the popular force fields such as 

GAFF and CGenFF. A webserver is also running at http://gaamp.lcrc.anl.gov to expose the 

GAAMP framework for the users to obtain refined force field parameters for their own small 

molecules. In the end, the resulting topology and parameters files contain simulation-ready 

data for molecular modeling and MD simulations.

The refinement of the LJ parameters is done separately from the GAAMP framework. 

Because of the limitations of the QM methodologies to model van der Waals interaction, 

these parameters are refined fitting directly to the experimentally measured liquid phase 

properties such as heat of vaporization, molecular volume, and hydration free energy.35 

It should be noted that there have been several attempts in the past by various groups to 
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optimize the force field parameters to better reproduce such experimental measurements. 

For example, Wang et al. refined nonbonded parameters using an automatic ForceBalance 

procedure,36,37 and Head-Gordon and coworkers adjusted the small molecule-water van der 

Waals interaction to fit the hydration free energies of small molecules encompassing all 

functional groups known in the proteins side chains and backbone.38,39 Our current work 

and past optimization of additive LJ parameters39 are inspired by these previous attempts 

with a hope of making the parameters globally applicable for diverse small drug-like organic 

molecules.

The LJ parameters assignment is dependent on the atom type. The type aims to define 

a chemical environment around an atom. This assignment is different, for example, 

compared to partial charge assignment that are atom specific. Atoms sharing similar atomic 

environment, such as hybridization state or proximity to a polar group, are represented 

with the same atom type sharing the same values of the LJ parameters. In this work, 

we have systematically refined the existing LJ parameters for the Drude polarizable force 

field for neutral small organic molecules using a diverse set of molecules in our training 

and validation data. In addition, we have also derived LJ parameters in the context of the 

Drude polarizable force field of several existing CGenFF atom types. We make use of 

experimental measurement of molecular volume and heat of vaporization of 416 molecules 

separated into a training set of 365 molecules, and a validation set of 51 molecules. We 

have systematically fit the LJ parameters on the training compounds encompassing wide 

range of atom types as described by the CGenFF assignment and test on the validation set. 

To ensure that the parameters are equally valuable for other molecular properties, we also 

computed the hydration free energies of 372 molecules for further validation. The resulting 

set of optimized LJ parameters expands the scope of the Drude force field and enhances its 

applicability for computer-aided drug design endeavors.

METHODS

The LJ optimization here was carried out in the context of CHARMM Drude polarizable 

force field. In the Drude force field, the explicit polarization is introduced by attaching 

a Drude particle to its heavy atom (nuclei) by a spring with a force constant of 500 

kcal/mol/Å2.15 The Drude particle oscillates around the nuclei allowing the atomic dipoles 

to adjust in response to the surrounding electric field. The motion of the Drude is usually 

isotropic; however, the presence of electronegative atoms containing the lone pairs can break 

the isotropy.40 Similar to SCF calculation under the Born-Oppenheimer approximation, 

the Drude particle relaxation can be performed using the SCF style calculation where 

the position of the Drude is minimized with respect to the position of the nuclei. 

The SCF calculation is computationally expensive, so a small mass of 0.4 AMU is 

shifted from the atomic nucleus to the Drude particle, allowing the application of an 

extended Lagrangian based propagation in MD simulations.15,21 The popular MD packages 

such as NAMD,22 CHARMM,41 OpenMM,20 and GROMACS21 implement the extended 

Lagrangian propagation, including simulations on GPUs.
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The functional form of the Drude force field is an extension of the additive potential energy 

function (equation 1) with small modification to the electrostatics terms (equation 3) and 

addition of the self-polarization term (equation 5).41

U = ∑bondsKb b − b0
2 + ∑anglesKθ θ − θ0

2 + ∑dihedrals
Kφ 1 + cos nφ − φ0

+ ∑
impropers

kω ω − ω0
2  + ∑

Urey − Bradley
ku u − u0

2

+∑non − bonded
pairs

qiqj
4πϵ0rij

+ 4Emin
i, j Rmin

i, j

rij

12

− 2
Rmin

i, j

rij

6

(1)

where Kb,Kθ, kω ku, b0, θ0, ω0 and u0 are the force constants and reference values for 

the bond, angle, improper, and Urey-Bradley terms. Kφ and φ0 are the force constant and 

phase angle for the dihedral terms. The electrostatic term is composed of the nuclei-nuclei, 

nuclei-Drudes, and Drudes-Drudes contributions to the electrostatic potential 18,42,43 as,

Eelec = 1
4πϵ0

∑
i ≠ j

qiqj
ri − rj

+ ∑
i ≠ j

qDiqj
rDi − rj

+ ∑
i ≠ j

qDiqDj
rDi − rDj

(2)

where i and j represent the index of atoms, q represents the partial charge on the atoms, r 
their positions and the subscript D indicates the Drude particles. The charge of the Drude 

particle is related to the polarizability as,

qD = αkD (3)

where kD is the force constant of the harmonic spring linking the Drude particle to the 

atomic nuclei, representing the self-polarization energy. The contribution to the electrostatic 

potential from the dipole-dipole interaction between the Drude-atom pairs separated by 

one or two covalent bonds (the 1–2 and 1–3 interactions) are screened using a Thole-like 

screening function44 as,

Sij rij = 1 − 1 + arij

2 αiαj
1 6

e −arij/ αiαj
1 6

(4)

where the charge on the Drude particle, qD, is dependent on the isotropic atomic 

polarizability, α, and the spring constant kD (equation 3). Partial charge of the nuclei, qA, is 

assigned to the attached Drude particle as qD = q – qA where q is the total partial charge 

of the nuclei and Drude particle. The electronic self polarization of the Drude is usually 

isotropic using a familiar harmonic potential Uself as,
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Uself = 1
2kDd2

(5)

where d represents the displacement of the Drude particle from its nuclei. To better represent 

the interactions of electronegative atoms in the molecule (N, O, S, Cl, Br, and I) with 

the environment, the self-polarization term is described anisotropically40 by expanding the 

isotropic force constant kD into a tensor KD having zero off-diagonal elements (equation 6).

Uself = 1
2 K11

D d1
2 + K22

D d2
2 + K33

D d3
2

(6)

where d1, d2, and d3 are the projections of the Drude-nuclei displacement vectors on the 

orthogonal axes determined by the local molecular frame of reference.

The remaining terms of the force field are identical to the CHARMM additive force field. 

The LJ parameter for pairs of atoms i and j are constructed using the Lorentz-Berthelot 

combination rule,45 Emin
i, j = Emin

i, i Emin
j, j 1/2

 and Rmin
i, j = Rmin

i, i + Rmin
i, j /2. In CHARMM, 

pair-specific LJ interaction parameters can be modified between the oxygen atom of a water 

and selected heavy atom of the solute using the NBFIX option. This functionality is useful 

to overcome the limitation of the Lorentz-Berthelot rule and has been applied to accurately 

reproduce the hydration free energies and correct folding of proteins.46–48 We have also 

applied this modification to the LJ interaction in this work to improve the accuracy of the 

calculated hydration free energies (HFE).

Before refining the LJ parameters, GAAMP algorithm was used to generate the electrostatic 

and dihedral parameters compatible with the CHARMM Drude Force Field initialized with 

parameters obtained from the CGenFF program.7 The available LJ parameters for the Drude 

force field were used during parametrization. GAAMP procedure starts with a structure file 

of the molecules in a pdb or a mol2 format. The parametrization for the Drude force field 

proceeds in 4 main steps: (1) Addition of Drude particles to the heavy atoms to generate 

initial topology and parameter files consistent with the Drude force field, (2) charge fitting 

using QM target data including ESP and specific interaction with water molecules, and (3) 

dihedral parameter fitting using QM target data. The charge fitting procedure is similar to 

RESP49 fitting but also takes advantage of the compound-water interactions.12,50 The partial 

charges are refitted for the compound that could undergo hydrogen bonding interaction by 

fitting to the minimum interaction energy and distance between the molecule and water 

at HF/6–31G* model chemistry without BSSE correction. The dihedral parameters are 

refitted after the charge refitting to have a consistent model. The geometry optimization 

and potential surface scans are done at the HF/6–31G* level of theory and the electrostatic 

potential (ESP) calculation is done using DFT at B3LYP/aug-cc-pVDZ level. As described 

previously, to fit the anisotropic polarization response of the electronic degrees of freedom, 

small positive perturbing test charges of 0.5 AMU are placed along the molecular surface 

resulting in multiple ESP potentials computed at various grid points. The multiple ESP data 

are then fitted to obtain the partial charges consistent with the Drude model.42 Gaussian 

0951 software is used for the QM calculations to generate the target data for parameters 

Rupakheti et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



optimization. Limited memory L-BFGS algorithm,33,34 available in NLOPT C++ library,52 

is used to fit the parameters using the analytical or finite difference gradients obtained in the 

context of the chi-square objective function.

After refining the electrostatics and dihedral parameters, the LJ optimization process is 

initiated. The LJ parameters optimization procedure is framed as a minimization of objective 

function and driven by computing the analytical gradients of the objective function with 

respect to the LJ parameters. As described for the additive force field LJ optimization,39 the 

objective function is defined as,

F p1, p2, …, pn = ∑mW V
V m

calc

V m
exp − 1

2
+ W ΔH

ΔHm
calc

ΔHm
exp − 1

2
(7)

where the sum runs over the molecules m in the training set, V m
calc and V m

exp are the 

computed and experimental molecular volumes respectively for a molecule m, ΔHm
calc and 

ΔHm
exp are the calculated and experimental heat of vaporization, respectively, for a molecule 

m, the W V  and W ΔH are the weights assigned to each molecular property. Equal weight for 

the molecular properties were used for this optimization. To compute the bulk properties, 

the liquid boxes from additive CGenFF simulations were obtained and Drude particles added 

to the non-hydrogen atoms followed by minimization and equilibration. The molecular 

volumes were calculated from the MD simulations as the average of the total volume of the 

liquid box divided by the number of molecules in the box as V = V box /N and the heat of 

vaporization were computed as,

ΔHm
calc = kBT + ugas − uliquid (8)

where ugas  and uliquid  are computed per molecule from the average of the potential energy 

in the gas and liquid phases, respectively. The derivative of the objective function with 

respect to the LJ parameter pi is given as,

∂F
∂pi

= 2∑mW V
V m

calc

V m
exp − 1   1

V m
exp

∂V m
calc

∂pi
+ W ΔHvap

ΔHm
calc

ΔHm
exp − 1

1
ΔHm

exp
∂ΔHm

calc

∂pi

(9)

where the derivative of a property of interest Q such as molecular volume or the heat of is 

expressed as,

∂ Q
∂pi

= ∂Q
∂pi

− 1
kBT Q∂U

∂pi
− Q ∂U

∂pi
(10)

As can be noticed, the first term in the equation 10 is non-zero only for a molecular property, 

such as the heat of vaporization in current optimization, that explicitly depend on the pi.
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As indicated, experimental data are used to optimize the LJ parameters. A training data of 

365 molecules with neat liquid properties were used and validation data of 51 molecules 

with neat liquid properties were held out. The molecules were curated from the prior 

publication of Mobley et al53 as well as National Institute of Science and Technology 

(NIST) database.54 The training and the validation data composed of aliphatic and polar 

molecules, which were carefully chosen to capture the diversity of atom types seen in drug 

like molecules. Since the parameters were optimized only using molecular volumes and the 

heat of vaporization, to test the transferability of the optimized parameters on a molecular 

property not explicitly in the objective function, hydration free energy (HFE) of the full set 

were computed and compared against the experimental measurements.

A gradient based optimizer L-BFGS33,34 algorithm was used for the LJ optimization. The 

optimization code is written in Bash, Python, and C++ and is also available together with 

the starting configurations of the solvent simulation boxes in GitHub (https://github.com/

chetanrrk/LJOptimization). To compute the averages of molecular properties of each 

compound, a neat liquid box comprised of 200–400 molecules (volume ~ 38 × 38 × 38 

Å3) was used and simulated for 2ns with MD under periodic boundary conditions with a 

time step of 1fs. The boxes were simulated under the constant pressure and temperature 

(NPT) using Langevin thermostat and piston.55 As prescribed in our previous study,17 the 

Drude particles were kept at 1K temperature with a hardwall of 0.2 Å and the non-hydrogen 

atoms at the experimental measurement temperature using the dual thermostat scheme. 

The long-range electrostatic interaction was computed using particle mesh Ewal (PME) 

summation56,57 with an Ewald splitting parameter of 0.34 Å−1, a grid spacing of 0.6 Å, 

and a sixth-order interpolation of the charge to the grid. The non-bonded van der Waals 

interactions were smoothly switched to zero between 10 to 12 Å and long-range correction 

as proposed by Shirts et al (LRC-MS) was applied.58 The SHAKE algorithm was used to 

constrain the bonds connecting a heavy atom to a hydrogen atom.59,60 All simulations were 

carried out using NAMD.

Optimization of the LJ parameters

We seek to optimize a set of CGenFF atom types that is recurrent in drug-like small organic 

molecules (Figure 1). In total, 6 epochs of LJ optimization were carried out, with an epoch 

being defined as a stage when all training molecules are used during the optimization. 

The initial pass (epoch 0) through the training set was done to compute the initial liquid 

properties at their unoptimized LJ parameters. As shown in Figure 2, the optimization was 

carried out in batches during epoch 1. The atom types of the pure aliphatic molecules were 

optimized initially, followed by the optimization of the polar atom types. In each batch, 

about 10–20 iterations of L-BFGS algorithm were carried out. LJ parameters of atom types 

optimized in the previous batch were fixed on subsequent batches. The electrostatic and 

dihedral parameters were updated after the first epoch (epoch 1) for the molecules using 

GAAMP to be consistent with the optimized LJ parameters. Since the LJ parameters were 

stable after the first epoch, electrostatic and dihedral parameters were kept at their optimized 

value of the first epoch. After the completion of the initial LJ optimization on epoch 1, the 

atom types were then optimized in a concerted manner where all atom types were optimized 

simultaneously. The LJ parameters corresponding to the 84 Drude force field atom types 
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were optimized in this work. Among these atom types, 56 atom types were already present 

in the Drude force field and 28 additional atom types were obtained from CGenFF and 

optimized in the context of the Drude force field.

To test the transferability of the optimized parameters to other molecular properties not 

explicitly included in the objective function, the HFE of the molecules in the training 

set were calculated. Free energy perturbation (FEP) calculations were performed in 

CHARMM in the context of the Drude polarizable force field using the PERT module 

of CHARMM,61–64 as previously described. The molecules were solvated in a water box 

containing 250 SWM4 molecules using packmol software.65 The initial box was minimized 

and equilibrated. During the FEP, 11 windows were used for the electrostatic and 18 

windows for the dispersion contribution calculations for both vacuum and solvated phases. 

A soft-core potential was used during the calculation of repulsive contribution during which 

the electrostatic and the dispersive interactions were turned off.66 For each window, the 

properties were averaged over 200 ps after an initial equilibration of 100 ps. The systems 

were simulated with PBC under conditions of constant pressure and constant temperature 

with PME. The aggregate data were post-processed using the weighted histogram analysis 

method (WHAM)67–69 for the dispersion and repulsion contributions and thermodynamic 

integration (TI)70,71 for the electrostatic contribution.

Optimization of the LJ parameters did not explicitly target the HFE property in the objective 

function. Initial results were calculated using an initial force field model corresponding 

to the optimized LJ parameters together with the standard Lorentz−Berthelot combination 

rule. To improve the performance, we examined the effect of a global scaling factor of 

the van der Waals interactions between atoms of a solute molecule and the oxygen atom 

of water introduced via the NBFIX functionality of the CHARMM parameter file.41 A 

similar procedure was used in our previous work.39 To determine the optimal scaling 

factor, equilibrium MD was launched for 2 ns with a timestep of 1 fs using the reference 

model (optimized LJ parameters and standard combination rule). The obtained equilibrium 

trajectories were then postprocessed with NBFIX based global scaling of the van der Waals 

between the solute and the oxygen atoms of water to obtain a reweighted HFE according to 

thermodynamic perturbation theory,

e−ΔΔG/kT = e− Upert − Uref /kT
Uref (11)

where ΔΔG represents the relative change in HFE, Uref is the reference potential energy 

computed using the optimized LJ parameters with standard combination rule, and Upert
is perturbed potential energy with the van der Waals scaling factor γ. The scaling of the 

solute-water van der Waals dispersion can be expressed as a linear additive term,

Uvdw γ = γUvdw 1 = Uvdw 1 + γ−1 Uvdw 1 (12)

which can be treated as a small perturbation on the HFE if γ is close to 1,72

ΔGtot ≈ ΔGref + γ − 1 Uvdw (13)
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On average, the calculated hydration free energies shift by about −2.4 kcal/mol with a 

factor γ = 1.175, and by about −0.5 kcal/mol with a factor γ = 1.036 for the set of molecules 

examined here.

RESULTS AND DISCUSSION

The initial LJ parameters for 416 molecules were taken from the Drude force field if 

the particular atom type was available, or otherwise the parameters were obtained from 

the CGenFF previously tabulated values. For all compounds, the electrostatic parameters 

(charges, polarizabilities and Thole scale factors) as well as dihedrals parameters of each 

compound were fit targeting ab initio data using the GAAMP server.12 This resulted in a 

total of 84 atom types, each with two LJ parameters, to be optimized in order to best-match 

the bulk molecular properties according to the objective function given in equation 7.

The L-BFGS algorithm coupled with the objective function and gradients was used to 

optimize the LJ parameters of 84 atom types. As shown in Figure 2, the initial epoch 

of optimization was carried out in stages, were the atom types found in pure aliphatic 

compounds were optimized first and the atom types found in other polar and non-polar 

functional groups were optimized later. After the initial epoch, all the atom types were 

optimized simultaneously. As seen in Figure 3, the optimization is remarkably efficient in 

improving the properties, with the molecular volume improving within the first two epochs 

by ~1.5%, and the heat of vaporization improving by ~9.5%. The initial unsigned average 

relative error over the molecular volumes was 4.1% and for the heats of vaporization it 

was 13.9%. After optimization, the unsigned average relative error on molecular volume 

and the heat of vaporization decreased to 2.4% and 4.6%, respectively. A total of 5 epochs 

of refinement were further carried out to better converge the parameters and liquid phase 

properties. A small fluctuation of less than 2% in the computed molecular properties toward 

later epochs is indicative of the convergence of the optimization.

Figure 4 shows the comparison against a hypothetical ideal fit (y=x) for both liquid 

properties. The liquid properties computed using the initial parameters clearly deviate more 

from the line of ideal fit whereas a close agreement to an ideal fit is obtained using the 

optimized LJ parameters. For molecular volumes computed using the initial LJ parameters, a 

linear fit with intercept set to zero had the slope of 0.996 and the Pearson R of 0.997. Using 

the optimized LJ parameter, the slope is comparable to the initial parameter of 1.01 and the 

Pearson R of 0.999. For the heat of vaporization computed using the initial LJ parameter, a 

linear fit with intercept set to zero has a slope of 1.1 and the Person R of 0.975. Using the 

optimized LJ parameter, a slope of 1.02 was obtained and the Person R improved to 0.997.

A breakdown of the molecular properties computed using the optimized LJ parameters is 

given in Table 1 for the different classes of compounds. The errors in molecular volume for 

some classes, such as aromatics and alkynes, are as low as 1% whereas for polar groups, 

such as acids and ketones, they are as high as 3%. The errors in heat of vaporization are 

as low as 2% for the non-polar groups such as alkenes and aromatics and as high as 5.5 

% for polar groups such as amides and nitros. Optimization of the atom types involving 

phosphorus atoms are particularly challenging. The initial average unsigned relative error 
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on the heat of vaporization for the molecules containing phosphates are around 20% which 

is vastly improved to ~8% after optimization. Since this group is particular less populated 

containing just 2 molecules, more training molecules might be required to fully optimize 

these atom types, though experimental data for additional compounds is lacking.

Figure 5 shows histograms of the error distributions for the molecular volumes and heats of 

vaporization, respectively. After optimization, a majority of the compounds have about 2.5% 

average unsigned relative error for the molecular volume and the overall average also close 

to 2.5%. The unsigned relative error is within 5% for the heats of vaporization with overall 

average also close to 5%. In fact, the optimization based on the Drude model shows slight 

improvement over our past LJ optimization based on the nonpolarizable GAFF model,39 

where the average unsigned relative error on the heat of vaporization was around 6%. It 

should be noted that since the current optimization attempts to fit the LJ parameters globally 

and improve the average of the molecular properties, the properties of some molecules affect 

the overall performance of the parameter set, as seen towards the tail of the distribution. 

These are molecules containing exotic functional groups such as sulphones, phosphate, and 

some halogens in proximity of another polar functional groups. It is possible to reduce their 

errors further by defining additional specialized atom types. However, there is a risk of 

rapidly proliferating the atom types which would be inconsistent with the goal of this study 

to conduct the optimization that is globally applicable to a diverse set of molecules while 

using a conservative set of available atom types.

For the majority of atom types, the optimized LJ parameters remained close to their initial 

values, taken from the CHARMM Drude force field or the CGenFF set. The average change 

in the Emin parameter was −0.01 kcal/mol, indicating a slight increase in the favorable LJ 

dispersion contributions. The average change in the Rmin parameter was 0.014 Å, indicating 

a slight but systematic increase in the radii. The average absolute change in the Emin 

parameter was 0.032 kcal/mol and the average absolute change in the Rmin parameter 

was 0.043 Å. As noted above, small perturbations to the LJ parameters were sufficient 

to improve a molecular property, especially the heat of vaporization which improved by 

around 9.5%. This vast improvement in the molecular properties with small changes in 

the LJ parameters also indicate the sensitivity of the properties towards the LJ parameters 

consistent with our prior LJ optimization39 using the GAFF based additive force field.

A more stringent test of the optimized LJ parameters is to apply the parameters to a 

set of molecules excluded from the training process. This validation of 51 molecules 

covering atom types of diverse functional groups were set aside in the training. As seen 

in Figure 6, the average percent absolute relative errors on the molecular volumes and 

heats of vaporization using the initial forcefield were 2.15% and 8.52% respectively. The 

error calculated using the optimized force field on the molecular volumes and heats of 

vaporization were 2.03% and 5.83% respectively. The RMSE on molecular volumes also 

improved from around 10 to 6 Å3, and the RMSE on the heat of vaporization also improved 

from around 1.6 to 0.7 kcal/mol. For the molecular volumes, the slope of fit using the 

initial and the optimized force field were 0.99 each (both fit done with intercept at zero), 

and the Pearson’s R for the initial and the optimized forcefield were 0.99 as well. For the 

heat of vaporization, the slope of fit using the initial and the optimized force field were 
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0.92 and 0.96, respectively (both fit done with intercept at 0), and the Pearson’s R for 

the initial and the optimized forcefield were 0.94 and 0.98 respectively. As seen in the 

training set, the improvement in slopes and Pearson’s R upon optimization is also evident 

in the validation set. These errors and fits are consistent with the ones observed during the 

training, indicating the general transferability of the optimized LJ parameters to compounds 

not explicitly included in the training set.

To further test the transferability of the optimized parameters on a property excluded from 

the objective function, HFE of the 372 molecules in the training set were computed using 

FEP. As seen in Figure 7, the overall trend with respect to the experimental measurement 

was good, yielding a linear best-fit with a slope of 0.81 and an intercept of 0.05 kcal/mol. 

The Pearson R is 0.9 and the average (signed) error is 0.46 kcal/mol, which is within 

statistical uncertainty. The mean absolute (unsigned) error is 0.95 kcal/mol. It is of interest 

to note that a systematic overestimation of the hydration free energy by ~2 kcal/mol was 

observed in our previous GAFF based LJ optimization.39 Such a systematic deviation in 

terms of the HFE was attributed to the overestimation of the dispersive interactions arising 

from the water model being used in the simulation. The issue was addressed using the 

NBFIX CHARMM utility by selectively scaling the LJ interaction between a molecule and 

the oxygen atoms of water by a factor of 1.115. Rescaling the Lennard-Jones well depth 

resulting from the Lorentz-Berthelot combination rule, Emin
i, j = γ Emin

i, i Emin
j, j 1/2

by a factor 

γ=1.115 had reduced the average unsigned error of the HFE to 0.8 kcal/mol and the average 

signed error of 0.12 kcal/mol. To clarify the importance of this factor in the present study, 

the impact of rescaling the compound-water dispersion interaction was examined. Following 

a perturbative analysis, we find that a scaling factor γ=1.036 would reduce the average error 

of 0.5 kcal/mol to 0 kcal/mol. Since this scaling factor is very close to 1, we recommend to 

simply use the optimized LJ parameters together with the combination rule without further 

modification.

CONCLUSION

Accurate force fields are critical for reliable computations of thermodynamic and kinetic 

properties. Optimization of force field parameters is a daunting challenge. While the bonded 

terms and electrostatic parameters can be fitted targeting QM data, the LJ optimization 

needs to be done by fitting directly to experimental measurements of molecular properties. 

We previously showed that significant improvement could be achieved in modeling the 

molecular properties in the context of additive forcefield starting from the GAFF LJ 

parameters.39 This current work built on the previous work to globally optimize the LJ 

parameters seen in drug-like small organic molecules but in the context of the CHARMM 

Drude force field.

It is important to be mindful of the number of optimized atom types given the total amount 

of data, although without additional experimental measurements it is not possible to use 

more extended training and test sets at this point. While one must avoid over-fitting the 

models with too many parameters, small drug-like organic molecules cover a wide range 

of chemistries and an insufficient number of atom types damages the accuracy of the final 
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model. To balance these opposite goals, we aimed to be as parsimonious as possible in 

allowing the creation of additional atom types. As a comparison, the additive CGenFF 

model comprises LJ parameter for 28 atom types, while the LJ parameters for 56 atom 

types were globally optimized for the CHARMM Drude force field in the present effort. 

As a result of the optimization, the properties molecular volumes and heats of vaporization 

improved by 2%, and by > 9% overall, respectively. We showed that the parameters are 

transferable to molecules out of the training set with the average percent relative error on 

the test set for molecular volumes and heats of vaporization, being around 2% and 5.5% 

respectively. The LJ parameters were also shown to be transferable to compute HFE—a 

property that was not included in the optimization procedure. The fit obtained had a Pearson 

R of 0.9 and an average error of 0.46 kcal/mol. This represents a significant improvement 

over the additive GAFF force field in our previous study, where an average error of 2.0 

kcal/mol was obtained. Such an improvement is consistent with the ability of the polarizable 

Drude model to more accurately model interactions in different environments, in contrast 

with optimized additive force fields that incorporate these effects into the fixed charge 

distribution and van der Waals parameters. The small remaining systematic error could be 

further reduced by introducing pair-specific LJ parameters (NBFIX terms in the syntax of 

the CHARMM parameter files) or by using a scaling factor γ=1.036 for the solute-solvent 

van der Waals dispersion interactions. Ideally, a complete polarizable force field model 

ought to account for all change in the interactions a molecule makes with its environment in 

different types of condensed phases. Systematic deviations of the HFE have been observed 

in other contexts,39,48,73 reflecting the inherent limitations of the LJ 6–12 potential and 

the standard Lorentz−Berthelot combination rule. A more accurate model could possibly 

be achieved with an alternate approach to treating the van der Waals interactions,74–76 

or a different combination rule.77–79 These issues could be resolved through the use of 

pair-specific LJ parameters, while maintaining the simple form of the energy function as 

done in the present study, though in practice, the results obtained directly from the model are 

likely to have sufficient accuracy for most applications.

The Drude polarizable force field explicitly incorporates polarization in molecular 

mechanics-based modeling. It is also an attractive choice because of its ease of 

implementation since it can be coded as an extension of the additive force fields with 

slight modification to the electrostatic terms and addition of the self-term in the potential 

energy function. By globally optimizing the LJ parameters of small organic molecules and 

in the CGenFF context, we have extended the applicability of the Drude force field towards 

drug design and discovery applications. Future efforts shall expand on the present work by 

considering solvation free energy of molecules in a variety of solvents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We gratefully acknowledge the computing resources provided by the Laboratory Computing Resource Center 
at Argonne National Laboratory. This work is supported by National Institute of Health (NIH) via grant R01
GM072558 and R35-GM131710.

Rupakheti et al. Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

(1). Karplus M; McCammon JA Molecular Dynamics Simulations of Biomolecules. Nat. Struct. Biol. 
2002, 9 (9), 646–652. 10.1038/nsb0902-646. [PubMed: 12198485] 

(2). Chen H; Maia JDC; Radak BK; Hardy DJ; Cai W; Chipot C; Tajkhorshid E Boosting Free-Energy 
Perturbation Calculations with GPU-Accelerated NAMD. J. Chem. Inf. Model. 2020, 60 (11), 
5301–5307. 10.1021/acs.jcim.0c00745. [PubMed: 32805108] 

(3). Cournia Z; Allen B; Sherman W Relative Binding Free Energy Calculations in Drug Discovery: 
Recent Advances and Practical Considerations. J. Chem. Inf. Model. 2017, 57 (12), 2911–2937. 
10.1021/acs.jcim.7b00564. [PubMed: 29243483] 

(4). Perez A; Morrone JA; Simmerling C; Dill KA Advances in Free-Energy-Based Simulations 
of Protein Folding and Ligand Binding. Curr. Opin. Struct. Biol. 2016, 36, 25–31. 10.1016/
j.sbi.2015.12.002. [PubMed: 26773233] 

(5). Mackerell ADJ Empirical Force Fields for Biological Macromolecules: Overview and Issues. J. 
Comput. Chem. 2004, 25 (13), 1584–1604. 10.1002/jcc.20082. [PubMed: 15264253] 

(6). Wang J; Wolf RM; Caldwell JW; Kollman PA; Case DA Development and Testing of a General 
Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. 10.1002/jcc.20035. [PubMed: 
15116359] 

(7). Vanommeslaeghe K; Hatcher E; Acharya C; Kundu S; Zhong S; Shim J; Darian E; Guvench O; 
Lopes P; Vorobyov I; Mackerell ADJ CHARMM General Force Field: A Force Field for Drug
like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. 
Comput. Chem. 2010, 31 (4), 671–690. 10.1002/jcc.21367. [PubMed: 19575467] 

(8). Rocklin GJ; Mobley DL; Dill KA Calculating the Sensitivity and Robustness of Binding Free 
Energy Calculations to Force Field Parameters. J. Chem. Theory Comput. 2013, 9 (7), 3072–
3083. 10.1021/ct400315q. [PubMed: 24015114] 

(9). Dobson CM Chemical Space and Biology. Nature 2004, 432 (7019), 824–828. 10.1038/
nature03192. [PubMed: 15602547] 

(10). Vanommeslaeghe K; MacKerell AD Automation of the CHARMM General Force Field 
(CGenFF) I: Bond Perception and Atom Typing. J. Chem. Inf. Model. 2012, 52 (12), 3144–3154. 
10.1021/ci300363c. [PubMed: 23146088] 

(11). Vanommeslaeghe K; Raman EP; MacKerell AD Automation of the CHARMM General Force 
Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. J. Chem. Inf. 
Model. 2012, 52 (12), 3155–3168. 10.1021/ci3003649. [PubMed: 23145473] 

(12). Huang L; Roux B Automated Force Field Parameterization for Nonpolarizable and Polarizable 
Atomic Models Based on Ab Initio Target Data. J. Chem. Theory Comput. 2013, 9 (8), 3543–
3556. 10.1021/ct4003477.

(13). Kumar A; Yoluk O; MacKerell AD Jr. FFParam: Standalone Package for CHARMM Additive 
and Drude Polarizable Force Field Parametrization of Small Molecules. J. Comput. Chem. 2020, 
41 (9), 958–970. 10.1002/jcc.26138. [PubMed: 31886576] 

(14). Mobley DL; Bannan CC; Rizzi A; Bayly CI; Chodera JD; Lim VT; Lim NM; Beauchamp 
KA; Slochower DR; Shirts MR; Gilson MK; Eastman PK Escaping Atom Types in Force 
Fields Using Direct Chemical Perception. J. Chem. Theory Comput. 2018, 14 (11), 6076–6092. 
10.1021/acs.jctc.8b00640. [PubMed: 30351006] 

(15). Lamoureux G; Roux B Modeling Induced Polarization with Classical Drude Oscillators: Theory 
and Molecular Dynamics Simulation Algorithm. J. Chem. Phys. 2003, 119 (6), 3025–3039. 
10.1063/1.1589749.

(16). Lamoureux G; MacKerell AD; Roux B A Simple Polarizable Model of Water Based on Classical 
Drude Oscillators. J. Chem. Phys. 2003, 119 (10), 5185–5197. 10.1063/1.1598191.

(17). Rupakheti C; Lamoureux G; MacKerell AD; Roux B Statistical Mechanics of Polarizable 
Force Fields Based on Classical Drude Oscillators with Dynamical Propagation by the Dual
Thermostat Extended Lagrangian. J. Chem. Phys. 2020, 153 (11), 114108. 10.1063/5.0019987. 
[PubMed: 32962358] 

Rupakheti et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(18). Lemkul JA; Huang J; Roux B; MacKerell AD An Empirical Polarizable Force Field Based on the 
Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 
2016, 116 (9), 4983–5013. 10.1021/acs.chemrev.5b00505. [PubMed: 26815602] 

(19). Lin F-Y; Huang J; Pandey P; Rupakheti C; Li J; Roux B; MacKerell AD Further Optimization 
and Validation of the Classical Drude Polarizable Protein Force Field. J. Chem. Theory Comput. 
2020, 16 (5), 3221–3239. 10.1021/acs.jctc.0c00057. [PubMed: 32282198] 

(20). Huang J; Lemkul JA; Eastman PK; MacKerell AD Jr. Molecular Dynamics Simulations 
Using the Drude Polarizable Force Field on GPUs with OpenMM: Implementation, Validation, 
and Benchmarks. J. Comput. Chem. 2018, 39 (21), 1682–1689. 10.1002/jcc.25339. [PubMed: 
29727037] 

(21). Lemkul JA; Roux B; van der Spoel D; MacKerell AD Jr. Implementation of Extended Lagrangian 
Dynamics in GROMACS for Polarizable Simulations Using the Classical Drude Oscillator 
Model. J. Comput. Chem. 2015, 36 (19), 1473–1479. 10.1002/jcc.23937. [PubMed: 25962472] 

(22). Jiang W; Hardy DJ; Phillips JC; Mackerell AD Jr; Schulten K; Roux B High-Performance 
Scalable Molecular Dynamics Simulations of a Polarizable Force Field Based on Classical Drude 
Oscillators in NAMD. J. Phys. Chem. Lett. 2011, 2 (2), 87–92. 10.1021/jz101461d. [PubMed: 
21572567] 

(23). Chowdhary J; Harder E; Lopes PEM; Huang L; MacKerell AD; Roux B A Polarizable Force 
Field of Dipalmitoylphosphatidylcholine Based on the Classical Drude Model for Molecular 
Dynamics Simulations of Lipids. J. Phys. Chem. B 2013, 117 (31), 9142–9160. 10.1021/
jp402860e. [PubMed: 23841725] 

(24). Li H; Ngo V; Da Silva MC; Salahub DR; Callahan K; Roux B; Noskov SY Representation of 
Ion-Protein Interactions Using the Drude Polarizable Force-Field. J. Phys. Chem. B 2015, 119 
(29), 9401–9416. 10.1021/jp510560k. [PubMed: 25578354] 

(25). Li H; Chowdhary J; Huang L; He X; MacKerell AD; Roux B Drude Polarizable Force Field 
for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids. J. Chem. 
Theory Comput. 2017, 13 (9), 4535–4552. 10.1021/acs.jctc.7b00262. [PubMed: 28731702] 

(26). Lopes PEM; Huang J; Shim J; Luo Y; Li H; Roux B; MacKerell AD Polarizable Force Field for 
Peptides and Proteins Based on the Classical Drude Oscillator. J. Chem. Theory Comput. 2013, 9 
(12), 5430–5449. 10.1021/ct400781b. [PubMed: 24459460] 

(27). Lemkul JA; MacKerell AD Polarizable Force Field for DNA Based on the Classical Drude 
Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational 
Energetics. J. Chem. Theory Comput. 2017, 13 (5), 2053–2071. 10.1021/acs.jctc.7b00067. 
[PubMed: 28399366] 

(28). Lemkul JA; MacKerell AD Jr. Polarizable Force Field for RNA Based on the Classical 
Drude Oscillator. J. Comput. Chem. 2018, 39 (32), 2624–2646. 10.1002/jcc.25709. [PubMed: 
30515902] 

(29). Heid E; Fleck M; Chatterjee P; Schröder C; MacKerell AD Jr Toward Prediction of Electrostatic 
Parameters for Force Fields That Explicitly Treat Electronic Polarization. J. Chem. Theory 
Comput. 2019, 15 (4), 2460–2469. 10.1021/acs.jctc.8b01289. [PubMed: 30811193] 

(30). Huang LRB. GAAMP Web Server. 2013.

(31). Wang J; Wang W; Kollman PA; Case DA Automatic Atom Type and Bond Type Perception 
in Molecular Mechanical Calculations. J. Mol. Graph. Model. 2006, 25 (2), 247–260. 10.1016/
j.jmgm.2005.12.005. [PubMed: 16458552] 

(32). Yesselman JD; Price DJ; Knight JL; Brooks CL 3rd. MATCH: An Atom-Typing Toolset for 
Molecular Mechanics Force Fields. J. Comput. Chem. 2012, 33 (2), 189–202. 10.1002/jcc.21963. 
[PubMed: 22042689] 

(33). Nocedal J Updating Quasi-Newton Matrices with Limited Storage. Math. Comput. 1980, 35 
(151), 773–782. 10.2307/2006193.

(34). Liu DC; Nocedal J On the Limited Memory BFGS Method for Large Scale Optimization. Math. 
Program. 1989, 45 (1), 503–528. 10.1007/BF01589116.

(35). MacKerell AD; Karplus M Importance of Attractive van Der Waals Contribution in Empirical 
Energy Function Models for the Heat of Vaporization of Polar Liquids. J. Phys. Chem. 1991, 95 
(26), 10559–10560. 10.1021/j100179a013.

Rupakheti et al. Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(36). Wang J; Cieplak P; Li J; Cai Q; Hsieh M-J; Luo R; Duan Y Development of Polarizable Models 
for Molecular Mechanical Calculations. 4. van Der Waals Parametrization. J. Phys. Chem. B 
2012, 116 (24), 7088–7101. 10.1021/jp3019759. [PubMed: 22612331] 

(37). Wang L-P; Martinez TJ; Pande VS Building Force Fields: An Automatic, Systematic, and 
Reproducible Approach. J. Phys. Chem. Lett. 2014, 5 (11), 1885–1891. 10.1021/jz500737m. 
[PubMed: 26273869] 

(38). Nerenberg PS; Jo B; So C; Tripathy A; Head-Gordon T Optimizing Solute–Water van Der 
Waals Interactions To Reproduce Solvation Free Energies. J. Phys. Chem. B 2012, 116 (15), 
4524–4534. 10.1021/jp2118373. [PubMed: 22443635] 

(39). Boulanger E; Huang L; Rupakheti C; MacKerell AD; Roux B Optimized Lennard-Jones 
Parameters for Druglike Small Molecules. J. Chem. Theory Comput. 2018, 14 (6), 3121–3131. 
10.1021/acs.jctc.8b00172. [PubMed: 29694035] 

(40). Harder E; Anisimov VM; Vorobyov IV; Lopes PEM; Noskov SY; MacKerell AD; Roux B 
Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force 
Field Based on the Classical Drude Oscillator. J. Chem. Theory Comput. 2006, 2 (6), 1587–1597. 
10.1021/ct600180x. [PubMed: 26627029] 

(41). Brooks BR; Brooks CL 3rd; Mackerell AD Jr; Nilsson L; Petrella RJ; Roux B; Won Y; Archontis 
G; Bartels C; Boresch S; Caflisch A; Caves L; Cui Q; Dinner AR; Feig M; Fischer S; Gao J; 
Hodoscek M; Im W; Kuczera K; Lazaridis T; Ma J; Ovchinnikov V; Paci E; Pastor RW; Post 
CB; Pu JZ; Schaefer M; Tidor B; Venable RM; Woodcock HL; Wu X; Yang W; York DM; 
Karplus M CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30 (10), 
1545–1614. 10.1002/jcc.21287. [PubMed: 19444816] 

(42). Anisimov VM; Lamoureux G; Vorobyov IV; Huang N; Roux B; MacKerell AD Determination of 
Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator. J. 
Chem. Theory Comput. 2005, 1 (1), 153–168. 10.1021/ct049930p. [PubMed: 26641126] 

(43). Lin F-Y; MacKerell ADJ Force Fields for Small Molecules. Methods Mol. Biol. 2019, 2022, 
21–54. 10.1007/978-1-4939-9608-7_2. [PubMed: 31396898] 

(44). Thole BT Molecular Polarizabilities Calculated with a Modified Dipole Interaction. Chem. Phys. 
1981, 59 (3), 341–350. 10.1016/0301-0104(81)85176-2.

(45). Allen MP; Tildesley DJ Computer Simulation of Liquids: Second Edition, 2nd ed.; Oxford 
University Press: Oxford, 2017. 10.1093/oso/9780198803195.001.0001.

(46). Baker CM; Lopes PEM; Zhu X; Roux B; MacKerell AD Accurate Calculation of Hydration Free 
Energies Using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable 
Force Field. J. Chem. Theory Comput. 2010, 6 (4), 1181–1198. 10.1021/ct9005773. [PubMed: 
20401166] 

(47). Best RB; Zheng W; Mittal J Balanced Protein–Water Interactions Improve Properties of 
Disordered Proteins and Non-Specific Protein Association. J. Chem. Theory Comput. 2014, 10 
(11), 5113–5124. 10.1021/ct500569b. [PubMed: 25400522] 

(48). Piana S; Donchev AG; Robustelli P; Shaw DE Water Dispersion Interactions Strongly Influence 
Simulated Structural Properties of Disordered Protein States. J. Phys. Chem. B 2015, 119 (16), 
5113–5123. 10.1021/jp508971m. [PubMed: 25764013] 

(49). Bayly CI; Cieplak P; Cornell W; Kollman PA A Well-Behaved Electrostatic Potential Based 
Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. 
Chem. 1993, 97 (40), 10269–10280. 10.1021/j100142a004.

(50). Foloppe N; MacKerell Alexander D, All-Atom J Empirical Force Field for Nucleic 
Acids: I. Parameter Optimization Based on Small Molecule and Condensed Phase 
Macromolecular Target Data. J. Comput. Chem. 2000, 21 (2), 86–104. 10.1002/
(SICI)1096-987X(20000130)21:2&lt;86::AID-JCC2&gt;3.0.CO;2-G.

(51). Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, 
Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov 
AF, Bloino J, Zheng G, Sonnenberg JL, Had M, and Gaussian DJF 09. (Gaussian, Inc., 
Wallingford CT, 2009) 2009.

(52). Johnson SG The NLopt Nonlinear-Optimization Package.

Rupakheti et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(53). Mobley DL; Bayly CI; Cooper MD; Shirts MR; Dill KA Small Molecule Hydration Free 
Energies in Explicit Solvent: An Extensive Test of Fixed-Charge Atomistic Simulations. J. Chem. 
Theory Comput. 2009, 5 (2), 350–358. 10.1021/ct800409d. [PubMed: 20150953] 

(54). National Institute of Standards and Technology.

(55). Feller SE; Zhang Y; Pastor RW; Brooks BR Constant Pressure Molecular Dynamics Simulation: 
The Langevin Piston Method. J. Chem. Phys. 1995, 103 (11), 4613–4621. 10.1063/1.470648.

(56). Essmann U; Perera L; Berkowitz ML; Darden T; Lee H; Pedersen LG A Smooth Particle Mesh 
Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577–8593. 10.1063/1.470117.

(57). Darden T; York D; Pedersen L Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in 
Large Systems. J. Chem. Phys. 1993, 98 (12), 10089–10092. 10.1063/1.464397.

(58). Shirts MR; Mobley DL; Chodera JD; Pande VS Accurate and Efficient Corrections for Missing 
Dispersion Interactions in Molecular Simulations. J. Phys. Chem. B 2007, 111 (45), 13052–
13063. 10.1021/jp0735987. [PubMed: 17949030] 

(59). Andersen HC Rattle: A “Velocity” Version of the Shake Algorithm for Molecular Dynamics 
Calculations. J. Comput. Phys. 1983, 52 (1), 24–34. 10.1016/0021-9991(83)90014-1.

(60). Miyamoto S; Kollman PA Settle: An Analytical Version of the SHAKE and RATTLE Algorithm 
for Rigid Water Models. J. Comput. Chem. 1992, 13 (8), 952–962. 10.1002/jcc.540130805.

(61). Pearlman DA; Kollman PA The Lag between the Hamiltonian and the System Configuration 
in Free Energy Perturbation Calculations. J. Chem. Phys. 1989, 91 (12), 7831–7839. 
10.1063/1.457251.

(62). Cieplak P; Bash P; Singh UC; Kollman PA A Theoretical Study of Tautomerism in the Gas 
Phase and Aqueous Solution: A Combined Use of State-of-the-Art Ab Initio Quantum Mechanics 
and Free Energy-Perturbation Methods. J. Am. Chem. Soc. 1987, 109 (21), 6283–6289. 10.1021/
ja00255a010.

(63). Singh UC; Brown FK; Bash PA; Kollman PA An Approach to the Application of Free 
Energy Perturbation Methods Using Molecular Dynamics: Applications to the Transformations 
of Methanol .Fwdarw. Ethane, Oxonium .Fwdarw. Ammonium, Glycine .Fwdarw. Alanine, and 
Alanine .Fwdarw. Phenylalanine in Aqueou. J. Am. Chem. Soc. 1987, 109 (6), 1607–1614. 
10.1021/ja00240a001.

(64). Zhu X; MacKerell ADJ Polarizable Empirical Force Field for Sulfur-Containing Compounds 
Based on the Classical Drude Oscillator Model. J. Comput. Chem. 2010, 31 (12), 2330–2341. 
10.1002/jcc.21527. [PubMed: 20575015] 

(65). Martínez L; Andrade R; Birgin EG; Martínez JM PACKMOL: A Package for Building Initial 
Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30 (13), 2157–
2164. 10.1002/jcc.21224. [PubMed: 19229944] 

(66). Zacharias M; Straatsma TP; McCammon JA Separation‐shifted Scaling, a New Scaling Method 
for Lennard‐Jones Interactions in Thermodynamic Integration. J. Chem. Phys. 1994, 100 (12), 
9025–9031. 10.1063/1.466707.

(67). Wang J; Deng Y; Roux B Absolute Binding Free Energy Calculations Using Molecular 
Dynamics Simulations with Restraining Potentials. Biophys. J. 2006, 91 (8), 2798–2814. 
10.1529/biophysj.106.084301. [PubMed: 16844742] 

(68). Souaille M; Roux B Extension to the Weighted Histogram Analysis Method: Combining 
Umbrella Sampling with Free Energy Calculations. Comput. Phys. Commun. 2001, 135 (1), 
40–57. 10.1016/S0010-4655(00)00215-0.

(69). Kumar S; Rosenberg JM; Bouzida D; Swendsen RH; Kollman PA THE Weighted Histogram 
Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method. J. Comput. 
Chem. 1992, 13 (8), 1011–1021. 10.1002/jcc.540130812.

(70). Kirkwood JG Statistical Mechanics of Fluid Mixtures. \jcp 1935, 3 (5), 300–313. 
10.1063/1.1749657.

(71). Frenkel D; Smit B Chapter 7 - Free Energy Calculations; Frenkel D, Smit BBT-UMS (Second E., 
Eds.; Academic Press: San Diego, 2002; pp 167–200. 10.1016/B978-012267351-1/50009-2.

(72). Deng Y; Roux B Hydration of Amino Acid Side Chains:  Nonpolar and Electrostatic 
Contributions Calculated from Staged Molecular Dynamics Free Energy Simulations with 
Explicit Water Molecules. J. Phys. Chem. B 2004, 108 (42), 16567–16576. 10.1021/jp048502c.

Rupakheti et al. Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(73). Best RB; Zheng W; Mittal J Correction to Balanced Protein-Water Interactions Improve 
Properties of Disordered Proteins and Non-Specific Protein Association. J. Chem. Theory 
Comput. 2015, 11 (4), 1978. 10.1021/acs.jctc.5b00219. [PubMed: 26574399] 

(74). Ponder JW; Wu C; Ren P; Pande VS; Chodera JD; Schnieders MJ; Haque I; Mobley DL; 
Lambrecht DS; DiStasio RA; Head-Gordon M; Clark GNI; Johnson ME; Head-Gordon T 
Current Status of the AMOEBA Polarizable Force Field. J. Phys. Chem. B 2010, 114 (8), 
2549–2564. 10.1021/jp910674d. [PubMed: 20136072] 

(75). Walters ET; Mohebifar M; Johnson ER; Rowley CN Evaluating the London Dispersion 
Coefficients of Protein Force Fields Using the Exchange-Hole Dipole Moment Model. J. Phys. 
Chem. B 2018, 122 (26), 6690–6701. 10.1021/acs.jpcb.8b02814. [PubMed: 29877703] 

(76). Mohebifar M; Johnson ER; Rowley CN Evaluating Force-Field London Dispersion Coefficients 
Using the Exchange-Hole Dipole Moment Model. J. Chem. Theory Comput. 2017, 13 (12), 
6146–6157. 10.1021/acs.jctc.7b00522. [PubMed: 29149556] 

(77). Halgren TA The Representation of van Der Waals (VdW) Interactions in Molecular Mechanics 
Force Fields: Potential Form, Combination Rules, and VdW Parameters. J. Am. Chem. Soc. 
1992, 114 (20), 7827–7843. 10.1021/ja00046a032.

(78). Waldman M; Hagler AT New Combining Rules for Rare Gas van Der Waals Parameters. J. 
Comput. Chem. 1993, 14 (9), 1077–1084. 10.1002/jcc.540140909.

(79). Kong CL Combining Rules for Intermolecular Potential Parameters. II. Rules for the Lennard‐
Jones (12–6) Potential and the Morse Potential. J. Chem. Phys. 1973, 59 (5), 2464–2467. 
10.1063/1.1680358.

Rupakheti et al. Page 18

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Coverage of CGenFF atom types by the current set of molecules. Broad range, ~70%, of the 

CGenFF atom types seen in drug-like small organic molecules are covered.
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Figure 2. 
Batch optimization workflow followed during epoch 1. Aliphatic atom types were optimized 

followed by aromatics and polar types. The arrow indicates the flow of optimized atom types 

to the next class to be optimized.
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Figure 3. 
Progress made on liquid properties based on average percent absolute relative error 

during the training epochs. The orange line tracks the progress on the computed heat of 

vaporization and the blue line tracks the progress on the computed molecular volume.

Rupakheti et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Liquid properties calculated for the training set of 365 molecules. The red and blue circles 

indicate properties computed using the initial and the final forcefields, respectively. (a) 

Molecular volumes in Å3 and (b) heats of vaporization in kcal/ mol. In black the ideal fit 

y=x line is shown.
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Figure 5. 
Distribution of the average unsigned relative error for the computed liquid properties on the 

training set computed on initial force field in red and optimized force field in blue for (a) the 

molecular volumes and (b) heats of vaporization.
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Figure 6. 
Linear fits on the set of 51 molecules training set molecules for (a) the molecular volumes in 

Å3 and (b) heats of vaporization in kcal/ mol. The red and blue circles show the comparison 

between initial and the optimized force field, respectively.
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Figure 7. 
Validation of the optimized force field on the free energies of hydration (HFE) for 372 

molecules. (a) Correlation plot showing the trend between experimental and computed HFE 

in kcal/mol using the optimized LJ. (b) Shows the distribution of the difference between the 

computed and the experimental HFE in kcal/mol.
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Table 1.

Breakdown of the class specific unsigned average relative error on the training set computed using the 

optimized LJ parameters. The 2nd column contains the number of molecules used during training in each class, 

the 3rd column contains the error on the computed molecular volume, and the 4th column contains the error on 

the computed heat of vaporization (HVAP).

Class Number of Molecules %Volume Error Final %HVAP Error Final

Alkanes 30 2.32 3.31

Alkenes 25 1.41 2.29

Alkynes 5 0.95 2.29

Aromatics 29 0.93 2.81

Alcohols 33 1.40 4.87

Ketones 23 3.51 2.77

Ethers 31 3.45 5.40

Acids/Esters 57 3.74 4.45

Amides/Amines/Nitros 79 2.14 5.88

Sulfurs 14 1.29 3.41

Phosphorus 2 1.526 8.467

Halogens 51 1.66 4.72
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