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Abstract
Brazil has a long history of research with rhizobia and plant growth–promoting rhizobacteria (PGPR). Currently, the use 
of bio-based products in Brazil, containing microorganisms that are effective in promoting plant growth through various 
mechanisms, is already a consolidated reality for the cultivation of several crops of agricultural interest. This is due to the 
excellent results obtained over many years of research, which contributed to reinforce the use of rhizobia and PGPR by 
farmers. The high quality of the products offered, containing elite strains, allows the reduction and prevention in the use of 
mineral fertilization, contributing to low-cost and sustainable agriculture. Currently, research has turned its efforts in the 
search for new products that further increase the efficiency of those already available on the market and for new formula-
tions or inoculation strategies that contribute to greater productivity and efficiency of these products. In this review, the 
history of biological products for main crops of agricultural interest and the new biotechnologies and research available in 
the agricultural market are discussed.
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Introduction

It is estimated that, in the year 2050, the world popula-
tion will reach the mark of 10 billion people, which makes 
greater agricultural production necessary to make the popu-
lation’s food security feasible [1]. Currently, Brazil occu-
pies the fifth place among the countries that have the larg-
est territorial extension focused on agriculture, with about 
7.8% of its territory used for agricultural practices [2]. In 
Brazil, the agribusiness participation in the Brazilian GDP 
(Gross Domestic Product) was 26.6% in 2020, within this 
amount the agricultural sector contributes with 70%, with 
grain production being the main one [3]. In order to guar-
antee high productivity in the agricultural sector, chemical 
fertilizers are widely used by agricultural producers, which 
increases the final cost of production by up to 30% [4]. In 
addition, improper handling of chemical fertilizers can nega-
tively affect the environment and the soil. Nitrogen fertiliz-
ers, for example, are associated with soil biota acidification 
and imbalance, pollution of groundwater by nitrates, and 
increased release of gases that participate in the greenhouse 
effect, such as nitrous oxide  (N2O), combined with ozone 
layer depletion and global warming [5–7].
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The set of economic and environmental implications that 
have arisen with the intensive use of fertilizers guides the 
search for solutions that enable a productive and, at the same 
time, sustainable agriculture [8, 9]. The use of biological 
products, which contain microorganisms that promote plant 
growth, called inoculants, in some countries also called 
biofertilizers, is one of the main strands in the search for 
better use efficiency, or complete replacement, of mineral 
fertilizers.

In Brazil, microbial inoculants are defined as a prod-
uct that contains microorganisms that are beneficial to 
plant growth [10] which are equivalent to the biofertiliz-
ers internationally [5, 11]. The main inoculants produced 
and commercialized in Brazil are currently formulated with 
bacteria called rhizobia, which comprise a group of spe-
cies that establish a symbiotic relationship with plants of the 
Fabaceae family. This interaction has been known for over 
120 years and it forms structures called nodules, where the 
biological nitrogen fixation (BNF) occurs [11]. The use of 
these bacteria in agriculture can supply, totally or partially, 
the nitrogen needs of several leguminous plants.

There are other nitrogen fixing (diazotrophic) bacteria 
that are free-living or associated with plants, without the 
formation of nodules, also provide nitrogen to the plant, but 
less efficiently. Bacteria of the genera Azospirillum, Pseu-
domonas, Bacillus, Azotobacter among others are called 
plant growth–promoting rhizobacteria (PGPR) and are used 
in inoculant formulations to directly assist plant growth by 
improving the acquisition of nutrients by the plant through 
various mechanisms, such as mineralization and solubiliza-
tion, BNF, and synthesis of growth regulators (e.g., indole 
acetic acid, cytokinin), which act directly on root, increasing 
the root-soil contact surface, allowing greater absorption of 
water and nutrients and volatile organic compounds (VOC) 
which has an antifungal activity [12]. Indirectly, the PGPRs 
or the products of their metabolism can act as biological 
control agents and induce systemic resistance. Also, the 
production of the ACC deaminase enzyme acts controlling 
plant stress, decreasing the ethylene levels by cleaving its 
precursor and reducing its production, providing resistance 
to crops under abiotic stress conditions, acting on hormonal 
metabolic pathways in the plant [12–14] (Fig. 1).

Fig. 1  Direct and indirect 
mechanisms for promoting plant 
growth by PGPR. In the rectan-
gles, the benefits to plants of 
plant-PGPR interaction
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In general, studies with growth-promoting microor-
ganisms focus on isolating and characterizing new PGPR 
[15–20] and evaluate the performance of these microorgan-
isms in plant development in order to produce new formu-
lations [21–23]. In addition, technologies that improve the 
use of microorganisms in agricultural processes have been 
studied [24] such as the combined use of two or more micro-
organisms [25–30], use of secondary metabolism molecules 
[31, 32], and new inoculant formulations, which aim at the 
greater effectiveness of these products. The objective of this 
review is to present a brief history of the use of inoculants 
in Brazil, focusing on the main products for crops of agri-
cultural interest, and present new researches and technolo-
gies that have been developed to increase the quality and 
efficiency of inoculants already available.

Bacteria of agricultural interest: history 
and use in Brazil

The first studies in Brazil with rhizobia of agricultural inter-
est took place in the state of Rio Grande do Sul to select 
strains for clover (Trifolium spp.) and alfalfa (Medicago 
sativa) crops intended for livestock production [33]. In the 
early 1960s, when soybean (Glycine max (L.) Merr) pro-
duction started its expansion in Brazil [33], the industry of 
rhizobia-based products also followed the same trend.

A decisive milestone for the production of commercial 
inoculants was the research which prioritized the search 
for strains chosen in the inoculation of soybeans and other 
crops of agricultural interest [34]. Brazil has a long his-
tory of research with inoculants and it is impossible not to 
mention the fundamental role that great researchers such 
as Johanna Döbereiner and João Ruy Jardim Freire played 
in this scenario [34, 35]. According to Döbereiner [34], 
the soybean crop has become a highlight in the Brazilian 
agricultural panorama, with the use of nitrogen fertilization 
being entirely dispensed, due to the joint work of microbiol-
ogists and breeders. Another decisive factor to guarantee the 
production and wide acceptance of commercial inoculants 
in Brazil was the creation of a legislation that establishes 
criteria with regard to specifications, guarantees, registra-
tion, packaging, and labeling of the inputs intended for agri-
cultural use; in addition, it lists the authorized and recom-
mended microorganisms for the production of the inoculants 
[36]. The first law which defined the commercial standards 
for this type of product appeared in 1980, and since then has 
been updated in several occasions. According to the most 
recent update, about 118 strains of rhizobia are authorized 
for the production of inoculants for legumes and 12 PGPRs 
recommended for other crops such as rice, wheat, corn, and 
eucalyptus [10].

The companies that produce inoculants in Brazil must 
accomplish a series of requirements with regard to concen-
tration, purity, shelf life guarantee, and absence of biologi-
cal contaminants in the products. Nowadays, the production 
of crops of agricultural interest such as soybeans, common 
beans, corn, wheat, and sugar cane, including brachiaria 
pastures, has biological products that are recommended for 
inoculation with wide acceptance.

The case of soybean in Brazil

Soybean (Glycine max (L.) Merr.) is a leguminous plant of 
the Fabaceae family, originally from East Asia used as a 
staple food in the eastern civilization. Only in the 1960s 
soybean becomes economically important in the Brazilian 
scenario, developing a larger area of cultivation and invest-
ment in technologies that resulted in yield increase [37]. 
The expansion in the agricultural area for soybean cultiva-
tion started from 6.8 million hectares in the 1970s to 38.26 
million hectares in 2021 [2]. Currently, soybean production 
is among the most profitable agricultural activities in Bra-
zil, which is the largest producer and exporter in the world. 
The BNF has always been a priority in the soybean planting 
system in the country. Since the entrance of this crop in 
Brazil, research has been focused on the identification and 
selection of strains of Bradyrhizobium with symbiotic supe-
riority. However, Brazilian soils, at the beginning of soybean 
cultivation in the country, were free of Bradyrhizobium and 
due to the absence of the natural diversity of these microor-
ganisms the first inoculants used were imported from other 
countries. Subsequently, the search for variant genotypes 
with high capacity for  N2 fixation and more adapted to the 
Brazilian soils and environmental conditions began using 
techniques for re-isolating rhizobia from soybean nodules 
[38].

The research with rhizobia capable of nodulating soy-
bean began in the 1940s with the selection of strains, tests 
with imported inoculants, and attempts at re-isolation [36]. 
However, it was only in the 1950s that the selection of 
effective strains in soybean nodulation and the produc-
tion of inoculants were actually carried out [38]. The 
pioneering work of the researchers Johanna Döbereiner 
and Jardim Freire in the search for more competitive and 
effective strains for this crop was essential for the inde-
pendence of nitrogen fertilizers in soybean cultivation. The 
work of these researchers was also decisive for the soy-
bean breeding programs to be carried out in the absence 
of nitrogen fertilizers, considering only the symbiosis of 
this plant with the rhizobia [36]. Due to the intense search 
for superior rhizobia genotypes, Brazil is currently one 
of the largest producers of inoculants in the world and 
the consumption of this technology has a high acceptance 
by great part of the farmers [38–40]. The expansion of 
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soybean cultivation to the Cerrado in the 1980s started 
with the selection of elite rhizobia strains capable of meet-
ing plant’s demand for nitrogen in low humidity conditions 
and in acidic soils. The first strains selected for soybean 
inoculation in the Brazilian Cerrado were Bradyrhizobium 
elkanii SEMIA 587 and SEMIA 5019 (= 29w) [41]. These 
strains possessed a high capacity to fix nitrogen, had a 
good competitive ability, and were able to nodulate a wide 
variety of soybean cultivars [41]. The inoculation success 
with these strains in the 1980s among other advances in 
crop production system contributed to increase the agri-
cultural frontier in the country and, as a result, soybean 
became the most important agricultural crop in Brazil 
[40].

Peres et al. [42] presented the strains of B. japonicum 
SEMIA 5079 (= CPAC 15) and B. diazoefficiens SEMIA 
5080 (= CPAC 7), as highly competitive and with high nitro-
gen-fixing potential [38, 39, 43]. The inoculation of soy-
beans with SEMIA 5079 and SEMIA 5080 showed gains 
in productivity 8.8% higher than those presented using the 
strains of B. elkanii SEMIA 5019 and SEMIA 587 [40]. In 
2019, a consumption of 70 million doses of soybean inoc-
ulants was estimated, used in more than 90% of the total 
planted area in Brazil [44]. Soybean inoculation allows an 
average yield of 3.5 tons of grains  ha−1, without the need 
of nitrogen fertilizers [45]. On the other hand, only 15% 
of the total area used for planting soybeans in the USA are 
inoculated [46, 47]. This is due to the low cost of nitrogen 
fertilizers and low incentives in the use and development of 
biological-based technologies in that country [36].

Considering the reduction in the total spending on nitro-
gen fertilization for the crop and the wide acceptance of the 
technology by producers, an annual savings of US$15 billion 
in Brazil is calculated, allied to a significant reduction in the 
emission of greenhouse gases and groundwater contamina-
tion [44]. The calculation of savings in nitrogen is carried 
out as described by Hungria and Mendes [48], which consid-
ers the size of the total planted area in the country, the price 
of the nitrogen (urea), and the average yield per hectare. 
Furthermore, this calculation also considers a 50% nitro-
gen use efficiency and the estimate of the total N exported 
by the crop. Assuming that the use of nitrogen in soybean 
cultivation is unnecessary, it is possible to assume that the 
calculated amount that would be spent on urea is saved with 
the use of rhizobia in soybean inoculation.

Between 2009 and 2018, the use of inoculants for soy-
bean has increased to 221% [49], used both domestically and 
for export to countries in South America and Africa, with 
the vast majority containing the elite strains SEMIA 5079 
and SEMIA 5080 [38]. Currently, new ways of inoculation 
and improvement of the formulation have been studied to 
improve its efficiency, and in return, increase the demand 
for this type of product in agriculture.

Common bean

Common bean (Phaseolus vulgaris L.) is a legume from the 
Fabaceae family grown in different regions of the world. 
Brazil is one of the largest producers and consumers of 
this legume, which is widely consumed in South America 
and Africa. Currently, about 2.9 million hectares in Brazil 
are used for the common beans cultivation, in three annual 
harvests, reaching a production of 3 million tons. However, 
the average yield of each crop is 1000 kg  ha−1, well below 
its productive capacity [2]. Environmental stresses such as 
drought and low nutrient supply are limiting factors for the 
development of the plant and, common causes, for the com-
mon beans low productivity [27, 50].

Common bean is considered a host for the rhizobia with 
low specificity, or promiscuous, capable to form nodules 
with different genera and species of bacteria of the alpha-
proteobacteria group (mainly Rhizobium) and beta-pro-
teobacteria (as Paraburkholderia nodosa, P. tuberum, P. 
sabiae, and Cupriavidus necator). The most common bac-
terial species capable of nodulating common bean belong 
to the genus Rhizobium, such as R. tropici [51], R. etli [52], 
R. freirei [53], R. leucaenae [54], and R. paranaense [55], 
among others. In Brazil, there are three bacteria of the genus 
Rhizobium authorized for commercialization in inoculant 
formulations and recommended for common beans cultiva-
tion, the R. tropici SEMIA 4077 (= CIAT 899) and SEMIA 
4088 (= H12) and R. freirei SEMIA 4080 (= PRF 81). These 
bacteria were selected mainly for having greater genetic sta-
bility and high tolerance to environmental stress conditions 
[56, 57].

Due to a series of factors that affect the efficiency of BNF 
in common beans and the great demand for nitrogen by the 
crop, the results in productivity can be variable, being nec-
essary, in some cases, a supplementation with nitrogen fer-
tilizers to reach high production levels [58, 59]. The main 
reported factors involve early senescence of the nodules 
[60], genotype-specific interaction between bacteria and 
host plant [61, 62], and abiotic factors, mainly water deficit 
[63], soil fertility, and temperature [64]. The presence of 
highly competitive native rhizobia capable of nodulating the 
common bean (but with a low fixative capacity) is one of the 
main causes of the low efficiency of BNF in this crop [65, 
66] and can affect inoculation responses with elite strains 
[67].

In the state of Paraná, inoculation of common beans 
with R. tropici CIAT 899 and R. freirei PRF81 resulted in 
productivity above 2.500 kg  ha−1 without the addition of 
N fertilizer [56, 57]. In the Midwest region, common bean 
production may still depend on complementary doses of N 
fertilizers, along with inoculation to achieve high levels of 
productivity. According to Pelegrin et al. [68], common bean 
inoculation was equivalent to a fertilization of 80 kg of N 
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 ha−1 in the state of Mato Grosso do Sul. In addition, when 
20 kg of N  ha−1 was added in the seeding, associated with 
the inoculation with R. tropici CIAT 899, a yield of 3.339 kg 
of grains  ha−1 was obtained, equivalent to a fertilization with 
160 kg of N  ha−1 [68]. Depending on the cultivar, the pro-
ductivity of beans can vary from 840 to 2.741 kg  ha−1 of 
grains, when inoculated with elite strains recommended for 
the crop [61, 62].

Based on the promising results of the use of commercial 
inoculants in common bean crops and, mainly, in the possi-
bility of reducing production costs, the sale of this biological 
input increased by 85% between 2009 and 2013 [49], and 
only in 2018, approximately 280 thousand doses of inoculant 
for beans were sold in peat and liquid formulations [49]. 
Strategies, such as co-inoculation with Azospirillum brasi-
lense [69] and Bradyrhizobium spp. [26], nitrogen fertiliza-
tion associated with elite strain inoculation [68], and the 
search for new elite bacteria [70], are the subject of studies 
for common bean.

Grasses

The cultivation of cereals started thousands years ago and, 
until the present moment, represents the basis of the world 
nutrition. Among the main crops, wheat, corn, and rice stand 
out as important cereals for human and animal food [71]. 
Cultivated pastures are also an economical and viable agri-
cultural practice for cattle feed; in addition, it is an impor-
tant practice for the recovery of degraded areas [72]. The 
cultivation of grasses is dependent on mineral fertilization, 
especially with nitrogen, to achieve high yields. In Brazil, 
there is a long history of research with PGPR associated 
with grasses, especially for pioneering work conducted by 
Dr. Johanna Döbereiner, which aimed at reducing mineral 
fertilization and guaranteeing the maximum production of 
crops with agricultural sustainability [73–75]. Among the 
most studied microorganisms, bacteria of the Azospirillum 
genus stand out as PGPRs for a wide variety of host plants, 
many of great economic importance, such as corn and wheat 
[75].

Bacteria from the Azospirillum genus are alpha-proteo-
bacteria, which can be free-living or associated with the 
rhizospheric region and/or endophytically in the coloniza-
tion of more than one hundred hosts [76]. This bacterial 
genus was first described by Tarand [77], with A. brasilense 
and A. lipoferum species. Currently, a total of 22 species 
have been described, isolated mainly from the soil, with 
worldwide distribution[78].

The first studies carried out with this bacteria aimed to 
assess its ability to fix atmospheric nitrogen and reduce the 
use of mineral N, especially in grasses [73, 79]. Its first 
species was described by Beijerinck in 1925 and it was 
called Spirillum lipoferum, but it was only in 1978 that it 

was discovered that this bacterium has the ability to fix 
atmospheric nitrogen, having its scientific name changed to 
Azospirillum lipoferum [77]. Shortly after, Tien et al. [80] 
reported the production of several growth regulators by 
Azospirillum, such as auxins, gibberellins, and cytokinins. 
It is now known that the benefits of inoculation with this 
bacterium go beyond BNF, which reinforces the theory of 
Bashan and Levanoy [81] about the “additive hypothesis,” 
that considers the involvement of multiple mechanisms of 
action in the association of Azospirillum with the host. The 
hypothesis suggests that the mechanisms operate simultane-
ously or in association, with the contribution of one of the 
mechanisms being less effective when evaluated separately.

The inoculation with the A. brasilense species benefits 
the plant in several ways, such as the induction of systemic 
resistance, inducing the synthesis of a variety of second-
ary metabolites by the host [82]. Furthermore, the associa-
tion among plants and A. brasilense can provide protection 
from abiotic stress conditions, such as salt and oxidative 
stress [83, 84] and the production of growth regulators by 
bacteria results in morphological changes in the roots, pro-
moting greater root growth and resulting in better absorp-
tion of nutrients and water [80, 85–89]. In the case of seed 
inoculation, the growth regulators produced by Azospirillum 
in the product act in “seed primming” effect, that is, after 
inoculation, the number of viable bacterial cells is drastically 
reduced; however, the concentration of growth regulators 
remains promoting plant growth [78].

Several studies point out the beneficial effects of inocu-
lation with A. brasilense in grasses of agronomic interest 
such as corn (Zea mays L.), wheat (Triticum aestivum L.) 
[75, 90, 91], rice (Oryza sativa) [88], and brachiaria (Uro-
chloa spp.) [72]. Hungria et al. [75] evaluated the inocula-
tion of A. brasilense Abv5 and Abv6 in wheat and corn by 
conducting 17 experiments carried out in different stations 
located in nine areas with different edaphoclimatic condi-
tions. There was an increase in nutrients concentration in the 
grains and a greater root mass in the inoculated plants, with 
an increase of 24–30% and 13–18% in corn and wheat pro-
ductivity, respectively. Díaz-Zorita and Fernández-Canigia 
[92] found similar results in 297 experiments conducted in 
Argentina with wheat, using A. brasilense Az-39, and posi-
tive responses were observed in 70% of the experimental 
areas, with an 8% gain in grain yield. Okon and Labandera-
Gonzalez [86] in experiments carried out in several coun-
tries with A. brasilense also reported a 5–30% increase in 
grain yield in 70% of the evaluated areas.

In Brazil, the inoculant commercialization containing the 
strains of A. brasilense Abv5 and Abv6 has been carried out 
since 2009, for wheat, rice, corn [75] and, more recently, for 
brachiaria [72]. In 2018, more than nine million doses of 
inoculants with A. brasilense were commercialized, account-
ing for approximately 10% of the total inoculants sold in 
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Brazil, indicating the great acceptance of this bioproduct by 
producers [49].

The Nitrospirillum amazonense species, isolated from 
sugar cane and other grasses such as corn, sorghum, and 
rice, is widely distributed in the Brazilian territory [93]. 
Possibly, its wide occurrence in the Brazilian soils is asso-
ciated with high adaptability to acidic soils, a very com-
mon characteristic in most of the country’s soils. [94, 95]. 
Recently a public–private partnership between the Brazilian 
Agricultural Research Corporation (EMBRAPA) and BASF 
company announced a new inoculant that has this bacte-
rial species in its formulation and it is recommended for 
the cultivation of sugar cane. BASF is commercializing this 
inoculant associated with other products of insecticidal and 
fungicidal action, with the name of “Muneo Bio” Kit.

Even though inoculation with beneficial bacteria such as 
rhizobia, Azospirillum spp., Bacillus spp., and Pseudomonas 
spp. has gained more space in the agricultural market, the 
use of bioproducts still accounts for a small share of the 
fertilizers and pesticides in the world, far below what is nec-
essary for greater productive sustainability [96]. New tech-
nologies are needed to make these products more effective 
in the field, less costly, and more attractive to producers. 
Currently, several studies are being carried out with regard 
to new formulations of beneficial bacteria and the use of 
secondary metabolites in combinations with them.

Phosphate solubilization

Phosphorus is one of the most limiting elements for plant 
growth and decisive for agricultural crops productiv-
ity. Tropical soils used in agriculture are generally acidic, 
with the presence of phosphates, especially iron phosphate 
 (FePO4) and aluminum phosphate  (AlPO4), that are unavail-
able to plant metabolism [97]. The lack of this nutrient is 
supplied with the application of phosphate fertilizers. High 
doses should be applied to the soil, due to its low efficiency, 
which makes the use of phosphate fertilization costly to the 
producer, especially in Brazil, which has a high dependence 
on the import of this input [98].

Phosphate-solubilizing microorganisms (PSM) con-
vert the sparingly soluble phosphate to its soluble form, or 
assimilable, to plant metabolism through the production of 
compounds capable of breaking the phosphate bond with its 
chelating agent. Among the main forms of action of these 
microorganisms are the production of organic acids, sidero-
phores, protons, and CO2 [98–100]. Several microorgan-
isms, including bacteria and fungi, have the ability to solu-
bilize phosphates, such as Aspergillus, Penicillium, Bacillus, 
Pseudomonas, and Paraburkholderia. Many studies have 
focused on the prospecting of PSM for the production of 
inoculants [99].

Several microorganisms are marketed as PSM in the 
world, one of the main is the Penicillium bilaiae fungus, 
commercialized in Canada in a formulation called JumpStart 
XL® (Bayer), recommended for use in various cultures. In 
field, the use of this product increased productivity and P 
content and reduced phosphate application in wheat, in addi-
tion to contributing to greater phosphate absorption in other 
crops [101]. Currently, many researches have focused on the 
combined use of PSM with other microorganisms such as 
rhizobia [102] and mycorrhizal.

Oliveira et al. [103] described 45 PSM isolated from the 
corn rhizosphere grown in an area of the Brazilian Cerrado 
with low phosphate concentration in the soil; the authors 
report that the isolates Bacillus sp. (B17), Burkholderia sp. 
(B5), and Streptomyces platensis (A4) were the most effi-
cient in solubilizing calcium phosphate  Ca3(PO4)2, promis-
ing for the formulation of an inoculant. Ribeiro et al. [97] 
found that strains of Bacillus B1923, B2084, and B2088 
promoted foliar and root growth and accumulation of macro-
nutrients in millet, independently, varying according to the 
inoculated strain and source of phosphate present. These 
microorganisms have other characteristics in promoting 
growth, such as the production of growth regulators and 
siderophores. The isolates B2084 and B2088 produced glu-
conic acid in vitro and it is recognized by the literature as 
one of the most efficient mechanisms in the solubilization 
of phosphate by bacteria.

These studies contributed to the development of the first 
commercial inoculant based on phosphate-solubilizing bac-
teria in Brazil, composed of Bacillus megaterium CNPMS 
B119 and B. subtilis CNPMS B2084, BiomaPhos® (Bioma), 
the result of research by the Brazilian Agricultural Research 
Corporation (Embrapa) with the company Bioma [104]. 
Paiva et al. [104] show that the combined use of these two 
strains was effective in increasing corn productivity. The 
authors carried out several experiments, in three harvests, in 
different locations in Brazil and the average results of pro-
ductivity gain with inoculation were 8.9%, resulting in aver-
age yield of 10 bags of corn grains per hectare. The use of 
this product in the cultivation of soybeans was also effective 
in increasing productivity, resulting in an average increase 
of 5 bags per hectare [101]. Currently, research with these 
same strains continues to be carried out with other cultures.

The production of phosphate fertilizers is carried out 
from non-renewable sources, generating environmental 
impacts. Furthermore, Brazil is still dependent on imports 
of this product, although there is an enormous reserve of 
phosphorus that cannot be assimilated in the soil. The devel-
opment of inoculants based on PSM is extremely important 
to reuse the phosphate stock fixed in the soil, chelated in clay 
or metals (Al, Fe, and Ca, especially) and reduce the use of 
phosphate fertilizers.
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Co‑inoculation

The combined use of different PGPRs that work through 
different mechanisms of action promoting plant growth is a 
strategy that has been widely explored in the inoculation of 
different cultures [69, 105]. The combination of two or more 
microorganisms has already been used in agriculture, such 
as the combination of rhizobia with phosphate-solubilizing 
bacteria [106], PGPRs with another PGPR that acts as a 
pathogen biocontrol agent; or bacteria that have the same 
mechanisms of action in promoting growth, but with dif-
ferences in tolerance to abiotic conditions of the medium or 
specificity to the plant’s genotype [8, 107].

In Brazil, there has been success in the combined use of 
rhizobia strains recommended for soybeans and common 
beans with A. brasilense Abv5 and Abv6 [30, 69]. The inoc-
ulation of rhizobia with A. brasilense increased the produc-
tivity in 16.1% and 19.6%, in soybean and common beans, 
respectively, when compared with the controls inoculated 
only with rhizobia [69]. The combined use of rhizobia and 
A. brasilense benefits the plant in increasing the number of 
nodules [108, 109], greater tolerance to environmental stress 
conditions [83], and it is an economically profitable practice 
for the producer. Galindo et al. [25] demonstrated that the 
inoculant based on A. brasilense represents only 1.1% of the 
total operational cost of soybean cultivation; however, pro-
ductivity gains are approximately 10 bags of grains per hec-
tare compared to cultivation with only Bradyrhizobium spp.

The co-inoculation of rhizobia and A. brasilense AbV5 
and AbV6 is a practice recommended for soybean and com-
mon beans producers in Brazil and, currently, co-inocula-
tion is already a reality for most farmers. Between 2015 and 
2018, there was an increase of 220% in the commercializa-
tion of inoculants composed by A. brasilense [49]. Although 
the increase in the commercialization of this product is due 
to grasses cultivation, a large part of the sales is destined to 
the combined use of inoculants recommended for legumes 
[36]. Currently, some inoculant companies in Brazil already 
offer for sale a single product containing Bradyrhizobium 
spp and A. brasilense for soybean inoculation.

The combined use of five strains of PGPR is recom-
mended for sugarcane in Brazil. This formulation is com-
posed by Gluconacetobacter diazotrophicus (BR 11,281), 
Herbaspirillum seropedicae (BR 11,335), Herbaspirillum 
rubrisubalbicans (BR 11,504), Nitrospirillum amazonense 
(BR 11,145), and Paraburkholderia tropica (BR 11,366). 
All bacteria present in the formulation are diazotrophic and 
phytohormone-producing, and isolated from sugar cane 
[110]. Co-inoculation with the five strains is recommended 
in order to reduce the difference in response among distinct 
sugarcane cultivars [111].

Co-inoculation offers several benefits to the plant, such 
as an increase in root area, which enables a greater use of 

mineral fertilization and water absorption, ensuring protec-
tion from water stress conditions, and provides legumes with 
greater root surface for rhizobia infection, increasing nod-
ules formation [25]. It is the target of several studies that 
pursuit to deepen the knowledge about bacteria that can be 
the object of new formulations, compatibility of different 
strains, and use in different cultures.

New inoculant formulations

Molecular inoculants: addition of secondary 
metabolism molecules in formulations already 
consolidated on the market

Nodulation factors (Nod factors)

The process of forming active nodules in leguminous plants 
is extremely complex and depends on the communication 
between the host plant and the rhizobia through signal mol-
ecules. The formation of functional nodules is initiated by 
the production of phenolic compounds by the host, such as 
flavonoids, which act as an inducing molecule [112, 113]. 
These compounds, in addition to acting as chemotactic 
agents for rhizobia, activate the transcription of nodulation 
genes (nod genes) and promote the production of signal mol-
ecules by rhizobia called lipochitooligosaccharides (LCOs), 
or nodulation factors (NF), essential for the specificity of 
host-symbiotic communication [12, 114, 115]. Nodulation 
factors play a crucial role in the formation of active nod-
ules and in submicromolar concentrations, among  10−9 and 
 10−12 M [116], they induce physiological and morphological 
changes in the host such as alteration of the ions flow, result-
ing in the root hair curling and formation of the infection 
cord that allows the rhizobia to enter the cells. In addition, 
nodulation factors promote the nodular primordium forma-
tion, which after the rhizobia infection and differentiation 
form the active nodule (Fig. 2) [8, 113, 116–119].

Nodulation factors act in several physiological pro-
cesses in the host, in addition to those involved with nodu-
lation, such as the formation of lateral roots [120]. Fur-
thermore, LCOs activate the expression of genes involved 
in the plant cell cycle, stimulating cell division, not only 
in leguminous plants and, because of this, they stimulate 
germination, seedling growth, and root growth in several 
non-target hosts, when applied in seeds [121, 122]. They 
are also able to promote an increase in leaf area, increase 
in photosynthetic rate, and total dry weight when foliar is 
inoculated [115]. Souleimanov et al. [123] observed that 
in submicromolar concentrations  (10−7 and  10−9 M), the 
purified LCO of B. japonicum 532C increased the ger-
mination rate of maize, rice, and soybean, and promoted 
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greater biomass accumulation, supporting the theory of 
the hormone-like action of these molecules proposed by 
Fisher and Long [124].

Some studies also report that exudates from non-legu-
minous plants act as inducers of the genes responsible (nod 
genes) for nodulation in rhizobia [115]. Lian et al. [125] 
observed the production of LCOs in a culture of B. japoni-
cum after the addition of corn, soybean, and wheat root 
extracts. The corn root extract induced the production of 
LCOs by the bacteria in high concentrations. The response 
to exudates from non-leguminous plants by rhizobia sug-
gests that, in addition to acting in symbiosis with legumi-
nous plants, these bacteria act as PGPRs and that nodula-
tion factors have hormone-like action, such as stimulation 
of formation of lateral roots, allowing greater assimilation 
of nutrients and water by the host [115].

In leguminous plants, it was observed that the treatment 
with LCO extracted from R. leguminosarum bv. viciae 
GR09 in pea (Pisum sativum) and vetch (Vicia villosa) seeds 
increased germination, biomass, and nodulation efficiency 
[122]. Similar results were obtained in Medicago truncatula 
treated with LCO of S. meliloti via seed [117].

Nodulation factors combined with the use of host-specific 
rhizobia are beneficial to leguminous growth. The purified 
LCOs, in the absence of rhizobia, are sufficient to induce the 
root hair curling, cell division, and the formation of nodule-
like structures [126]. López-Lara et al. [127] added puri-
fied LCO from Rhizobium sp. GRH2 in Phaseolus sp. and 

Acacia spp. and observed the formation and deformation of 
root hair.

Several studies have been carried out with the exogenous 
application of LCOs in legumes and an increase in the nod-
ules number and nitrogen concentration in the leaf as well as 
greater expansion of the root area are reported. [117, 122]. 
In non-leguminous plants, tolerance to high temperature is 
reported [116]. The use of LCO with rhizobia increases sym-
biotic competitiveness and can benefit the recruitment of soil 
rhizobia to increase nodulation efficiency [122].

Studies carried out in Brazil showed that soybean inocu-
lation with strains of Bradyrhizobium spp. added with sec-
ondary metabolites, containing LCOs, extracted from B. 
diazoefficiens USDA 110 increased grain yield by 4.8% 
compared to treatment inoculated only with the inoculant 
recommended for this crop [31]. In corn, the addition of R. 
tropici CIAT 899 metabolites to the A. brasilense inoculant 
was evaluated and there was an increase of 11.4% in produc-
tivity [31]. The application of A. brasilense enriched with 
R. tropici CIAT 899 LCOs showed an increase in corn pro-
ductivity in five, out of a total of six, experiments conducted 
compared to the non-inoculated treatment [32].

There are still few companies that produce bioformu-
lations containing secondary metabolites, such as LCOs. 
Among the products available, there are those that carry 
the purified molecule, which can be inoculated via foliar 
or seed and bioformulations composed of the molecule and 
the bacteria (rhizobia or PGPRs) recommended for the crop 

Fig. 2  Colonization of rhizobia 
and nodule formation. Flavo-
noids are produced by the host 
and act as a signal molecule for 
the production of nodulation 
factors by rhizobia. The percep-
tion of nodulation factors by 
the plant induces the root hair 
curling, facilitating the entry of 
bacteria in the cortical zone of 
plant tissue. Invaginations in the 
region of the hair bending form 
the infection cord that leads the 
bacteria to the region where 
the nodule will be formed. The 
mitogenic action of nodulation 
factors stimulates the prolifera-
tion of cortical cells in the plant 
and the nodular primordium 
formation or emerging nodule. 
Rhizobia colonize the emerging 
nodule, forming the symbio-
some, and differ in to bacteroids 
at the  N2 fixation stage
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of interest [128]. Products that use this biotechnology are 
marketed by multinational companies and recommended 
for both leguminous plants such as soybeans, peanuts, and 
alfalfa and for non-leguminous plants such as maize and 
wheat.

Since 2011, a product called Ratchet® (Monsanto) 
based on LCO, recommended for foliar use in soybean and 
corn, has been commercialized in the USA, which act by 
stimulating photosynthesis, sugar production, increasing 
plant growth, and resulting in better harvest performance. 
In experiments conducted between 2008 and 2010, an 
increase of, approximately, 4 to 5 bags of grains per hec-
tare in maize and 1 to 2 bags of soybean grains was evalu-
ated with the inoculation of the commercial LCO via foliar, 
according to the manufacturer. Another product in the same 
line, TagTeam LCO® (NexusBioAg), commercialized in 
the USA, combines R. leguminosarum and purified LCO, 
and it is recommended for the cultivation of lentils (Lens 
culinaris) and peas (Pisum sativum). Also in the USA, the 
LCO Promoter Technology® (Novozymes), which carries 
purified nodulation factors, is commercialized. The formu-
lation called Optimize ST® (NexusBioAg), commercial-
ized in Canada, carries LCO with B. japonicum in a sin-
gle product, ensuring increased nodule formation, nutrient 
absorption, and increased harvest production. In addition 
to rhizobia, LCOs are commercialized in bioformulations 
with other microorganisms that promote plant growth such 
as Penicillium bilaiae, in a product called JumpStart LCO® 

(Novozymes) (Canada). P. bilaiae is a natural occurring fun-
gus in several types of soils and has been studied for many 
years due to the high production of important compounds 
for phosphate solubilization. Despite its potential, the use of 
this technology in Brazil is still incipient. Further studies are 
needed on crop responses in the field, since work with these 
molecules is still very restricted to controlled conditions.

Molecules involved in biofilm formation

Biofilms are structures formed by cellular aggregates coated 
with an array of extracellular polysaccharides (EPS), pro-
teins, and lipids. The EPS is the main structural component 
of biofilms, being responsible for the architecture, stability, 
and organization of the cellular agglomerate in micro-col-
onies. The structural components of biofilm provide resist-
ance to desiccation, passive absorption of nutrients from 
the adhesion region, act as a carbon source and resistance 
to biotic stress conditions (protection against antimicrobial 
compounds and toxins) and abiotic (changes in pH and 
variations in temperature) [129]. In the soil, the formation 
of bacterial biofilm ensures the protection of both patho-
genic and non-pathogenic bacteria to elevated temperatures, 
nutritional and water limitations in microenvironments, in 
addition to enabling the adhesion of these cells to various 
surfaces, such as the rhizosphere [129–131] (Fig. 3).

The molecules involved in biofilm formation, such as 
EPS, have elucidated effects on the structure of bacterial 

Fig. 3  Biofilm formation by soil bacteria and action of lactonase 
enzymes. Soil bacteria control cell density by molecular signals 
called autoinducers. N-acyl homoserine lactone (AHL) is the main 
cell–cell communication molecule studied, and acts directly in the 
control of cell density and regulates the expression of genes involved 
in the biofilm formation (formed by exopolysaccharides—EPS) and 

virulence. Some bacterial genera, especially involved in biologi-
cal control, produce enzymes called lactonases that act by breaking 
the lactone ring and preventing signaling via AHL. The lactonase 
enzymes action is related to the attenuation of the pathogenic bacteria 
virulence and the reduction of bacterial biofilms formation, both by 
pathogenic bacteria and plant growth promoters
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micro-colonies and it is currently known that host plants 
recognize these molecular patterns and exhibit physiologi-
cal responses [132–135]. Although they have physiologi-
cal effects on plants and are crucial for the colonization of 
rhizobia and other PGPRs, there are still no formulations 
available on the market that have bacteria-bacteria commu-
nication molecules in their composition. The use of this type 
of molecule in formulations has a promising potential in 
increasing the rhizobia colonization on the root surface and 
improving the inoculant colonization efficiency.

Quorum-sensing (QS) is defined as an intra and/or inter-
specific mechanism for regulating the density of the micro-
bial population, mediated by molecules called autoinducers 
that act in cell–cell communication. This communication 
system between bacteria acts in the coordination of bacte-
ria cells and has already been reported for many species of 
Gram-negative bacteria [136]. The main self-inducing mol-
ecule produced by this group of bacteria is N-acyl homoser-
ine lactone (AHL) [137]. They are a group of molecules with 
low molecular weight and diffusible by the cell membrane 
that act in the expression of specific genes in response to 
environmental changes [129, 130, 133, 138, 139]. Among 
the phenotypic responses to the action of the QS, the most 
studied and relevant are the genes expression involved in 
virulence, biofilm formation, production of exopolysaccha-
rides (EPS), colonization, and symbiosis [137, 140–143].

The QS process in rhizobia is crucial for the surface poly-
saccharides production, adaptation to the stationary phase, 
the symbiosome development, and nodulation efficiency, 
since it is associated with the biofilm and micro-colonies 
formation, which are crucial steps for the bacterial coloniza-
tion in the rhizospheric region [131]. Pérez-Montaño et al. 
[141] showed that in the presence of flavonoids, the biofilm 
structure of S. fredii SMH12 changes from monolayer to 
micro-colony and then the effective colonization of soybean 
cv. Osumi, which is a crucial stage for the nodule formation. 
Pérez-Montaño et al. [132] observed that the total molecule 
production involved in the QS in S. fredii SMH12, R. etli 
ISP42, and R. sullae IS123 is dependent on the type of fla-
vonoid that is used.

The production of AHL and consequently the biofilm 
formation in the rhizosphere are crucial for the colonization 
of several microorganisms, in addition to rhizobia. It is now 
known that plants recognize a wide variety of AHL-type 
molecules and these modify the root architecture. Ortíz-
Castro et al. [135] evaluated the biological activity of AHL 
in root development, using molecules with an acyl chain 
ranging from 4 to 14 carbons and observed a reduction in the 
primary root, lateral root. and root hair growth in Arabidop-
sis thaliana, especially when applied to the N-decanoyl-HL 
(C10-HL). This study suggests that plant growth–promoting 
bacteria produce molecules of type C8 to C12-HL, and these 
molecules are those that have the greatest biological activity 

in root development. These results coincide with studies of 
Pérez-Montaño et al. [132], that when evaluating the mol-
ecules produced by S. fredii, R. sullae, and R. etli, identified 
that in all cases there was the production of C8-HL. These 
results suggest that rhizobia and other growth-promoting 
bacteria possibly have the same molecular pattern, which 
is recognized by the host plant and acts by stimulating root 
development as a strategy to reinforce interactions with the 
bacterial partner [135, 143].

Microbial carriers and bacteria bioencapsulation

The encapsulation, or immobilization, of microorganisms 
comprises an alternative technology that aims to protect 
the microbial cells in the soil and promote their gradual 
release [144–146]. The polymeric matrices can be com-
posed of alginates, clay, agar, pectin, chitosan, polyacryla-
mide, and gum, such as xanthan gum, which have different 
rates of degradation. Once encapsulated, cells are protected 
in a matrix permeable to water and nutrients that protects 
microorganisms from mechanical damage and environmen-
tal stress [147, 148]. The slow and gradual degradation of 
the material releases the microorganisms continuously in 
the environment, allowing the inoculum to remain in the 
soil for a longer time [11, 145, 149–151]. The advantages 
associated with the use of PGPR encapsulation, according 
to conventional formulations, are in increasing the effective-
ness of inoculants, in the controlled and gradual release of 
bacteria, and in reducing the toxic effects of agrochemicals 
in seeds and in soils. These products are biodegradable and 
non-polluting and provide physical protection for the inocu-
lum increasing its shelf life [11].

Among the matrices used, sodium alginate is the most 
common for agronomic uses [11, 144, 146]. The preparation 
of these matrices is done by adding the sodium alginate in 
the same solution as the inoculum, and through the addition 
of a calcium chloride solution, alginate particles are formed. 
These are washed and later lyophilized or prepared in liquid 
emulsions for stabilization in microcapsules [148, 151].

Several methodologies are used to define particle size, 
shape, and texture that will vary from the type of microor-
ganism studied to the application method. Macroencapsula-
tion are particles that vary in size from a few millimeters to 
centimeters but offer little contact with the seed. Microen-
capsulation, in turn, are particles of size ranging from 10 to 
100 µm and offer greater contact between the inoculum and 
the seed [148]. The review by John et al. [151] details sev-
eral technologies used in the production of these particles.

The PGPR encapsulation was first proposed by Bashan 
[152] and, in spite of all the aforementioned benefits, it still 
has no applications in the field and there is no large-scale 
production. One of the main reasons for this is the difficulty 
in maintaining a completely sterile and contaminant-free 
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environment; cell mortality in the lyophilization stage, with 
a significant reduction in cell concentration; in addition to a 
production high cost superior to peat and liquid formulations 
[151, 153]. In this sense, research has sought to circumvent 
these obstacles with the search for alternatives that reduce 
the bottlenecks that still exist for the diffusion of this tech-
nology. Kadmiri et al. [146] showed that the use of hybrid 
polymeric matrices composed of calcium alginate of two 
types of clay was efficient in preserving the concentration 
of P. fluorescens Ms-01 and A. brasilense DSM1690 (Ab) 
cells for 3 months at room temperature and when added 
to a saline solution, biocapsules released the inoculum for 
15 days, revealing a slow and gradual release capacity. In 
addition, the authors found that the inoculation of these par-
ticles in wheat significantly increased the root and biomass 
area and the accumulation of nitrogen in the roots, regarding 
the uninoculated control. Young et al. [154] observed that 
the viability of PGPR B. subtilis CC-pg 104 cells encap-
sulated in a matrix of sodium alginate and humic acid was 
not altered after lyophilization during 5 months storage at 
room temperature. This study also showed that the bacteria 
encapsulation increased the persistence of the bacteria by 
 104 CFU (cm of root −1) in the rhizosphere and by 10 times 
the number of CFU cm of root −1 in the rhizoplane compared 
to free cell inoculation. On an industrial scale, Strobel et al. 
[149] studied a spray drying method that combines the use 
of high temperatures and cell dehydration for the produc-
tion of calcium alginate microparticles containing PGPR 
Methylobacterium radiotolerans. It was observed that M. 
radiotolerans cells maintained their viability after the pro-
cess in a concentration of  1010 CFU  g−1 of lyophilizate, but 
there was a decline in the bacterial population after 1 year of 
storage. The authors reinforce that the methodology used is 
applicable at an industrial level for the inoculant production 
for seeds or foliar application. These studies show that the 
use of bacterial encapsulation for agronomic applications 
is close to becoming a reality for producers. The encapsu-
lation techniques improvement has allowed a reduction in 
production costs, as well as an increase in the microorganism 
viability, which can bring significant promises both for use 
in microbial inoculant and biopesticide formulations.

Seed pre‑inoculation technology

Inoculant production involves, in addition to contaminant-
free microbial growth, the use of a carrier formulation that 
should provide favorable conditions for maintaining the 
microorganism viability and cell concentration for as long 
as possible. The desirable characteristics in a carrier are as 
follows: do not have toxic substances to the microorgan-
ism; be easily sterilizable; have an adequate and buffered 
pH; allow the microorganism initial growth; and ensure cell 
viability and concentration for as long as possible [155]. The 

choice of a suitable carrier is crucial for the production of a 
microbial inoculant, since any factor that acts by reducing 
the rhizobia cells concentration, consequently, reduces the 
BNF efficiency [156].

For decades, peat has been the main carrier used in sev-
eral inoculants. This material is rich in organic matter, which 
acts as a nutritional reserve for microorganisms and protects 
cells from osmotic stress conditions. This carrier ensures 
that the product final formulation maintains cell concentra-
tion and viability and is free from contaminants, in accord-
ance with the Brazilian legislation [156]. Peat inoculation 
should be performed using an adhesive agent that will allow 
the product to contact the seed, in Brazil, a 10% sucrose 
solution is commonly used [36, 156]. However, inoculation 
with peat in large production areas consumes a long period 
at sowing and requires specialized machinery. In addition, 
peat is a non-renewable product in nature and can generate 
irreversible environmental impacts [155]. In this sense, new 
formulations are demanded by the market, being the most 
accepted currently the liquid formulation.

Liquid formulations are produced from the bacterial cul-
ture medium with stabilizing agents such as mineral and 
organic oils and cell protectors and their use is less laborious 
and, generally, with the same quality as peat formulations 
[11]. Alternatively, these formulations allow the use of new 
inoculation techniques such as the foliar inoculation or in 
furrow, which can be an advantage, as in cases of remedying 
the inoculation, if it has not been done correctly via seed or 
to avoid contact of the inoculant with agrochemicals treated 
seeds [24, 155, 157, 158]. Due to its great usefulness, it cur-
rently comprises 80% of the total doses of inoculants sold 
in Brazil [44].

Despite advances both in the inoculant formulation and 
in the application techniques, there are still some important 
issues to be addressed. The low viability of the microorgan-
ism after inoculation in the seed makes it necessary that 
the inoculation occurs within a period of up to 24 h before 
sowing, both in the products use with peat carriers and liq-
uids [157]. The short period since inoculation until sowing 
might reduce the process quality and delay the work in the 
field and it demands a larger number of people for the pro-
cess. Furthermore, inoculation carried out in the planting 
area itself requires specialized machinery, which can be a 
decisive factor in adhering to the use of technology and if 
performed incorrectly reduces its efficiency [159].

Pre-sowing seed inoculation has emerged as an alterna-
tive technique to the practice of inoculation, which consists 
in the seed’s previous inoculation that can occur days and 
even weeks before sowing [157]. The benefits associated 
with the pre-inoculation technique include a reduction in the 
possibility of inoculation errors, which can result in a poor 
microorganism distribution in the seeds and, consequently, 
a reduction in the technique efficiency. The availability of 
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pre-inoculated seeds reduces one of the steps in the sowing 
process and guarantees the efficiency of inoculation, these 
gains can increase the producers search for this technology 
[159].

In an experiment conducted in four different agricultural 
areas in Brazil, Hungria et al. [44] found that pre-inoculated 
seeds 15 days before planting did not show statistical differ-
ences in productivity and nitrogen accumulation in the grain 
compared to seeds inoculated at the time of planting. The 
authors show that the treatment’s average productivity with 
pre-inoculation was 89% higher than the non-inoculated 
and non-fertilized control, pointing out that the use of this 
technique guaranteed the efficiency of the BNF. However, 
the study was carried out on seeds not treated with agro-
chemicals. Much of the totality of seeds used in large plan-
tations in Brazil are treated with fungicides and chemical 
additives that are toxic agents to microorganisms and can 
drastically reduce their population in the seed [160]. A long 
period of exposure of the inoculum with the chemical agent 
reduces the number of cells capable of forming nodules and 
decreases the efficiency of BNF [156, 157, 161]. Campo 
et al. [160] found that 2 h after inoculation of Bradyrhizo-
bium sp. in soybeans previously treated with fungicides, 62% 
of the initial cell population was no longer viable, and after 
24 h only 5% remained viable.

Alternatively, several studies have been conducted in 
search of cell protectors that are biopolymers that maintain 
optimal water activity for the rhizobia survival in the cell 
and reduce the contact of the bacteria with the seed pesti-
cides [162]. Neto et al. [163] suggest that the use of addi-
tives as cell protectors is efficient in the pre-inoculation of 
Bradyrhizobium sp. in soybean up to 45 days before sowing. 
Sandini et al. [164] show that seeds pre-treated with insecti-
cides and fungicides and inoculant added to a cell protector 
maintain cell viability without compromising BNF (esti-
mated by the number of nodules and nitrogen in the aerial 
part of the plant) for more than 71 days in storage. Accord-
ing to Araujo et al. [158], seed pre-inoculation is feasible if 
associated with the use of cell protectors. According to the 
results found, the use of cell protectors increased nodula-
tion, grain yield, and plant development in seeds inoculated 
30 days before planting compared to treated seeds inoculated 
at the time of sowing without the presence of cell protectors 
[158].

One of the first products in the Brazilian market for seed 
pre-inoculation was the Biagro NGTM (Bayer). This product 
was developed in a partnership between Embrapa and Bayer, 
and since 2013 it has been available on the market. However, 
the manufacturer does not recommend it for using in seeds 
treated with pesticides and guarantees the cell viability for 
up to 15 days. In the Brazilian market, there are companies 
that already offer seed pre-inoculation technology combined 
with the treatment with pesticides.

Bayer markets the CTS 500® and, according to the manu-
facturer, is compatible with the main nematicides, insecti-
cides, and fungicides used in soybean seeds, with cell viabil-
ity up to 60 days. Granouro® (Basf) is a kit composed of 
B. elkanii SEMIA 587 and SEMIA 5019, an adhesive and a 
protective agent that is applied during industrial seed treat-
ment and guarantees cell viability without compromising 
the nitrogen supply up to 45 days from seed application. In 
the 2019/2020 crop season, the Rizoliq LLI product, from 
Rizobacter, was used in more than one million hectares of 
soybean. This inoculant has an osmoprotective agent that 
protects cells from Bradyrhizobium spp. SEMIA 5079 and 
SEMIA 5080 for up to 60 days, according to the manufac-
turer. All of these products are commercialized in Brazil.

Conclusions and perspectives

For more than 50 years, inoculants containing rhizobia 
have been marketed in Brazil and, more recently, products 
containing other microorganisms have shown benefits and 
gained acceptance from farmers. Currently, bio-based prod-
ucts have been more studied as for the interest in a more 
sustainable agriculture and for the gains in productivity that 
these products offer. As reported in this review, we have 
a scenario of biotechnological innovations aimed at the 
development of new products or agricultural processes that 
search to facilitate the management of the farmer and ensure 
greater efficiency and, consequently, greater crop productiv-
ity. Therefore, a promising agricultural scenario is expected 
in the coming years and decades with the launch of biotech-
nological innovations.

We are currently living global emergencies such as agri-
cultural areas desertification and climate change that can 
alter the entire methods of food production in the world. 
In that regard, there is an urgent search for biological solu-
tions that can mitigate the effects that these environmental 
impacts may have on food production. The search for bio-
logical solutions in agriculture is a matter of food security, 
and in this sense, new products and technologies must be 
developed and the use of microbiological products must be 
a reference in the Brazilian and global agricultural market 
in the coming years.
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