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Abstract
Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-
induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock 
response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure 
to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under 
pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels dur-
ing physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique 
biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe 
exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and 
live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could 
serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air 
pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.
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Introduction

The ability of an organism to respond adequately and quickly 
to environmental or internal challenges is essential to sur-
vival, as stressful situations can either result in damage or 
adaptations by an organism (Pedersen 2017). High-inten-
sity challenges overload the response mechanism, whereas 
moderate-intensity challenges can modulate physiological 
characteristics by triggering the internal recalibration of 
many systems, allowing an organism to survive in an aggres-
sive external environment or adjust to internal dysfunctions 
(Calabrese et al. 2015; Calabrese et al. 2010; Cornelius et al. 
2013; Hochachka and Somero 2002).

This evolutionary perspective informs the sensitive, com-
plex, and fascinating effect of physical exercise on several 
aspects of cellular physiology, including the inflammatory 
balance, metabolic regulation, and redox status. Exercise 
induces chronic adaptations by introducing acute chal-
lenges during exertion (Ropelle et al. 2010). The adapta-
tions generated by engaging in exercise are associated with 
anti-inflammatory and antioxidant effects that are better able 
to respond to other external or internal challenges, such as 
environmental pollution (Marmett et al. 2020) and diabetes 
(Pedersen 2006; Pedersen 2017), respectively.

Both environmental pollution and diabetes are common 
modern-day conditions that represent physiological and 
biochemical challenges and must be carefully addressed. 
Fine particulate matter  (PM2.5) is among the most abun-
dant and harmful air pollutants. Due to their small size 
(0.1–2.5 μm),  PM2.5 particles are inhaled into a deeper 
part of the respiratory tract, able to overcome the alveo-
lar–capillary barrier, triggering immune, metabolic, and 
cardiovascular effects (Furuyama et al. 2009). The global 
prevalence of diabetes mellitus (DM) has also increased, 
primarily due to physical inactivity and diet-induced obe-
sity. Diet-induced obesity combined with exposure to 
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 PM2.5 can result in synergistic effects on the development 
of type 2 DM (DM2) (Costa-Beber et al. 2021a; Costa 
Beber et al. 2020; Goettems-Fiorin et al. 2016). Physical 
exercise under these conditions can be useful but must 
be carefully prescribed due to dual effects. For example, 
individual variations and exaggerated glycemic responses 
to a session of acute exercise can be dangerous in patients 
with DM2 (Wormgoor et al. 2018), indicating that obesity 
and DM are critical health conditions that should be con-
sidered when recommending exercise under conditions of 
 PM2.5 exposure (Kostrycki et al. 2019).

Metabolic impairments, inflammation, and oxidative 
stress can occur in individuals with DM2 who exercise under 
conditions of exposure to air pollution. Metabolism, inflam-
mation, and redox state are interrelated, making it possible 
that a single biomarker able to serve as an indicator of the 
physiological interactions among these three states can be 
identified to monitor the strength of these interactions. Such 
a biomarker could be used when determining the appropriate 
level of exercise intensity to ensure that exercise provides 
sufficient stress to induce physiological adaptations without 
exacerbating inflammatory conditions. In this review, we 
propose that both extracellular and intracellular levels of 
70-kDa heat shock protein (HSP70) can serve as biomarkers 
for evaluating the immune, redox, and inflammatory status.

HSP expression is a well-known cellular and molecular 
event that has often been used as a biomarker in many stud-
ies, starting as early as the 1960s (Brocchieri et al. 2008). 
First discovered in Drosophila sp., HSPs have been found 
to be expressed in response to a wide range of internal and 
environmental challenges (Brocchieri et al. 2008; Ritossa 
1962; Ritossa 1996). Both oxidative and metabolic stress 
(e.g., hyperglycemia and hypoglycemia) induce intracellu-
lar HSP70 (iHSP70) expression (Hall and Martinus 2013; 
Ludwig et al. 2014). The primary physiological trigger for 
the activation of heat shock transcription factor (HSF1) and 
iHSP70 expression is hyperthermia (Miragem and Homem 
de Bittencourt Jr 2017; Newsholme and de Bittencourt 
Jr 2014), such as during physical exercise (Morton et al. 
2009) or inflammation-induced fever. An acute inflamma-
tory stimulus leads to the nuclear factor kappa beta (NFκB)-
dependent activation of cyclooxygenase 2 (COX-2), which 
drives prostaglandin E2 (PGE2) synthesis and fever (News-
holme and de Bittencourt Jr 2014). Fever, in turn, forms 
a negative feedback loop and induces iHSP70 expression, 
which inhibits NFκB activation through canonical pathways 
to control the initial inflammatory stimulus. iHSP70 associ-
ates with the NFκB–inhibitor of NFκB (IκB) complex and 
inhibits IκB kinase (IKK) activity to prevent the transloca-
tion of NFκB to the nucleus (Chen et al. 2005; Costa-Beber 
et al. 2020; Kim et al. 2005) (Figure 1A). In the nucleus, 
iHSP70 mediates the degradation of the NFκB p65 subunit, 
inhibiting inflammatory signaling (Tanaka et al. 2014).

Among the known HSP families, the 70-kDa protein fam-
ily plays an intriguing role in cell homeostasis that varies 
depending on whether the protein is expressed inside or out-
side of the cell. These proteins exert chaperone, cytoprotec-
tive, and anti-inflammatory effects inside the cell (iHSP70), 
whereas HSPs released in the extracellular fluid (eHSP70) 
mediate inflammatory events (De Maio 2011; Kampinga 
and Craig 2010; Pockley and Multhoff 2008). High levels of 
eHSP70 are released during exercise, depending on the exer-
cise intensity (Heck et al. 2017), and high levels of eHSP70 
have also been reported during conditions of both hypogly-
cemia (Ludwig et al. 2014) and hyperglycemia (Krause et al. 
2015b). eHSP70 binds to Toll-like receptors 2 and 4 (TLR2 
and TLR4, respectively) on the surface of antigen-present-
ing cells, inducing the production of interleukin (IL)-1β and 
tumor necrosis factor-alpha (TNF-α) in an NFκB-dependent 
manner (Ao et al. 2009; Asea 2003; Asea 2005; Asea et al. 
2002; Vabulas et al. 2002). Excessive eHSP72 levels have 
been reported in association with several metabolic (Alemi 
et al. 2019; Krause et al. 2015b; Rodrigues-Krause et al. 
2012b), pulmonary (Ogawa et al. 2008), and cardiovascular 
conditions (Krepuska et al. 2011; Szeberin 2012; Wright 
et al. 2000; Yadav et al. 2013; Zhang et al. 2010). However, 
during exercise, eHSP70 plays dual roles by simultaneously 
activating a chronic low-grade inflammatory state in addition 
to activating the immune system and mediating important 
signaling pathways, including those associated with fatigue 
(Heck et al. 2011).

HSP70 expression and release represent the cell’s ability 
to respond to stressful conditions, serving as a vital indica-
tor of cellular adaptive mechanism, which can have effects 
on aging and longevity (Calabrese et al. 2015; Calabrese 
et al. 2010; Cornelius et al. 2013; Dattilo et al. 2015). In 
healthy cells, inflammatory (Heck et al. 2017; Miragem and 
Homem de Bittencourt Jr 2017; Newsholme and de Bitten-
court Jr 2014), metabolic (Ludwig et al. 2014), and thermal 
stimuli (Nava and Zuhl 2020; Ritossa 1962; Ritossa 1996) 
induce the translocation of HSF-1 from the cytoplasm to 
the nucleus, where it undergoes posttranslational modifi-
cations, such as trimerization, and binds to the heat shock 
element (HSE) in the HSP promoter region (Torok et al. 
2014). This process allows for cells to mount an adequate 
heat shock response (HSR) through the increased expres-
sion of HSP70 (Torok et al. 2014), counteracting the ini-
tial inflammatory stimulus (Newsholme and de Bittencourt 
Jr 2014). According to the ‘hormesis’ theory, each type of 
insult is followed by a biphasic dose-response curve. A weak 
stimulus can stimulate the organism, increase performance 
and the survival rate, while a high dose stimulus can inhibit 
the defense system and decrease performance (Calabrese 
et al. 2015; Calabrese et al. 2010; Cornelius et al. 2013; 
Dattilo et al. 2015). Therefore, a weak stimulus can induce 
the HSR, resulting in preconditioning through physiological 
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adaptations, whereas a stronger stimulus impairs the HSR 
by reducing iHSP70 expression, and reduces survival (Cala-
brese et al. 2015; Calabrese et al. 2010; Cornelius et al. 
2013; Dattilo et al. 2015). The lack of a proper HSR can 
trigger a senescence-associated secretory phenotype (SASP), 
which propagates the low-grade and chronic inflammation 
associated with chronic diseases (Miragem and Homem de 
Bittencourt Jr 2017; Newsholme and de Bittencourt Jr 2014). 
Metabolic impairment can disrupt the cellular response to 

redox and other metabolic conditions, reducing cell survival 
(Costa-Beber et al. 2021a; Costa-Beber et al. 2021b; Costa-
Beber et al. 2020; Costa Beber et al. 2020; Goettems-Fiorin 
et al. 2019).

HSP70 has been documented to serve as a biomarker 
and mediator of immune and (anti)inflammatory pathways 
in obesity and DM and during exposure to pollutants and 
exercise, leading us to propose that eHSP70 and iHSP70 
might also serve as potential biomarkers for the immune 

Fig. 1  A The induction of HSP70 during inflammation and its role 
in counteracting the initial stimulus. An acute inflammatory stimulus 
leads to nuclear factor kappa B (NFκB)-dependent cyclooxygenase 2 
(COX-2) activation, which drives prostaglandin E2 (PGE2) synthesis 
and fever. Fever induces iHSP70 expression, which associates with 
the NFκB–inhibitor of NFκB (IκB) complex and inhibits IκB kinase 
(IKK) activity, preventing the translocation of NFκB to the nucleus. 
B The effects of exercise on HSP70 levels in individuals with diabe-
tes who are exposed to pollution: the hormesis theory. According to 
the hormesis theory, before becoming deleterious, a stimulus can lead 
to a preconditioning effect due to physiological adaptations, mak-

ing the organism stronger and better able to address future harmful 
stress. In this scenario, a low-level stimulus can increase individual 
performance within a limited zone, which is typically characterized 
by increased HSP70 levels. A high-level stimulus (i.e., not within the 
normal limits) can reduce individual performance, which is typically 
characterized by decreased HSP70 levels. Thus, each condition (pol-
lution, DM, and exercise) represent metabolic, oxidative, and inflam-
matory challenges that can induce HSP70 until a certain limit, when 
the organism is no longer able to induce a proper heat shock response 
(HSR) to counteract the initial harmful inflammatory stimulus. Cre-
ated with BioRe nder. com
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and inflammatory response to various exercise intensities 
performed by patients with DM when exposed to air pol-
lution. Here, we review available evidence to support the 
use of HSP70 as a biomarker of exercise intensity and the 
subsequent occurrence of tissue and systemic damage or 
protection under varying conditions to provide guidance 
for recommendations and limitations on exercising when 
exposed to air pollution in patients with DM.

HSP70 in obesity and diabetes

Even before clinical diagnosis, the early stages of DM devel-
opment are marked by metabolic, inflammatory, and redox 
impairments. The immune-inflammation that initiates type 
1 DM (DM1) and the chronic low-grade inflammation that 
marks DM2 can be prevented or monitored prior to develop-
ing into a severe condition.

In both DM1 and DM2, inflammatory cells (monocytes, 
macrophages, and T helper lymphocytes) are stimulated to 
express high levels of the inducible form of nitric oxide syn-
thase (iNOS, encoded by NOS2) in response to NFκB activation 
(Enos et al. 2013). The activation of NFκB generates an influx 
of L-arginine in pancreatic islet β-cells through the iNOS path-
way (Rojas et al. 2018), resulting in increased nitric oxide (NO) 
production, which acts as a toxic free radical in islet β-cells due 
to a limited antioxidant defense (Munhoz et al. 2016). During 
hyperglycemia or hypoglycemia, patients with DM are more 
susceptible to the development of a pro-oxidant and pro-inflam-
matory status (Eik et al. 2016; Ludwig et al. 2014).

In patients with DM, a pro-inflammatory status is asso-
ciated with changes in HSP72 levels (Ludwig et al. 2014). 
Decreased iHSP70 levels might be key factors in both DM1 
and DM2 development (Hooper 2003; Hooper and Hooper 
2005; Hooper and Hooper 2009; Rogers et al. 2016). Patients 
with obesity present with reduced iHSP72 levels in muscle 
and hepatic cells (Rogers et al. 2016), although one study 
reported an increase in hepatic iHSP70 levels associated 
with diet-related steatosis (Zhang et al. 2018). In adipose tis-
sue, the iHSP72 levels are increased in patients with obesity 
compared to the baseline (Tiss et al. 2014). However, among 
patients with obesity, a significant attenuation of adipose 
iHSP72 levels was reported in patients with DM compared 
with that in patients without DM (Tiss et al. 2014), indicat-
ing an impaired HSR in patients with DM.

As previously noted, inflammation and oxidative stress 
can induce dual HSR signaling pathways. An acute stimu-
lus triggers the HSR, whereas chronic stimuli can silence 
the HSR, reducing iHSP70 levels (Adachi et  al. 2009). 
The lack of a proper HSR is associated with deficiencies in 
the processes that control the resolution of inflammation. 
Briefly, low iHSP70 levels compromise the cellular ability 
to inhibit NFκB translocation, which is necessary to reduce 

inflammation [see Costa-Beber et al. 2020 and Mulyani 
et al. 2020 for review] and trigger the development of SASP 
(Newsholme and de Bittencourt Jr 2014).

Pancreatic β-cells are especially susceptible to inflamma-
tory and oxidative stress due to the poor expression of cata-
lase and glutathione peroxidase (Lenzen et al. 1996). Thus, 
iHSP70 induction can protect against NO and superoxide-
induced necrosis (Burkart et al. 2000) and prevent the acti-
vation of NADPH oxidase (NOX), which is the main source 
of reactive oxygen species (ROS) (Krause et al. 2015a). 
During hyperglycemia, the chaperone properties of iHSP70 
are necessary to assist with the proper folding of proteins in 
response to the upregulation of protein synthesis. The lack of 
iHSP70 in pancreatic cells can result in the induction of the 
unfolded protein response (UPR) and endoplasmic reticulum 
(ER) stress (Huang et al. 2014). Therefore, low pancreatic 
iHSP70 levels are associated with an increased vulnerability 
to stress, an exacerbated oxidative milieu, and impaired insu-
lin secretion, culminating in cell death (Krause et al. 2015a). 
Inflammation can also lead to insulin resistance by inducing 
an increase in c-Jun N-terminal kinase (JNK) phosphoryla-
tion (Mulyani et al. 2020; Newsholme and de Bittencourt 
Jr 2014) and the inhibition of phosphoinositide 3-kinase 
(PI3K)–protein kinase B (Akt) signaling and glucose trans-
porter 4 (GLUT-4) translocation (Mulyani et al. 2020; News-
holme and de Bittencourt Jr 2014). However, iHSP70 overex-
pression prevents JNK phosphorylation in the skeletal muscle 
and IKK phosphorylation in the liver (Chung et al. 2008). 
The prevention of IKK phosphorylation allows iHSP70 to 
increase the stability of the NFκB–IκB-α complex, prevent-
ing its translocation to the nucleus (Costa-Beber et al. 2020). 
Therefore, iHSP70 overexpression prevents the development 
of diet-induced insulin resistance (Chung et al. 2008).

Conversely, eHSP70 mediates a different response. 
Although iHSP70 plays a cytoprotective role, eHSP70 medi-
ates pro-inflammatory pathways and acts in the immune 
signaling pathway. High circulating levels of eHSP70 can 
induce the release of inflammatory cytokines through two 
different signalings, the NFκB translocation to the nucleus 
and activating protein 1 (AP-1) activation (Gonzalez-Ramos 
et al. 2013). eHSP70 binds to TLRs to enhance NOX expres-
sion (Krause et al. 2015a; Zhang et al. 2016), activate the 
JNK pathway (Costa-Beber et al. 2020; Zhu and Mohan 
2010), and impair insulin release.

Previous studies have documented increased levels of 
eHSP70 in patients with DM2 and obesity than in patients 
with DM2 without obesity (Rodrigues-Krause et al. 2012a), 
which is correlated with insulin resistance (Alemi et al. 
2019). Circulating levels of eHSP70 have been associated 
with several DM-related complications (Alemi et al. 2019; 
Krause et al. 2014a; Nakhjavani et al. 2010; Rodrigues-
Krause et al. 2012b; Xie et al. 2016) and the time-course 
of the disease (Xie et al. 2016). eHSP70 levels increase 
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with disease duration, such that patients recently diagnosed 
with diabetes typically present with lower levels of eHSP70 
than patients with 5 years of diagnosed disease (Nakhjavani 
et al. 2010). In agreement with these findings, some stud-
ies have reported increased levels of anti-HSP72 antibodies 
in animal models of high-fat-diet-induced obesity, DM2, 
and atherosclerosis (Ghayour-Mobarhan et al. 2007; Leng 
et al. 2013). Under such conditions, an increase in anti-
HSP72 antibodies could represent an immune response to 
the increase in eHSP72 levels, which agrees with the find-
ings of other studies (see Table 1 for review).

Although eHSP70 levels are increased in patients with 
obesity and DM at rest, the eHSP70 levels decrease in 
response to a challenging condition, such as physical 
exercise (Kostrycki et al. 2019), which is of particular 
importance considering that approximately 2 billion 
people are overweight and one third of them are obese 
(Seidell and Halberstadt 2015). Although this metabolic 
dysfunction represents a powerful challenge to the HSR 
on its own, exposure to air pollution also affects the HSR.

Diabetes and atmospheric pollution

In both high- and low-income countries, air pollution 
represents an aggressive, modern, urban threat to human 
health (Molina and Molina 2004). Epidemiologic evidence 

shows that as little as a 1 μg/m3 increase in the  PM2.5 level 
above the annual average (12.5 10 μg/m3) enhances total 
cholesterol, triglyceride, and low-density lipoprotein lev-
els in humans (McGuinn et al. 2019). Moreover, a 5 μg/m3 
increase in  PM2.5 levels is associated with a 6% increase in 
IL-6 levels (Hajat et al. 2015), whereas a 10 μg/m3 increase 
in  PM2.5 levels increases blood pressure (Xie et al. 2018).

The lungs are the first organs that contact  PM2.5 and suffer 
both direct and indirect adverse effects. Direct effects occur 
due to contact between particles and pneumocytes, whereas 
indirect effects occur through the secretory phenotype of 
alveolar macrophages during the immune reaction (Martin 
et al. 2019; Niemann et al. 2017). Alveolar macrophages 
entrap these particles through phagocytosis, resulting in an 
immunological response marked by an increase in ROS and 
inflammatory cytokines production (Dubowsky et al. 2006; 
Ghio et al. 2012). Due to their small size (0.1–.5 μm),  PM2.5 
can directly cross the alveolar–capillary barrier by transcy-
tosis or be transported by monocytes via blood circulation 
(Furuyama et al. 2009). The immunological response of 
alveolar macrophages is thought to mediate  PM2.5-related 
systemic effects (Jiang et al. 2018; Martin et al. 2019).

PM2.5 overwhelms the antioxidant response of endothelial 
cells that form the pulmonary barrier, resulting in an oxida-
tive status (Klein et al. 2017). Once they reach the blood 
circulation,  PM2.5 can induce systemic oxidative stress and 
inflammation (Costa Beber et al. 2020; Goettems-Fiorin 

Table 1  Summary of the studies evaluating the impact of the HFD-induced obesity, or DM2, on the tissue and plasma HSP70 concentration and 
level of anti-HSP70 antibodies

BMI, body mass index; DM2, type 2 diabetes mellitus; eHSP70, extracellular 70-kDa-heat shock protein; iHSP70, intracellular 70-kDa heat 
shock protein; HFD, high fat diet. Possible outcomes: Up arrows indicate an increase in the protein of interest while down arrows indicate a 
reduction in that context

Reference Design Protein of interest Outcome

(Xie et al. 2016) Sprague Dawley male rats
HFD for 12 weeks to induce obesity and athero-

sclerosis

eHSP70 ↑

(Zhang et al. 2018) C57BL/6 mice
HFD for 16 weeks

iHSP70 hepatic expression ↑

HepG2 cells (hepatocytes) mRNA iHSP70 expression ↑
(Leng et al. 2013) Sprague Dawley rats

HFD
Anti-HSP72 antibodies ↑

(Ghayour-Mobarhan et al. 2007) White rabbits
HFD for 13 weeks

Anti-HSP70 antibodies ↑

(Krause et al. 2014) 50 elderly (63.4 ± 4.4 years old) with BMI = 
25.5 ± 2.7 kg/m2.

Association between eHSP72 and insulin resist-
ance

↑

(Rodrigues-Krause et al. 2012a) Non-diabetic obese, DM2 obese, DM2 non-
obese (54 ± 9 years old)

eHSP70 due to DM2 ↑
iHSP70 expression in the vast lateral of obese 

subjects
↓

(Nakhjavani et al. 2010) Patients with DM2 (49.17 ± 1.58 years old) eHSP70 ↑
(Alemi et al. 2019) Patients with DM2 (54.5 years old) eHSP70 ↑

Association between eHSP72 and insulin resist-
ance

↑
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et al. 2016). IL-6 is among the inflammatory factors most 
responsible for this outcome, and both  PM10 and  PM2.5 
have been shown to increase IL-6 production by alveolar 
macrophages (Marchini et al. 2016), resulting in enhanced 
IL-6 levels in the bronchoalveolar fluid and the subsequent 
translocation of IL-6 into the systemic circulation (Kido 
et al. 2011; Marchini et al. 2016). The knockout or biologi-
cal neutralization of IL-6 (Kido et al. 2011; Marchini et al. 
2016) and TNF-α has been shown to prevent many of the 
adverse outcomes associated with PM exposure (Marchini 
et al. 2016). Together, IL-6 and TNF-α lead to lung (Jiang 
et al. 2018; Rhoden et al. 2008; Rhoden et al. 2004; Rhoden 
et al. 2005) and vascular damage (Haberzettl et al. 2016b), 
which propagates systemic oxidative stress and increases the 
risks of developing DM and cardiovascular diseases (Jiang 
et al. 2018).

PM2.5 represents a novel additional risk factor for DM2 
(Alderete et al. 2017; Costa-Beber et al. 2021a; Costa Beber 
et al. 2020; Haberzettl et al. 2016a; Haberzettl et al. 2016b; 
Xu et al. 2011). Chronic exposure to air pollution can exac-
erbate diet-induced glucose intolerance, oxidative stress, and 
systemic insulin resistance (Costa Beber et al. 2020; Gasp-
arotto et al. 2018; Goettems-Fiorin et al. 2016; Haberzettl 
et al. 2016a; Haberzettl et al. 2016b; Xu et al. 2010); hepatic 
steatosis (Gasparotto et al. 2018); and adipose tissue inflam-
mation (Xu et al. 2010). Thus, air pollution can affect both 
DM1 and DM2 through an inflammatory process initiated 
by redox imbalance (Brook et al. 2010).

HSPs are naturally sensitive to redox alterations triggered 
by chemical attacks on the cells and are extensively used as 
biomarkers of environmental pollution exposure (Esposito 
et al. 2018; Kim et al. 2014; La Porte 2005; Mitra et al. 
2018; Mukhopadhyay et al. 2003; Ravaschiere et al. 2017; 
Somasundaram et al. 2019). Several traffic-related air pollut-
ants have been shown to affect HSP70 expression. Pollutant 
particle size represents an important factor in determining 
iHSP70 levels, as 3 days of exposure to  PM10 and  PM2.5 
was shown to increase pulmonary and cardiac iHSP70 levels 
(Farina et al. 2013a; Sancini et al. 2014), whereas the same 
exposure to  PM1 decreases pulmonary iHSP70 levels (Farina 
et al. 2013b).

The strong correlations observed between PM exposure, 
oxidative stress, and inflammation, and changes in the HSR 
reinforce the hypothesis that HSP70 may be an important 
biomarker of homeostatic equilibrium during environmental 
challenges. Only a few available studies have examined the 
effects of pollution on the HSR in diet-induced DM. Particu-
late pollutant exposure can disrupt the HSR in pancreatic 
tissue, marked by an increased eHSP70/pancreas iHSP70 
ratio in obese animals (Goettems-Fiorin et al. 2016), link-
ing obesity with insulin resistance. Furthermore, chronic 
exposure to residual oil fly ash (ROFA), which comprises 
the inorganic portion of  PM2.5, induces a modest increase in 

iHSP70 levels in the cardiac tissue, whereas the combina-
tion with other challenging condition, such as ovariectomy 
(used to surgically induce hypoestrogenism in animal mod-
els), reduced iHSP70 levels similar to control (Costa-Beber 
et al. 2021b). Similarly, ROFA exposure reduced the iHSP70 
levels, which tended to increase in a high-fat diet plus ova-
riectomy condition (Costa-Beber et al. 2021a).

The HSR varies across metabolic tissues in obese ani-
mals exposed to pollution. Although the pancreas shows 
decreased iHSP70 levels following pollution exposure in 
obese animals, increased iHSP70 levels were observed in 
the white adipose tissue of the epididymis and the liver 
(Goettems-Fiorin et al. 2016). In addition, chronic expo-
sure to ROFA enhances the susceptibility to ovariectomy-
induced increases in hepatic iHSP70 levels (Goettems-Fiorin 
et al. 2019). By contrast, evidence regarding the impacts of 
pollution on eHSP70 levels has not been conclusive, with 
studies reporting that eHSP70 levels increase (Baldissera 
et al. 2018; Gasparotto et al. 2013; Watterson et al. 2009), 
remain unaltered (Costa-Beber et al. 2021a; Costa-Beber 
et al. 2021b; Gasparotto et al. 2018; Goettems-Fiorin et al. 
2019; Goettems-Fiorin et al. 2016), or decrease in response 
to pollution exposure (see Table 2 for review).

Although the precise effects on the HSR due to the com-
bination of obesity with pollution exposure have not yet been 
established, both risk factors have been shown to exert syn-
ergistic effects on the metabolic, oxidative, and inflamma-
tory environments (Costa-Beber et al. 2021a; Costa Beber 
et al. 2020; Goettems-Fiorin et al. 2016). Approximately 9 
out of 10 people in the world breathe air that exceeds the 
recommended WHO guidelines (WHO 2021) for pollution 
exposure, which requires the evaluation of potential treat-
ments that are capable of mitigating the effects of pollution 
exposure. One of the most powerful non-pharmacological 
treatments for obesity and insulin resistance-related condi-
tions is physical exercise; however, whether exercise can 
alleviate the effects of pollution exposure under obesity con-
ditions and how much exercise is optimal remains unknown.

Why exercise? The role of the HSP70 
in exercise‑induced benefits in diabetes

For patients with well-controlled DM who are treated with 
insulin or insulin secretagogues, moderate or intense physi-
cal exercise is associated with the risk of hypoglycemic 
events (Younk et al. 2011), particularly among individuals 
with DM who do not regularly engage in exercise. Exercise 
can ameliorate metabolic conditions by improving the cel-
lular anti-inflammatory and antioxidant status. Exercise pro-
motes the upregulation of antioxidant enzymes and increases 
serum and tissue anti-inflammatory cytokines, promoting 
better conditions glycemic metabolic control in individuals 
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Table 2  Summary of the studies evaluating the impact of the exposure to atmospheric pollutants on the HSP70 tissue expression and plasmatic 
concentration

eHSP70, extracellular 70-kDa heat shock protein; HFD, high fat diet; iHSP70, intracellular 70-kDa heat shock protein; PM1, fine particulate 
matter (0.1 to 1 μm); PM2.5, fine particulate matter (0.1 to 2.5 μm); PM10, coarse particulate matter (2.5 to 10 μm); ROFA, residual oil fly ash. 
Possible outcomes: Up arrows indicate an increase in the protein of interest; down arrows indicate a reduction [* reduction back to basal levels]; 
equal signals ‘=’ indicate the absence of significant changes in that context

Reference Design Protein of interest Outcome

(Baldissera et al. 2018) Wistar rats
Acute exposure (3 days) to 750 μg/100 μL of ROFA

eHSP70 ↑
Expression of iHSP70 in the lymph node =
Expression of iHSP70 in the thymus =
Expression of iHSP70 in the spleen =
eHSP70/iHSP70 ratio in the lymph node =
eHSP70/iHSP70 ratio in the thymus ↑
eHSP70/iHSP70 ratio in the spleen =

(Sancini et al. 2014) BALB/c male mice
Intratracheal instillation of 100 mg of  PM2.5 three times, 

every three days

Pulmonary parenchyma iHSP70 expression ↑
Cardiac iHSP70 expression ↑

(Gasparotto et al. 2013) RAW 264.7 macrophages
Incubation with nanoparticles and ultrafine particles of 

coal fly ashes
1 mg/mL for 24 h

iHSP70 expression ↑

(Watterson et al. 2009) Human bronchial epithelial cells
(BEAS-2B)
PM2.5 and  PM10
12.5 and 25 μg/mL
24 h

iHSP70 expression ↑

(Farina et al. 2013b) BALB/c mice
Intratracheal instillation of 100 μg/animal of  PM1
Three times, every three days

Pulmonary iHSP70 expression ↓

(Farina et al. 2013a) BALB/c mice
Intratracheal instillation of 100 μg/animal of  PM10
Three times, every three days

Pulmonary iHSP70 expression ↑
Cardiac iHSP70 expression ↑

(Gasparotto et al. 2018) Wistar rats
HFD consumption (60%) for 24 weeks
At the 21ª week, they also started to receive coal dust, in 

a chamber (10 mg/m3, 3 h/day) for 4 weeks.

eHSP70 =

(Goettems-Fiorin et al. 2016) B6.129SF2/J male mice
HFD consumption (58.3%) for 24 weeks
At the 13ª week, they also started to receive an intranasal 

instillation of
5 μg/10 μL of  PM2.5 for 12 weeks

eHSP70 =
Adipose tissue iHSP70 expression ↑
Hepatic iHSP70 expression ↑
Gastrocnemius iHSP70 expression =
Pancreatic iHSP70 expression ↓
eHSP70/iHSP70 ratio in the adipose tissue =
eHSP70/iHSP70 ratio in the liver =
eHSP70/iHSP70 ratio in the gastrocnemius =
eHSP70/iHSP70 ratio in the pancreas ↑

(Costa-Beber et al. 2021a) Wistar female rats
HFD consumption (58.3%) for 24 weeks
ROFA exposure (250 μg/50 μL), once a day, 5 days/

week, for 24 weeks
OVX at the  12th week

iHSP70 in the cardiac tissue ↓*
eHSP70 =
eHSP70/iHSP70 ratio in the cardiac tissue =

(Costa-Beber et al. 2021b) Wistar female rats
ROFA exposure (250 μg/50 μL), once a day, 5 days/

week, for 24 weeks
OVX at the  12th week

iHSP70 in the cardiac tissue ↓*
eHSP70 =
eHSP70/iHSP70 ratio in the cardiac tissue =

(Goettems-Fiorin et al. 2019) Wistar female rats
ROFA exposure (250 μg/50 μL), once a day, 5 days/

week, for 24 weeks
OVX at the  12th week

iHSP70 in the hepatic tissue ↑
eHSP70 =
eHSP70/iHSP70 ratio in the hepatic tissue =
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with DM (Nunes et al. 2008; Pedersen 2006; Pedersen 2013; 
Pedersen and Febbraio 2008; Pedersen et al. 2003).

Glutamine serves as a critical factor involved in anti-
oxidant and anti-inflammatory defenses. Patients with both 
DM1 and DM2 present with low serum glutamine levels due 
to increased inflammatory metabolism (glutamine consump-
tion by immune cells) (Liu et al. 2019). Therefore, glutamine 
released by active muscles during physical exercise (Rai-
zel et al. 2016) can improve the antioxidant, immune, and 
metabolic status by serving as a substrate for the synthesis 
of glutathione, which is the major antioxidant found in pan-
creatic β-cells (Cruzat et al. 2018). In addition, glutamine 
concentrations modulate iHSP70 levels by inducing HSF-1 
O-glycosylation or phosphorylation (Petry et al. 2015; Petry 
et al. 2014; Petry et al. 2019; Raizel et al. 2016). Thus, phys-
ical exercise can modulate HSP70 expression levels by alter-
ing glutamine levels (Hung et al. 2008).

A three-week treadmill protocol [30–60 min/day, at the 
intensity of 1.6 km/h, 5 days/week] is sufficient to increase 
HSP70 levels in cardiac and skeletal muscle (Hung et al. 
2008). This exercise-induced iHSP70 level may be respon-
sible for attenuating DM1-related outcomes and improving 
survival following lipopolysaccharide (LPS)-induced endo-
toxemia (Hung et al. 2008). The role played by HSP70 in 
reducing sepsis-related mortality was also reported by our 
group (Sulzbacher et al. 2020). However, HSP70 is sensi-
tive to stress, and longer periods of exercise-related train-
ing may demand a progressive protocol, as adaptation may 
reduce the response to exercise, resulting in a decrease in 
the expression levels of HSP70. For example, in a streptozo-
tocin-induced DM1 model, a 5-week ladder-climbing proto-
col reduced iHSP70 levels in the muscle, whereas iHSP70, 
IL-6, and TNF-α levels were increased in the adipose tissue 
(Molanouri Shamsi et al. 2016). According to the authors, 
this increase in adipose iHSP70 levels may be related to the 
promotion of lipolysis by exercise-generated acute stress. By 
contrast, the observed reduction of iHSP70 in muscle may 
be due to the interruption of diabetes-related inflammatory 
stress and muscle atrophy by exercise (Molanouri Shamsi 
et al. 2016).

DM1 and DM2 show distinct physiopathologies, and the 
optimal exercise regimens may differ between these two 
diseases. In a genetic animal model of obesity, treadmill 
training [60 min/day, at the intensity of 20 m/min, 5 days/
week, 10 weeks] increased iHSP72 levels in the gastroc-
nemius muscle and liver (Tsuzuki et al. 2017). A 3-month 
protocol combining aerobic exercise with resistance training 
in people with obesity reduced the expression levels of vari-
ous HSPs to levels observed in lean subjects, with a parallel 
decrease in the endogenous levels of IL-6 and TNF-α (Tiss 
et al. 2014). However, physical training alleviated cellular 
stress in adults with obesity, regardless of DM diagnosis, 
attenuating the inflammatory response (Khadir et al. 2018). 

Consistent with this finding, the same exercise protocol and 
duration increased HSP70 mRNA levels in the adipose tis-
sue of people with obesity and DM, which were reduced at 
baseline compared with people with obesity but without DM 
(Khadir et al. 2018).

These data suggest that exercise-induced effects are medi-
ated by the modulation of the HSR. In addition to the pro-
tective role displayed by iHSP70, the expression of iHSP70 
under stressful conditions mediates other counter-regulatory 
pathways. A study by Tsuzuki et al. (2017) showed that the 
attenuation of exercise-induced iHSP72 expression, medi-
ated by decreasing the room temperature, also attenuated 
improvements in lipid metabolism and whole-body insulin 
resistance. Additionally, the set of studies reviewed here 
emphasizes the need to perform time-course monitoring of 
both iHSP70 and eHSP70 levels during an exercise protocol 
to determine the most effective exercise intensity to obtain 
metabolic improvements among individuals with DM. This 
time-course study would also be valuable for determining 
the level of cellular stress experienced by individuals with 
obesity and DM, which would contribute to evaluating the 
benefits of training or supplementation programs (Antunes-
Neto et al. 2006).

The benefits of physical training may also differ accord-
ing to individual biology, which is influenced by each indi-
vidual’s metabolic condition, the presence or absence of 
obesity or DM, and the quality of the air to which they are 
exposed. Air pollution is a relevant external challenge, and 
the use of different exercise protocols may serve as a poten-
tial means for preventing or improving the harmful effects 
associated with pollution exposure. Monitoring HSP70 
levels could also provide important information regarding 
cellular stress in response to exercise intensity among popu-
lations with the combined risk factors of DM and exposure 
to poor-quality air.

The paradox of exercising under polluted 
conditions

Studies involving exercise as a non-pharmacological strat-
egy for the prevention or treatment of  PM2.5-induced insulin 
resistance or obesity-associated comorbidities differ in the 
exercise modality, intensity, and duration and the timing of 
exercise relative to pollution exposure, which likely contrib-
utes to the variability of the reported results. This variability 
has resulted in controversy regarding whether exercise under 
polluted conditions is advisable and whether exercise under 
polluted conditions prevents, treats, or exacerbates insulin 
resistance.

There is a recommendation to avoid exercise in streets 
or highways due to the toxic effects caused by air pollu-
tion (Heck et al. 2015b; Sharman et al. 2004; Sharman et al. 
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2002). Several studies that have examined exercise under 
polluted conditions have reported a decrease in pulmonary 
function (i.e., forced vital capacity and forced expiratory 
volume) (Rundell et al. 2008), highlighting the risks associ-
ated with exercising in inadequate air conditions (Sharman 
2005; Sharman et al. 2004). During exercise, even at low 
intensities, the rates of both respiration and oral ventila-
tion increase, which enhances  PM2.5, inhalation five-fold 
and enhances  PM0.1 inhalation two-fold (Daigle et al. 2003; 
Slezakova et al. 2020), potentiating the deleterious effects 
of air pollution (Bennett et al. 1985).

Previous studies have shown that particle inhalation or 
exposure to urban air pollution during exercise can increase 
pulmonary and cardiac oxidative stress (Heck et al. 2015a, 
2015b). Similarly, an increase in lung inflammation after 
training sessions was detected in young athletes after exer-
cising under conditions with high PM levels (Ferdinands 
et al. 2008), in addition to enhanced respiratory airway con-
striction and reduced respiratory function (Rundell et al. 
2008). Corroborating these studies, other research showed 
that cycling in an urban environment, resulting in PM expo-
sure, induces an increase in systemic inflammation markers 
(Jacobs et al. 2010), which can be observed as changes to 
routine hematological lab results, such as increasing white 
blood cells and platelets number (Kargarfard et al. 2015). 
Therefore, the strict consensus has been to avoid exercising 
under polluted conditions.

However, recent studies have shown contradictory results 
regarding whether exercise under polluted conditions is 
advisable. Using the same protocol of 2-h exposure in high 
or low traffic-related air pollution, intermittent moderate 
physical activity [15 min of cycling on a stationary bicycle 
alternating with 15 min of rest, four times, at the intensity of 
50–70% of the maximum heart rate] was shown to prevent 
an increase in systolic blood pressure caused by exposure 
to traffic-related  PM10 and  PM>10 (Kubesch et al. 2015) 
and attenuated the PM-induced impairment of pulmonary 
capacity (Matt et al. 2016). However, a study evaluating only 
one-time outdoor running under conditions of low and high 
 PM2.5 exposure did not find any effects on pulmonary func-
tion (Wagner and Brandley 2020). Another study reported 
that no pulmonary or autonomic effects were experienced 
by young individuals practicing vigorous activities [30 min, 
high-intensity cycling at the intensity of 77% of  VO2peak] 
under polluted conditions (Giles et al. 2018). Together, this 
evidence suggests that exercising under polluted conditions 
may not contribute to harmful effects and may even pre-
vent the damage induced by pollution under non-exercising 
conditions.

Studies in animal models have presented interesting evi-
dence that a moderate level of physical exercise can prevent 
the damage induced by pollution. A treadmill pre-train-
ing protocol performed at moderate intensity prevented 

pulmonary dysfunction and the progression of lesions 
(local bleeding, pus exudation, inflammatory cell infiltra-
tion of lung tissues, and bronchial mucosal exfoliation) 
induced by one bout of  PM2.5 exposure [chambers with 
269.31 ± 30.79 μg/m3 and 509.84 ± 36.74 μg/m3 of  PM2.5 
in medium and high concentration, respectively] (Qin et al. 
2020). However, in this study, only healthy animals were 
used, and exposure to air pollution occurred only once (Qin 
et al. 2020). In a follow-up study, these authors extrapo-
lated their results to an already susceptible population by 
showing that the same exercise pre-training protocol was 
able to ameliorate lung injury induced by subchronic expo-
sure to  PM2.5 in aging rats (Qin et al. 2021). These protec-
tive effects were attributed to antioxidant and anti-inflam-
matory adaptations induced by exercise, characterized 
by increased catalase activity and glutathione levels and 
decreased TNF-α and IL-1β levels in the bronchoalveolar 
fluid (Qin et al. 2020). These findings may explain why 2 
h of intermittent exercise performed by healthy volunteers 
under real-world, polluted conditions have been reported 
to result in the immediate repression of the negative effects 
that are typically induced by PM exposure on pulmonary 
function, including peak expiratory flow and forced vital 
capacity (Matt et al. 2016).

The benefits of exercise extrapolate to improved respira-
tory capacity and improved vascular and systemic condi-
tions. A physical exercise protocol prevented endothelial 
dysfunction in animals subsequently exposed to  PM2.5 (Feng 
et al. 2019). In addition, physical training increased high-
density lipoprotein levels and function by improving choles-
terol efflux capacity and reducing the oxidation index (Feng 
et al. 2019). The antioxidant response in the gastrocnemius 
muscle was also improved by exercising under polluted con-
ditions (ROFA exposure) (Marmett et al. 2018) (see Table 3 
for review).

Despite differences in methodologies, the results of 
multiple studies have suggested that exercising before 
an acute or a subchronic exposure to  PM2.5 was able to 
prevent pollutant-induced cardiovascular and metabolic 
injuries (Feng et al. 2019; Qin et al. 2021; Qin et al. 2020). 
These studies also suggest that intermittent moderate exer-
cise performed under polluted conditions was also asso-
ciated with beneficial effects (Kubesch et al. 2015; Matt 
et al. 2016). Recently, some researchers have concluded 
that healthy individuals derive more benefits from exercise 
outdoors, even in contact with air pollution, than remain-
ing sedentary under pollution-free conditions (Marmett 
et  al. 2020). However, whether exercise has the same 
benefits in individuals with DM who are exposed to air 
pollution remains unknown. The extra challenge posed 
by DM requires a better biomarker of exercise intensity 
and inflammatory status. We propose the use of HSP70 
for this purpose.
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HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise…
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How much exercise is sufficient, and how can 
HSP70 help in prescribing exercise intensity?

Regular exercise is known to serve as a prophylaxis or treat-
ment for many chronic diseases (Ashor et al. 2015; Chang 
et  al. 2015; Eijsvogels and Thompson 2015; Pedersen 
2006; Pedersen 2017; Pedersen et al. 2003; Rinella 2015; 
Schmitz et al. 2015; Simon 2015; Wedell-Neergaard et al. 
2018). The benefits of exercise for health include improved 
antioxidant and anti-inflammatory capacities that improve 
metabolic control (Ropelle et al. 2010). These effects occur 
at the molecular level, including the modulation of exercise-
induced iHSP70 levels (Locke and Noble 2002; Milne et al. 
2012; Mulyani et al. 2020; Noble et al. 2008), and are related 
to both oxidative and inflammatory signaling.

Exercise has been described as a ‘real polypill,’ a ‘drug’ 
with multiple applications (Fiuza-Luces et al. 2013), that can 
be compared against pharmacological treatments for many 
diseases. Similar to other drugs, exercise requires adequate 
doses, and varying levels of effort may be necessary for each 
individual. Even short sessions of moderate exercise can lead 
to transient tissue damage due to increased ROS production 
during exercise metabolism, which overloads an antioxidant 
defense system that is sufficient for rest conditions, resulting 
in oxidative stress. During physical exertion, increased oxy-
gen consumption is directly proportional to ROS production 
(Banerjee et al. 2003). However, exercise induces a subse-
quent antioxidant and anti-inflammatory counter-regulatory 
response that benefits the organism by increasing its baseline 
capacity to cope with stressful conditions.

These benefits are delayed when untrained individuals 
are subjected to an acute session of intense or extenuating 
exercise. Acute exercise in untrained individuals can result 
in oxidative stress (Antunes-Neto et al. 2006; Liu et al. 2000; 
Pittaluga et al. 2006), tissue damage (Antunes-Neto et al. 
2006), immunity depression (Murase et al. 2016; Nieman 
et al. 1994), and inflammation (Silveira et al. 2007; van Hel-
voort et al. 2005), which are all marked by an increase in 
salivary eHSP70 levels (Murase et al. 2016). Untrained indi-
viduals are more susceptible to extenuating exercise-induced 
oxidative impairments (Fisher-Wellman and Bloomer 2009; 
Pittaluga et al. 2006), because untrained individuals only 
have sufficient antioxidant capacity to address rest levels 
of oxidation whereas trained athletes maintain an oxidative 
capacity capable of addressing the oxidative load experi-
enced during exercise.

Intense exercise sessions trigger antioxidant and anti-
inflammatory counter-regulatory responses (Antunes-Neto 
et al. 2006; Cuthbert et al. 2019; Peake et al. 2005), resulting 
in adaptations throughout the course of an ongoing exer-
cise program (training protocol), with positive metabolic, 
antioxidant (Liu et al. 2000), and anti-inflammatory effects 

(Antunes-Neto et al. 2006; Hinkley et al. 2017; Pittaluga 
et al. 2006). Physical effort has been shown to increase 
iHSP70 levels in leukocytes (Periard et al. 2015), cardiac, 
skeletal muscle (Milne and Noble 2002), and mesenteric 
lymphocytes (Heck et al. 2017), and the release of eHSP70 
by macrophages (Scholer et al. 2016) appears to occur in 
an exercise intensity–dependent manner (Heck et al. 2017; 
Milne and Noble 2002; Periard et al. 2015; Scholer et al. 
2016). Consistent with these findings, a pilot study showed 
that iHSP70 levels in the vastus lateralis were induced by 
high-intensity training in well-trained rowers but not by 
endurance training performed at low intensity (Liu et al. 
2004).

A previous study evaluated plasma eHSP70 levels in 
athletes participating in various running protocols, with 
different durations and similar intensities showed that the 
marathon (260 ± 39 min) resulted in a 2.5-fold increase 
in eHSP72 levels compared with the long run (120 min) 
(Fehrenbach et al. 2005). When duration and intensity var-
ied, a significantly greater increase in eHSP72 was found in 
athletes who performed exercise at an intensity resulting in 
80% maximal oxygen consumption  (VO2 max) compared 
with lower intensities (Fehrenbach et al. 2005). Therefore, 
different running durations and intensities increased eHSP72 
levels to differing degrees in athletes (Fehrenbach et al. 
2005).

These studies indicate that a threshold intensity must be 
achieved to induce iHSP70, with the largest HSP70 induc-
tion occurring when subjects exercise near or above their 
lactate threshold (Liu et al. 2004; Milne and Noble 2002; 
Pilis et al. 1993). Therefore, HSP70 levels could serve as 
a useful biomarker of physical exhaustion, which has been 
reported in a study of untrained individuals (Periard et al. 
2012; Periard et al. 2015). For example, in humans, cycling 
to exhaustion at intensities of both 60% and 75%  VO2 max 
resulted in enhanced monocytic iHSP70 and eHSP70 levels 
(Periard et al. 2012; Periard et al. 2015).

These findings highlight that HSP70 expression and 
export are sensitive to fatigue and transmit this signaling 
to the central nervous system (Dos Santos et al. 2020; Heck 
et al. 2011). HSP70 is also a potential chaperone whose 
expression is stimulated by physiological hyperthermia, 
in addition to mechanical, hormonal, metabolic, oxidative, 
energetic, and inflammatory stressors, all of which char-
acterize physical effort (Silver et al. 2012). Therefore, the 
injury and recovery process following the exercise is asso-
ciated with HSP70 expression and signaling. Recently, a 
study showed that eHSP70 released during exercise induces 
delayed-onset muscle soreness by activating the microglial 
TLR-4/IL-6 and TNF-α pathway in the spinal cord (Dos 
Santos et al. 2020). Consistent with this finding, the over-
expression of iHSP70 improves physical performance, 
reduces serum lactate and muscle damage, and enhances 
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the superoxide dismutase activity following exhaustive exer-
cise (Liu et al. 2013). Thus, HSP70 serves as a powerful 
biomarker and an important mediator of physical fatigue 
and recovery.

However, in animals, surpassing a certain level of physi-
cal effort can result in exhaustion that renders them unable 
to properly develop an HSR, resulting in lower iHSP70 
and higher eHSP70 levels (Heck et al. 2017), limiting the 
modulation of innate monocyte and macrophage functions 
(Scholer et  al. 2016) and culminating in an inflamma-
tory milieu (see Table 4 for review). Whether individual 
responses to acute intense exercise are similar for chronic 
diseases, such as obesity and DM2, that are characterized 
by impaired HSR remains to be carefully assessed. Under 
conditions of chronic disease and exercise, a threshold may 
exist beyond which homeostasis can no longer be main-
tained, characterized by asthma or cardiovascular events 
(Rundell et al. 2008; Thompson et al. 2007) and mediated 
by extreme inflammatory and oxidative stimuli. Individual 
exercise recommendations may be particularly relevant for 
patients who present with pre-existing pathology or injury 
conditions (Brody 2012).

How does HSP70 reflect the complexity 
of exercise performed under polluted 
conditions in people with obesity 
or diabetes?

HSP70 could potentially contribute to identifying the thin 
threshold between the beneficial and damaging effects of 
exercise performed under polluted conditions in individuals 
with obesity or DM. We propose that the evidence regard-
ing HSP70 expression under these circumstances should be 
interpreted through the lens of the hormesis theory. Accord-
ing to the hormesis theory, before becoming deleterious, a 
stimulus can lead to a preconditioning effect, mediated by 
physiological adaptations that strengthen an organism’s abil-
ity to address future harmful stress (Calabrese et al. 2015; 
Calabrese et al. 2010; Cornelius et al. 2013; Dattilo et al. 
2015). A low-level stimulus can increase individual perfor-
mance within a limited zone (Calabrese et al. 2015), whereas 
a high-level stimulus can lead to the inhibition and reduc-
tion of individual performance (Calabrese et al. 2015). Thus, 
each condition (pollution, DM2, and exercise) exerts differ-
ent metabolic, oxidative, and inflammatory challenges that 
can induce HSR until a specific threshold is met, at which 
point the effects become deleterious (Figure 1B).

DM and  PM2.5 impair survival by decreasing the ability 
to exert a proper HSR under conditions of continued expo-
sure. Obesity and DM2 affect an organism through simi-
lar mechanisms, starting with an increase in HSP70 levels 
(Miragem and Homem de Bittencourt Jr 2017) to prevent the 

propagation of low-grade inflammation induced by meta-
bolic disruption (Newsholme and de Bittencourt Jr 2014). 
Enhanced HSP70 levels indicate the stimulation phase of the 
hormesis curve. Otherwise, as chronic low-grade inflamma-
tion continues, HSP70 expression decreases and becomes 
inhibited (Bittencourt et al. 2020; Miragem and Homem de 
Bittencourt Jr 2017; Newsholme and de Bittencourt Jr 2014). 
The lack of a proper HSR induces SASP and the propagation 
of the inflammatory milieu, which links obesity and insulin 
resistance (Bittencourt et al. 2020; Miragem and Homem de 
Bittencourt Jr 2017; Newsholme and de Bittencourt Jr 2014). 
Thus, reduced HSP70 levels represent the inhibition phase 
of the hormesis curve.

Similarly, a large set of environmental pollutants were 
reviewed for their ability to induce a hormetic response, 
although the effects of  PM2.5 in the hormetic curve were 
not elucidated yet (Iavicoli et al. 2018). However, the stud-
ies reviewed here suggest that the intensity of  PM2.5 expo-
sure and its association with other risk factors might reduce 
HSP70 levels (Costa-Beber et al. 2021a; Costa-Beber et al. 
2021b; Costa Beber et al. 2020). HSP70 transcription is 
regulated by HSF-1, which can be modulated by sirtuin 1 
(SIRT-1) and is closely related to cell survival and longev-
ity (Calabrese et al. 2010; Cornelius et al. 2013; Dattilo 
et al. 2015). Therefore, the decrease in SIRT-1 expression 
reported during  PM2.5 exposure (Jin et al. 2016; Ribeiro 
Junior et al. 2019; Tanwar et al. 2017), combined with the 
observed reduction in the HSR in obesity, DM2 (Bitten-
court et al. 2020; de Lemos Muller et al. 2018; Krause et al. 
2015a; Krause et al. 2014a), and acute respiratory distress 
syndrome (Durand et al. 2000) might result in worse progno-
sis. Evidence from our lab also demonstrated that these out-
comes vary in tissue- and pollutant-specific manners (Bald-
issera et al. 2018; Costa-Beber et al. 2021a; Costa-Beber 
et al. 2021b; Costa Beber et al. 2020; Goettems-Fiorin et al. 
2019; Goettems-Fiorin et al. 2016; Kostrycki et al. 2019; 
Mai et al. 2017), and recent studies have demonstrated the 
normalization of these inflammatory conditions mediated by 
exercise (Khadir et al. 2018; Tiss et al. 2014; Tsuzuki et al. 
2017). Accordingly, a recent study supported our hypoth-
esis, showing that aerobic exercise prevented  PM2.5-induced 
lung injury in aging rats by enhancing pulmonary iHSP70 
expression and reducing circulating eHSP70 levels (Qin 
et al. 2021).

When performing moderate-intensity physical training, 
which has been suggested to be the safest intensity performed 
under polluted conditions (Mai et al. 2017; Qin et al. 2021; 
Qin et al. 2020), HSP70 levels can serve to verify that a safe 
intensity is being practiced (Qin et al. 2021). Although HSP70 
serves as a fatigue signal (Heck et al. 2011; Liu et al. 2013), it 
also correlates with exercise intensity (Milne and Noble 2002) 
and is necessary for the induction of exercise-related benefits 
(Heck et al. 2017; Tsuzuki et al. 2017) (see item 6 for review). 
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HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise…
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The dual role of HSP70 in the intracellular and extracellular 
processes indicates that monitoring both may be valuable for 
determining the specific threshold between benefits and dam-
age induced by exercise. We suggest that HSP70 levels can be 
used to monitor the proper intensity of exercise appropriate 
for individual requirements to ensure that exercise is being 
performed at an intensity that does not further exacerbate the 
effects of pollution by inducing an appropriate HSR to address 
stressful conditions (Qin et al. 2021). Thus, monitoring HSP70 
can help professionals manipulate exercise intensity and main-
tain an individual within the first phase of hormesis.

Recently, our lab and coworkers proposed the Heck Index 
(H-Index) as a potential biomarker for the immune–inflam-
matory status in exercise (Heck et al. 2017). The H-Index 
represents the eHSP70 to HSP70 ratio, which is independent 
of the method used for measurement (for details, see Heck 
et al. (2017) and should present a baseline value near 1 (1:1 
eHSP70/HSP70 ratio) when measured in plasma or any tissue 
(Costa-Beber et al. 2020). Independently, metabolic diseases, 
exposure to high levels of pollution, and cardiovascular con-
ditions are sufficient factors to increase the H-Index to values 
considered risky (Bruxel et al. 2019; Costa-Beber et al. 2020; 
Goettems-Fiorin et al. 2016; Heck et al. 2017; Qin et al. 2021). 
Moreover, the H-Index can be exacerbated if exercise inten-
sity exceeds an individual’s capacity to cope with the physical 
effort (Heck et al. 2017), and the H-Index can be reduced to 
basal levels when an appropriate exercise intensity reduces 
inflammation triggered by pollution (Qin et al. 2021). How-
ever, a decrease in the H-Index below basal levels can serve 
as an indicator of a repressed HSR, as observed in animals 
exposed to  PM2.5 while undergoing intense physical training 
(Mai et al. 2017).

Therefore, we suggest that monitoring the HSR via HSP70 
levels may be valuable when determining an appropriate level 
of exercise (Heck et al. 2017; Kruger et al. 2019; Scholer et al. 
2016) and determining the transition point between various 
phases (induction and inhibition) of hormesis (Calabrese et al. 
2015; Calabrese et al. 2010; Cornelius et al. 2013). We pro-
pose that HSP70 can serve as a biomarker for establishing the 
fine threshold between anti-inflammatory and pro-inflamma-
tory exercise levels.

Is it possible to measure the HSP70, H‑Index, 
and heat shock response in such conditions? 
How to evolve to a unique biomarker 
of these conditions?

The circadian cycle affects HSP70 levels, which can be 
influenced by diurnal variations in adrenocorticotropic 
hormone (ACTH) levels, which are known to mediate the 
induction of adrenal HSP72 (Blake et al. 1991). A previous 
study demonstrated that basal levels of iHSP70 vary over a 

24-h period in monocytes isolated from healthy male sub-
jects (Sandstrom et al. 2009). Disruptions in the circadian 
cycle (e.g., light interference) serve as a powerful stressor 
that alters HSP70 mRNA expression and protein levels in 
the brain and hepatic tissues (Ashkenazi and Haim 2012; 
Moore et al. 2021). Therefore, the circadian rhythm of 
each species must be acknowledged and respected when 
performing experiments (nocturnal or daytime habit).

The adrenal gland plays a vital role in mediating the 
fight-or-flight response by releasing catecholamines and 
corticosteroids, and the hypothalamus–pituitary–adreno-
cortical axis is involved in the physiological effects of 
physical exercise (Tahara et al. 2017). Based on the levels 
of HSP70 and IL-6, combined with leukocyte parameters, 
training during the mornings has been recommended to 
avoid unnecessary homeostatic perturbations (Boukelia 
et al. 2018). It was already demonstrated that exercise 
induces decreased HSP70 levels and leukocytosis at 1800 
h (Boukelia et al. 2018).Therefore, daily fluctuations in 
ACTH and cortisol levels may not necessarily be relevant 
confounding factors in the exercise-induced increase in 
HSP70 levels, as long as the nature of each species is 
appropriately considered (nocturnal or daytime habit). For 
our proposed use of HSP70 as a biomarker, exercising and 
sample collection should preferentially occur during the 
morning or prior to 1800 h to avoid biases due to diurnal 
variations.

After an exercise stimulus, the time courses of HSP70 
mRNA and protein expression differ (Khassaf et al. 2001; 
Liu et al. 2004). The HSP70 mRNA signal increases sig-
nificantly immediately after (Tuttle et al. 2015) and 1- to 
3-h post-exercise (Cuthbert et al. 2019; Silver et al. 2012). 
An acute session of exercise increases HSP70 mRNA lev-
els in both trained and sedentary animals, which can be 
verified 30 min after the physical challenge (Melling et al. 
2007). By contrast, an increase in myocardial iHSP70 con-
tents can be observed after this time only in trained ani-
mals (Melling et al. 2007).

Although HSP70 mRNA and protein expression occur 
on different time scales, HSP70 release has been consist-
ently reported at the same time points. Increased circulat-
ing eHSP70 circulating has been reported 4-h post-exer-
cise (Murase et al. 2016), immediately (0 h) after exercise 
(Fehrenbach et al. 2005), and at the point of exhaustion 
(i e., during exercise) (Periard et al. 2012). In peripheral 
blood mononuclear cells (PBMCs), following a stimulus, 
eHSP70 release peaks after 2 h of culture but continues 
to increase at a reduced rate for up to 24 h (Hunter-Lavin 
et al. 2004). Therefore, the patterns of mRNA and protein 
levels must be established individually because they do not 
necessarily change in tandem.

Both iHSP70 and eHSP770 can be assessed from the 
same total blood sample. PBMCs can be separated from 
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plasma using the Histopaque technique, allowing for the 
separate measurement of iHSP70 and eHSP70 contents (de 
Lemos Muller et al. 2018; Madden et al. 2010). With the 
appropriate equipment, muscle micro-biopsies can also be 
obtained to measure iHSP70 levels (Brinkmann et al. 2019; 
Cuthbert et al. 2019; Hinkley et al. 2017; Khadir et al. 2018; 
Krause et al. 2014b; Liu et al. 2004; Martin-Ventura et al. 
2007; Rodrigues-Krause et al. 2012b); however, this is an 
invasive technique and should not be considered part of rou-
tine analysis, whereas blood collection is minimally invasive 
and often part of routine clinical assessments. HSP70 meas-
urements could be analyzed separately or used to calculate 
the H-Index.

Total blood samples (or previously isolated PBMCs) can 
be used to measure HSR. Two samples from the same patient 
are collected, and one is submitted to a thermal challenge 
at 42 °C (HSR sample) whereas the other is retained in a 

thermoneutral zone at 36 °C (control sample) for 2 h, fol-
lowed by a rest and response period, during which both sam-
ples are maintained at 36 °C for 6 h (de Lemos Muller et al. 
2018; Heck et al. 2017; Krause et al. 2020) (see Figure 2). 
Cells from a healthy patient should be capable of HSP70 
expression, developing a proper HSR following exposure to 
thermal stress. We recommend challenging donors’ samples 
using thermal stress to properly evaluate the HSR, rather 
than evaluating the HSR in response to exercise, as mod-
erate-intensity exercise was recommended as the optimal 
intensity for the prevention of pollution-related effects (Mai 
et al. 2017; Qin et al. 2021; Qin et al. 2020), but HSP70 is 
only released by lymphocytes during high-intensity exercise 
(Heck et al. 2017). HSP70 expression can be verified using 
highly sensitive enzyme-linked immunosorbent assays or 
western blotting. The choice of the method depends on the 
expertise and reagent availability; the measurement method 

Fig. 2  Schematic representation of intracellular and extracellular 
HSP70 measurement in human blood. Peripheral blood mononu-
clear cells (PBMCs) can be separated from plasma using the Histo-
paque technique to measure intracellular (iHSP70) and extracellular 
(eHSP70) contents, respectively (First approach). PBMCs can also 
be used to assess the heat shock response (HSR) by submitting two 
samples from the same donor to either a thermal challenge at 42 °C 
(HSR sample) or a thermoneutral zone at 36 °C (control sample) for 

2 h, followed by a ‘rest and response period’ at 36 °C for 6 h (second 
approach). Following centrifugation, the supernatant can be used to 
assess eHSP70 levels, whereas the PBMC pellet can be used to assess 
iHSP70 levels. These measurements can be analyzed separately or 
used to calculate the H-Index. Cells from a healthy patient should be 
able to express HSP70 and, therefore, mount a proper HSR following 
thermal stress. Created with BioRe nder. com
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is not a limiting factor because the H-Index requires nor-
malization by a control (as previously described) and does 
not depend on the measurement method.

To date, no cutoff values for iHSP70 or eHSP70 have 
been established to guide the interpretation of results. Until 
such cutoffs are established, we suggest the collection of 
blood samples from each subject before and after exercise. 
As described in Section 6, intense exercise may increase 
iHSP70 levels, whereas less strenuous exercise may not 
(Heck et al. 2017). In addition, the H-Index can be used, 
as previous studies from our research lab indicated that 
low-level physical training is typically associated with an 
H-Index value < 1.00, an acute moderate-intensity session 
presents an H-Index value of 1.00–2.00, and an acute high-
intensity to strenuous exercise results in an H-Index value 
of > 5.00 (Heck et al. 2017). In addition, the ability of the 
donor’s PBMCs to mount a proper HSR, indicated by an 
H-Index > 2.00, should be evaluated by using the thermal 
stress assay, whereas the presence of chronic inflammatory 
disease is typically associated with an H-Index value of > 
5.00 at the baseline (thermoneutral zone) (Heck et al. 2017).

Our proposition has some limitations concerning to the 
requirement of an equipped lab, which could be overcome 
by partnerships. As far as the studies advance, we look for-
ward developing the possibility of technologically evolving 
towards an accurate and rapid assessment of HSP levels, as 
if using a glucometer, for example. Until then, more studies 
are necessary to properly establish the reference values of 
HSP70 for each condition.

Conclusion

Obesity and DM are conditions that should be addressed 
with a physical exercise regimen. The biometric and meta-
bolic benefits associated with physical exercise are medi-
ated by iHSP70 and eHSP70 signaling. However, eHSP70 is 
also a marker of physical fatigue and a mediator of chronic 
inflammation. Thus, the balance between iHSP70 and 
eHSP7 should be maintained and can be used to determine 
the appropriate exercise intensity to achieve maximal poten-
tial benefits. We reviewed the available evidence to support 
our hypothesis that HSP70 can be used as a biomarker for 
determining optimal exercise intensity among individuals 
with obesity or DM when exposed to air pollution, which 
could contribute to establishing the fine threshold between 
the anti- and pro-inflammatory effects mediated by exercise.

Abbreviations ACTH: adrenocorticotropic hormone; AP-1: activator 
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