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Impact of Governmental 
interventions on epidemic 
progression and workplace activity 
during the COVID‑19 outbreak
Sumit Kumar Ram1,7* & Didier Sornette1,2,3,4,5,6*

In the first quarter of 2020, the COVID-19 pandemic brought the world to a state of paralysis. During 
this period, humanity saw by far the largest organized travel restrictions and unprecedented efforts 
and global coordination to contain the spread of the SARS-CoV-2 virus. Using large scale human 
mobility and fine grained epidemic incidence data, we develop a framework to understand and 
quantify the effectiveness of the interventions implemented by various countries to control epidemic 
growth. Our analysis reveals the importance of timing and implementation of strategic policy in 
controlling the epidemic. We also unearth significant spatial diffusion of the epidemic before and 
during the lockdown measures in several countries, casting doubt on the effectiveness or on the 
implementation quality of the proposed Governmental policies.

The pandemic due to the SARS-CoV-2 virus1 impacted the world population, health care system and economies 
in 20202. Since its identification in December 2019 in Wuhan, China, this novel coronavirus disease (COVID-19) 
continued to spread in China in Jan.-Feb. 2020. The epidemic was detected in Italy in the second half of February 
and progressively diffused in the rest of the world. It was declared a global pandemic on March 11, 2020 by the 
World Health Organization (WHO)3. We all witnessed and experienced a series of interventions with various 
levels of confinement measures4 in different countries and regions, aimed at decreasing the effective reproduction 
number Rt and controlling the epidemics. Yet, how to assess the impact of the intervention policies to contain 
the epidemic remains an important issue. In this article, we present a framework to understand and quantify the 
effectiveness of the interventions implemented by various countries to control epidemics.

As of the last update of this article (25th August 2021), 20–21 months after the virus was originally described, 
more than 213 million reported SARS-CoV-2 infections have occurred worldwide (from more than 210 coun-
tries). COVID-19 has been linked to almost 4.46 million deaths5. Over the multiple waves, this epidemic has 
posed and is still posing a significant threat to human physical and mental health6, and it has had a signifi-
cant influence on daily life, with psychosocial consequences6 on a global scale. Further, the infection dynamics 
has revealed the effect of hidden environmental factors like air pollution on the severity of the spread of the 
contagion7,8.

Our starting hypothesis is that the emergence of infected cases, the various types of illnesses caused by 
infection, and the death rates reflect the interaction between the biological and epidemiological properties of 
this new SARS-CoV-2 virus and the political, cultural, sociological, and governance characteristics of various 
nations and human communities. By combining mobility data, epidemiological data and clinical data across ten 
countries, we develop a modelling framework to quantify the effectiveness of the interventions implemented by 
various countries to control epidemic growth. This shock provides a real-life natural experiment to falsify the 
effectiveness of different organisations and interventions and policies, with the goal of informing and guiding 
future plans against potential second and third waves of the epidemics as well as future outbreaks in general.
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First, we quantify precisely how interventions in the form of mobility restrictions and social distancing have 
had significant impacts on controlling the development of epidemics in many countries, as measured by the 
decrease in reproduction number Rt and the extent of curbing the increase in infected cases. We also document 
a surprisingly large heterogeneity in the reduction of Rt across regions within a given country and also across 
countries. Further, we observe non-monotonic and fluctuating time dependence of Rt in different regions.

The surprising result is that, in many regions where the epidemic was not visible, the interventions led to 
a significant transient increase in reproduction numbers Rt , in contradiction with the short-term objective of 
lockdown measures. For instance, in several regions of France and Italy, lockdown led to an obvious strong col-
lapse in mobility, accompanied by an increase in Rt . We note that this is not due to the inherent delay in case 
detection due to the incubation period, symptoms’ onset and testing. We interpret this phenomenon as a result of 
preemptive large movements of people to relocate before the strict lockdown implementation, hence promoting 
new contagions and epicenters for the epidemics to mature for a while after the lockdown. Another plausible 
mechanism, which underlies the Japanese policy, is the effect of closed spaces and close-contact settings within 
confined households.

We also quantify how the timing of the lockdown determined the trajectory of the epidemic by estimating 
the spatial correlation across regions within a country of the total increase of infected cases after the lockdown. 
In a number of countries, the epidemic started much before the lockdown date and was developing silently, as 
revealed by the strong spatial diffusion of the epidemic after the lockdown. In other countries, the epidemic was 
better contained by intervention measures.

Our analysis overall suggests that the interventions may have not been optimal and that there are probably 
better alternatives to complete lockdowns. Our study reveals the importance of timing and targeting of inter-
ventions as a likely better strategy compared with undifferentiated lockdown. We observe belated intervention 
at the regional and local levels and hasty global lockdowns, which, in a number of regions, result in a disap-
pointing reduction in the reproduction numbers and a curbing of the increase in new cases compared to other 
comparable countries.

Materials and methods
Data.  Clinical data.  Incubation period and confirmation period.  To calculate various epidemiologi-
cal parameters, we use the individual-level data9,10 on COVID-19 epidemic which are geo-coded and includes 
symptoms, key dates (date of onset, admission, and confirmation), and travel history. The dataset is curated from 
different sources, including official government sources (official websites of Ministries of Health or Provincial 
Public Health Commissions), peer-reviewed scientific articles, online reports, and news websites. From this 
database, we selected 216 individuals, who got clinical confirmation of covid-19 and were symptomatic as well 
as traveled to suspected places of exposure. We have the exact dates of travel, onset of symptoms, and clinical 
confirmation for these 216 individuals.

Serial interval.   We use the infector-infectee pairs dataset that has been collected from publicly available infor-
mation published in research articles and quoted from official reports of outbreak investigations11. We use 28 
probable pairs for the estimation of generation time. For these 28 pairs of individuals, the date of illness onset 
for the pairs of individuals is defined as the date on which a symptom relevant to COVID-19 infection appeared 
and is determined by the reporting governmental body.

Epidemiological data.  We collect the daily reported cases at the first administrative level divisions for a list of 
countries from various sources. The primary sources of information for the datasets are often local news agen-
cies, government reports, WHO reports, and various medical communities. Table 1 gives a list of countries with 
their starting date of governmental interventions. There is no lockdown in Japan like in other countries. How-
ever, prime minister Abe on 7 April, proclaimed a state of emergency. This was the first emergency declaration 
in Japan and we consider this date as the starting date of the intervention.

Mobility data.  We use the aggregated anonymised community mobility dataset that has been collected through 
the Google Maps app12, to help understand what has changed in response to the government policies aimed 
at flattening the curve of the COVID-19 pandemic. The dataset is anononymised to ensure that no personal 
data, including an individual’s location, movement, or contacts, can be derived from the resulting metrics. The 
anonymization process for the data includes differential privacy13, with intentionally added random noise to 
metrics in a way that maintains both users’ privacy and the overall accuracy of the aggregated data14. The dataset 
contains the percentage changes in the anonymized mobility metrics of Google users from a baseline based on 
the historical part. The dataset is prepared by counting and accordingly standardizing the number of unique 
users before and after the interventions, who visited a public place in a given category on a given day at a differ-

Table 1.   Starting dates of Governmental interventions (includes the lockdown) for controlling the outbreak. 
(Source: https://​en.​wikip​edia.​org/​wiki/​COVID-​19_​pande​mic_​lockd​owns)

Country China Italy Spain Switzerland France Canada United States Germany India Japan

Intervention date 2020-01-23 2020-03-09 2020-03-14 2020-03-16 2020-03-17 2020-03-18 2020-03-19 2020-03-20 2020-03-25 2020-04-07

https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdowns
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ent granularity level. There are seven different categories derived from the data: retail, recreation, eateries (retail 
& recreation), groceries, pharmacies, transit, and parks.

Map data.  We collected the geojson files for the first-level administrative divisions of the list of countries 
containing the names of the regions and the geometry from a number of openly accessible github repositories.

Models and methodology.  For our analysis, we select a time span that starts 10 days before the imple-
mentation of Governmental interventions—for controlling the outbreak, often through mass lockdowns—and 
ends 30 days following the starting date of Governmental interventions.

Epidemiological estimations.  The time between exposure and onset of symptoms is defined as the incubation 
period. We use a Bayesian framework to model the day of onset of symptoms following the date of exposure to 
the virus and the day of clinical confirmation of the virus following the date of exposure. Using the key dates for 
the selected 216 individuals9,10, we estimate the important epidemiological parameters like incubation period, 
confirmation period (the number of days it take to get the clinical confirmation about the virus following the 
date of exposure). We use the logistic model

to estimate the cumulative probability distribution of individuals developing symptoms or getting the clinical 
confirmation on the day = t that they are infected, conditional on the fact that the individual was exposed to 
the virus on day = 0 and will be eventually symptomatic and will get a clinical +ve confirmation result. With 
the help of Metropolis-Hastings algorithm15,—a Markov Chain Monte Carlo (MCMC) method16– we sample 
the model parameters ( α,β ), from a standard normal prior and train our model on the dataset to estimate the 
posterior probability distribution of developing symptoms or getting the clinical confirmation on the day = t , 
following the day of exposure on day = 0.

Estimation of the time‑dependent effective reproduction number Rt.  The principal epidemiological variable char-
acterizing a disease’s transmission potential is the basic reproduction number, R0 , which is characterized as the 
estimated number of secondary cases caused by a typical primary case, in an entirely susceptible population. 
When an infection is spreading across a population, working with the effectively reproductive number Rt , which 
is defined as the actual average number of secondary cases per primary case, is often more convenient. Rt is 
normally smaller than R0 , which reflects the impact of epidemic controls and the decline of susceptible individu-
als. The value of Rt is comparable to the branching ratio in the Hawkes process17,18, where Rt > 1 can lead to 
explosive growth of the epidemic and an ever-increasing number of new cases, while Rt < 1 leads to the eventual 
demise of the growth process. Provided the branching structure describing who infected whom is determined, 
it becomes trivial to estimate Rt . However, this information is not generally available and the estimation of Rt 
then becomes tricky. Nevertheless, recent advances in epidemiology have made it possible to estimate the time 
evolution of the effective reproduction number ( Rt ) through the observed epidemic curve in a geographical 
region19,20. We use the method introduced by20, which uses the daily number of confirmed cases and a model 
described below for the generation time (which is one of the key parameters dictating the severity of epidemic 
growth) to estimate the temporal evolution of the effective reproduction number ( Rt ) with the help of a Sequen-
tial Bayesian estimation approach.

The generation time is defined for source-recipient transmission pairs as the time between the infection of 
the source and the infection of the recipient. Because the time of infection is generally not known, the generation 
time is often approximated by the serial interval, which is defined as the time between the onset of symptoms of 
the source and the onset of symptoms of the recipient. For the present case, we use the data for the serial intervals 
from11, which has been constructed using publicly available data. We calibrate the data against three models, 
i.e., Weibull, Log-normal, and Gamma distributions, to find the best possible approximation model from which 
the generation time is determined.

We use a probabilistic contagion model with inhomogenous source terms to explain the progression of the 
COVID-19 epidemic20. We consider both human to human transmission and infections from the reservoir 
(contaminated surfaces) to explain the epidemic growth. Denoting S(t) and N(t) as the average number of sus-
ceptibles and total population at time t and β and γ−1 as the contact rate and the infectious period, respectively,

According to this model, if we denote the number of new infections from the reservoir between t and t + τ 
by �B(t) and the number of new cases within this period by �T(t + τ) , then the stochastic discrete variable 
�T(t + τ) is generated by a probability distribution with the average number of cases given by

with

where P{�} denotes a discrete probability distribution with a mean � . In eq. (4), b(Rt) can be expressed as

(1)P(conf ./sympt.|t) =
1

1+ eβt+α

(2)R0 =
β

γ
and Rt =

S(t)

N(t)
× R0.

(3)�T(t + τ) ∼ P{�}

(4)� = �B(t + τ)+ b(Rt)(�T(t)−�B(t)+ τγRt�B(t))
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which is the slope of the tangent at the origin of case trajectories from the epidemic time delay plot ( �(t) vs 
�(t − τ) ) of surveillance data. More details about the derivation of the model can be found in the supplementary 
material or in20.

We use a Bayesian framework to estimate the full probability distribution for the effective reproduction 
number Rt , conditional on the time series for new cases. The probability distribution of Rt , compatible with the 
observed temporal data stream, is given by

where P[Rt ] is the prior distribution and P[�T(t + τ) ← �T(t)] is independent of Rt , and is a normalization 
parameter. From successive applications of Bayes’ theorem, a sequential estimation scheme, that uses streaming 
epidemiological observations performed in real time, can be constructed using the posterior distribution for Rt , 
at time t as the prior in the next estimation step at time t + τ , leading to an update scheme via iteration of eq. (6). 
The resulting probability distribution for Rt includes information on all observations up to time t, and thus is a 
robust estimator of the effective reproduction number compared to the estimation by only considering the cases 
between t and t + τ . Any changes in Rt over time result from the assimilation of each new data point, leading to 
an updated estimate of Rt . This in turn allows us to use the estimation procedure as an anomaly detection tool.

Estimation of the impact of Governmental intervention.  We use the estimated time evolving effective reproduc-
tion number and the time evolving mobility metric to study the impact of various governmental interventions 
to contain the spread of COVID-19. We use the framework proposed by21 to infer the impact on the epidemic 
progression as well as the human mobility because of various government interventions. The method uses a 
diffusion-regression state-space model that predicts the counterfactual evolution of effective reproduction num-
ber Rt , as well as the mobility metric in a synthetic control that would have occurred, had no intervention taken 
place. The model is successful in inferring the temporal evolution of attributable impact, and flexibly accom-
modates multiple sources of variation, including local trends, seasonality, and the time-varying influence of con-
temporaneous covariates by incorporating empirical priors on the parameters into a fully Bayesian framework. 
Using the MCMC for posterior inference, we estimate the most likely counter-factual evolution of the effective 
reproduction number and the mobility metric during the first 30 days of the interventions.

According to the model, the generalized Bayesian Structural Time Series—state-space models for time-series 
data—can be expressed by

where ǫt ∼ N (0, σ 2
t ) and ηt ∼ N (0,Qt) are independent of all other unknowns, αt is referred to as a “state” of 

the series, and yt is a linear combination of the states plus a linear regression with the covariates X. Eq. 8 is the 
state equation governing the evolution of the state vector αt through time, whereas yt is a scalar observation. It 
is possible to model several distinct behaviors for the time series (including ARMA or ARIMA) by varying the 
matrices ZT

t  , Tt , Gt , Qt and Ht.
Here, we simplify (8) by taking Tt = Ht = 1 , so that

It is a simple random walk, also referred to as the “local level” component. This random walk component 
embodies the increasing uncertainty of observations as time passes. In (7), we take ZT

t = Gt = 1 but augment 
the equation by accounting for the possible presence of seasonal components embodied into γt described below. 
This allows us to reduce expression (7) into

The seasonal components in eq. (10)) can be expressed as

The linear dependence on the covariates βXt in eq. (10) further helps to explain the observed data. The bet-
ter this component contributes to the prediction task, the lower the local level component µt should be. Finally, 
ǫt ∼ N (0, σ 2

t ) models the noise associated with measuring yt.

(5)b(Rt) = exp[τγ (Rt − 1)] ,

(6)P[Rt |�T(t + τ) ← �T(t)] =
P[�T(t + τ) ← �T(t)|Rt ]P[Rt ]

P[�T(t + τ) ← �T(t)]
,

(7)yt =ZT
t αt + βXt + Gtǫt ,

(8)αt+1 =Ttαt +Htηt ,

(9)αt+1 = αt + ηµ,t

(10)yt = αt + γt + βXt + ǫt .

(11)

γt =

h∑

j=1

γj,t

γj,t+1 = γj,t cos(�j)+ γ
∗
j,t sin(�j)+ ωj,t

γ
∗
j,t+1 = −γ

(1)
j,t sin(�j)+ γ

∗
j,t cos(�j)+ ω∗

j,t ,

ω∗
j,t ,ωj,t ∼ N(0, σω2 )

�j =
2π j

s
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In order to estimate the impact of government interventions, we follow the following methodology. During 
the training period, we sampled the model parameters and the state vector using the Gibbs sampler—a MCMC 
framework—against the observed data. For the estimation of the impact on the mobility metric, the training 
period extends over the first 10 days of our selected dataset, i.e, from 10 days prior to the start of government 
intervention to the start of the intervention. For the estimation of the impact on the effective reproduction 
number, the training period extends over the first 20 days of our selected dataset, i.e, from 10 days prior and 10 
days following the start of government intervention. We select this span of time since, for almost 50% of people, 
it takes at least 9.92 days following the date of exposure to get clinical confirmation of the viral infection (see 
Fig. 10 for the Hessen state in Germany). Hence, on average, there is a delay of around 10 days between the date 
of exposure and the date of confirmation, and there will not be any immediate effect on the daily confirmed 
cases as a result of the intervention. Thus, we define the estimated effective intervention date as being equal to 
the exact intervention date plus 9.92 ≈ 10 days. We then use the posterior simulations to simulate the posterior 
predictive distribution over the counterfactual time series given the observed pre-intervention activity during 
the training. We use the following 30 days for the mobility metric and the following 20 days for the effective 
reproduction number for this purpose.

Finally, we use the posterior predictive samples to compute the posterior distribution of the point wise 
impact, i.e, φt = yt − ỹt , where yt is the observed quantity and ỹt is the counterfactual prediction assuming no 
intervention. We define the absolute impact of the intervention as the expected value of the point wise impact, 
i.e, I = �φt�t . We used 30 days and 20 days of posterior predictive samples for the mobility metric and Rt to 
estimate the point-wise impact as well as the absolute impact of the intervention. We also estimate the p-value 
of the observed absolute impact, which measures the probability of obtaining the impact by chance under the 
null of no intervention.

Spatial auto‑correlation measure (Moran’s I).  We define Moran’s I which is a measure of spatial auto-
correlation, as follows

where N is the number of spatial units indexed by i and j in a given country; �S is the increase in the number of 
confirmed cases; �S̄ is the mean of �S over all the spatial units of the country; wij is a matrix of spatial weights 
with zeroes on the diagonal (i.e., wii = 0 ); and W is the sum of all wij . We define W by giving a weight 1 if two 
regions are neighbors, and 0 otherwise. The “spatial lag” of �S for a region is defined as the weighted sum of its 
neighbors’ �S.

Results
We use a probabilistic contagion model with inhomogeneous source terms (e.g. transmission from contaminated 
surfaces, human to human transmission) to explain the temporal evolution of the epidemic because of COVID-
1920. Using the daily number of confirmed cases and the generation time model (see Fig. (S1)), we estimate the 
time evolution of the effective reproduction number Rt—which is defined as the actual average number of sec-
ondary cases per primary case—with a Sequential Bayesian estimation. As a typical result of our analysis, Fig. 1 
shows the time evolution of the effective reproduction number in the Hessen state in Germany.

Impact of governmental interventions on mobility and Rt.  With the help of a diffusion-regression 
state-space model21 and MCMC posterior inference, we estimate the counterfactual evolution—that would have 
occurred had no intervention taken place—of the post intervention effective reproduction number. The com-
parison between the effective reproduction number and the predicted Rt , had no intervention taken place, allows 
us to quantify the effectiveness of intervention for the Hessen state in Germany shown in Fig. 1. We find an aver-
age reduction of Rt of 0.87, and reject the null hypothesis with a p-value of 0.04 that this reduction could result 
from chance under counterfactual evolution without lockdown.

Figure 2 shows the map of the absolute impact on Rt as a result of intervention by different states in Germany. 
The color for each state represents the average impact of the intervention on Rt , i.e., the magnitude increment 
or decrement of Rt from the counterfactual predicted value without lockdown over the 30 days following lock-
down. The radial wedges represent the temporal evolution of Rt in the corresponding state and the color of the 
strips represents Rt on a particular day over the 30 days following lockdown. This figure illustrates the significant 
heterogeneity in the results, as well as the important non-monotonicity in the dynamics of Rt.

We then analysed the impact of government interventions on human mobility, illustrating the results for 
Germany. We are able to breakdown the impact of intervention into different mobility dimensions and quantify 
the level of reduction in mobility (see Fig. 3 for details). Figure 4 shows the absolute impact on workplace activity 
(in % change from baseline) in different states in Germany, resulting from the intervention. The radial wedges 
represent the temporal evolution of workplace activity in the corresponding state, and the color of the strips 
represents activity on a particular day. Contrary to the map of the absolute impact on Rt (Fig. 2), the absolute 
impact of travel restrictions on mobility is much more homogenous across German states, and also consistent 
along the time axis.

We then evaluate the impact of government interventions on Rt as well as on works place activity for the top 
level administrative divisions in a number of countries. Figures 5 and S2 illustrate the impact of governmen-
tal interventions on workplace activity in a number of countries, and Figs. 6 and S3 (further expanded in Fig 
S16–S25) show the impact on Rt . Each subplot of Fig. 5 shows the time evolution of mobility and the impact of 

(12)I =
N

W

∑
j

∑
j wij(�Si −�S̄)

(
�Sj −�S̄

)

∑
i

(
�Si −�S̄

)2
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Figure 1.   Progression of epidemic and impact of travel restrictions on epidemic growth in the Hessen state 
in Germany. The grey dashed line (with 95% CI band) represents the most likely estimation of Rt . The dotted 
vertical line represents the start date of intervention. The region between intervention date and effective 
intervention date—10 days following the intervention date—is marked with light blue color. It indicates the 
period during which people exposed to the virus prior to the intervention date would keep on appearing as 
the new confirmed cases. The counterfactual predicted Rt is presented by the dashed blue line (with 95% CI 
band). The pointwise impact of the intervention is presented as the dashed orange line (with 95% CI band). The 
horizontal green line represents the critical value Rt = 1 . The inset figure shows the time evolution of number 
of daily confirmed cases (D.C.). We note down the absolute impact—average value of point wise impact—of the 
intervention along with the p-value in the yellow box. The p-value measures the probability of observing the 
impact by random chance.

Figure 2.   Time evolution of Rt and absolute impact of travel restrictions on Rt for different states in Germany. 
The color for each states (name in ISO 3166-2 code notation) represents the absolute impact (increase or 
decrease of Rt ) due to travel restriction in that state. The radial wedges represent the time evolution of Rt in the 
corresponding state and color of the strips represent Rt on a particular day.
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Figure 3.   Countrywide time evolution of human mobility and impact of travel restrictions on human mobility 
for Germany. The top panel represents the time evolution of human mobility (% change from the baseline 
activity) in different mobility dimensions (yellow: home, red: work, blue: retail, green: grocery, violet: transit). 
Transit is a proxy for long-distance travel (it corresponds to petrol pumps/filling stations etc.). In the bottom 
panel, The y-axis represents % increase or % decrease of the average individual’s activity. the grey dashed line 
represents the % change of activity from the baseline (baseline is set to 0) in the workplace resulting from the 
intervention. The dotted vertical line represents the intervention date. The counterfactual predicted evolution of 
workplace activity, had no intervention taken place, is presented by the dashed blue horizontal line. The point-
wise impact of the intervention on mobility is presented by the orange dashed line. The yellow box indicates the 
absolute impact of the intervention along with its p-value.
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Figure 4.   State-by-state time evolution of mobility and absolute impact of travel restrictions on mobility. The 
color of each state (name in ISO 3166-2 code notation) represents the absolute impact (increase or decrease of 
mobility) of interventions on workplace activity in that state. The radial wedges represent the time evolution 
of mobility in the corresponding state and color of the strips represent the mobility on a particular day. SL is 
Saarland, ST is Sachsen-Anhalt.
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travel restrictions on mobility of different top level administrative divisions of a country. Each ring map repre-
sents a country and provides a visual representation of the time evolution of workplace activity as well as the 
impact of government interventions on workplace activity. Each subplot of Fig. 6 shows the time evolution of 
the effective reproduction number Rt and the absolute impact of travel restrictions on Rt in four countries. Each 
ring map represents a country and shows the time evolution of the effective reproduction number Rt as well as 
the impact of government interventions on Rt.

Figures 5 and S2 (further expanded in Figs. S7–S15) show a rather homogeneous impact on workplace activi-
ties across the different regions of each of the four analysed countries. However, there is a large heterogeneity 
across different countries, e.g. Spain is the most affected country, while Japan is the least affected country in 
terms of workplace activity. In contrast, the impact on Rt is quite heterogeneous across different regions within 
a country, notwithstanding similar levels of restriction, as illustrated in Fig. 6 by Kerala (KL) and Maharastra 
(MH) in India. Surprisingly, across a number of regions, a significant increment of Rt is observed following the 
implementation of very strict lockdowns (e.g. Maharastra (MH) in India and Luzern (LU) in Switzerland.).

Evolution of mobility and Rt.  Figures 7 and S4 show the joint distribution (obtained by kernel density 
estimation) of the absolute impact resulting from intervention on workplace activity and on the Rt in the admin-
istrative divisions of four different countries. In other words, Fig. 7 compares the strictness of governmental 
interventions, measured in terms of the impact on workplace activity, against the corresponding reduction/
increment in effective reproduction number. There is no significant correlation between these two variables, 
suggesting that other variables are controlling the reduction in reproduction rates.

Figure 5.   Time evolution of mobility and impact of travel restriction on mobility in four countries. Each 
subplot shows the time evolution of mobility and impact of travel restrictions on mobility of different top level 
administrative divisions of a country. The countries are, for left to right: India, Switzerland, Germany, Italy. The 
color of the regions on the map denoted by their ISO 3166-2 code represent the impact (increase or decrease of 
mobility) of travel restriction on that region. The radial connected wedges represent the time evolution of the 
mobility in the corresponding region or state for each country. The color of the strips in the wedges represent 
the mobility on a particular day.
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Figure 6.   Time evolution of effective reproduction number ( Rt ) and absolute impact of travel restrictions on 
Rt in four countries. Each subplot presents time evolution of Rt and impact of interventions on Rt for different 
top level administrative divisions of the country. The color of the regions (name in ISO 3166-2 code notation) 
represents the impact (increase or decrease of Rt ) of interventions on that state. The radial wedges represent 
the time evolution of Rt in the corresponding state, and color of the strips represent Rt on a particular day. The 
countries are, from top left to bottom right: India, Switzerland, Germany,and Italy.
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Figures 8 and S5 represent the spatial correlation analysis (see “Spatial auto-correlation measure (Moran’s 
I)” section) of the total increase �S in the number of confirmed cases during the first 30 days of interventions. 
where N is the number of spatial units indexed by i and j in a given country; �S is the increase in the number of 
confirmed cases; �S̄ is the mean of �S over all the spatial units of the country; wij is a matrix of spatial weights 
with zeroes on the diagonal (i.e., wii = 0 ); and W is the sum of all wij . We define W by giving a weight 1 if two 
regions are neighbors, and 0 otherwise. The “spatial lag” of �S for a region is defined as the weighted sum of its 
neighbors’ �S . The scatter plot in each panel of Fig. 8 shows the spatial lag as a function of its corresponding 
�S for different regions in each country. The inset gives the kernel density estimation of the simulated Moran’s 
I from the null model of no spatial correlation.

The slope of the scatter plot of �S against the spatial lag is known to converge to the Moran’s I22. We test the 
significance of the Moran’s I under the null hypothesis of no spatial auto-correlation and simulate 1000 realiza-
tions, by randomly shuffling the locations of the �S . The spatial correlation analysis presented in Fig. 8 reveals 
a significant spatial correlation of �S in Italy, Switzerland, Japan, and the United States.

In order to understand the effectiveness of lockdowns, we compared the number of confirmed cases against 
the impact on Rt during the first 30 days of intervention. Figures 9 and S6 show the kernel estimation of the 
bivariate distribution of the total increase in number of cases and of the total impact on Rt during the first 30 days 
of intervention in different regions of four countries. The inset in each panel represents the impact on Rt during 
this period, (or �Rt ), against the average Rt before the intervention (or 〈Rt〉init ) over the regions in each country.

The kernel density estimation of the bivariate distribution in Fig. 9 reveals a negative correlation between the 
above variables, showing a slowdown in epidemic growth notwithstanding the increase of Rt . This suggests the 
effectiveness of intervention measures in largely lowering the severity of epidemic. The places with increased Rt 
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Figure 7.   Impact of travel restrictions on workplace activity and on epidemic progression ( Rt ) in four 
countries. Each panel represents the bivariate kernel density estimation as a function of the absolute impact on 
workplace activity and impact on Rt in the administrative divisions of each country. The bivariate distribution 
is constructed over the set of regions within each country. The top and right inset of each of the four plots 
represent the marginal distribution of the respective variables for each country. The countries are, from top left 
to bottom right: India, Switzerland, Germany, and Italy.

Figure 8.   Spatial auto-correlation of the total increase �S in number of confirmed cases during the first 30 days 
of intervention in four countries. In each panel, the x-axis corresponds to the value of �S in a given region in a 
given country; the y-axis gives the average �S over the neighboring regions, called “spatial lag” in the caption 
along the y-axis. These two variables are z-standardised for better comparison. The inset in each panel represents 
the Kernel Density estimator for the distribution of the simulated Moran’s I. The black vertical line in the inset 
represents the expected Moran’s I from simulations with the null hypothesis of no spatial correlations. The red 
vertical line represents the value obtained from empirical data. Moran’s I along with its p-value is given in yellow 
box. The countries are, from top left to bottom right: India, Switzerland, Germany, and Italy.
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only account for small growth of new cases. We also compare the average Rt before the intervention (or 〈Rt〉init ) 
and impact of the intervention on Rt (or �Rt ) to understand the effectiveness of intervention in reducing/
increasing Rt from its initial values. The inset panels of Fig. 9 unveil a negative correlation between these two 
variables, indicating a significantly large decrease of Rt in the regions of larger initial Rt . Surprisingly, we also 
see the extension of the distribution to the second quadrant, revealing the fact that, in many places (e.g. Bremen, 
Germany), the epidemic started after the lockdown.

The tables S1 to S10 in the supplementary materials provide the detailed values of Rt with positive and negative 
impacts along with the corresponding growth in the total number of confirmed cases as a result of intervention 
in the different regions of each country. The regions that are characterised by an increase in Rt after lockdown 
are indicated in bold face.

Discussion
We found it important to quantify the incubation and confirmation periods in order to assess the impact of 
policy interventions to contain the epidemics in different regions. This quantification, shown in Figs. 10 and S1 
allows us to define a credible time interval over which to quantify the impact of interventions. With this, our 
analysis provides a framework to understand the effectiveness of the policies and interventions implemented 
by various countries to control the epidemic’s growth. The wealth of results presented in Figs. 1, 2, 3, 4, 5, 6, 7, 
8 and 9 leads to three major observations: (1) interventions in the form of social distancing are found to have 
significant impacts; (2)  large heterogeneity in the reduction of Rt across different states within the same country; 
(3) transient increase in infection just after the lockdown measures. We discuss the above observations in detail 
in the following paragraphs.

Observations.  Overall, it is clear, and unsurprising, that interventions in the form of mobility restrictions 
and social distancing are found to have significant impacts on controlling the development of epidemics in many 
countries. In particular, we have quantified the decrease in reproduction number Rt resulting from the interven-
tion. As an illustration shown in Fig. 1, for the Hessen state in Germany, we are able to quantify that intervention 
in this state reduced Rt by about 1 unit compared with the counterfactual scenario of no intervention.

Our findings support the presence of large heterogeneity23 in the reduction of Rt across different states in 
Germany, as shown in Fig. 2. In this country, intervention measures have led systematically to a decrease in Rt , 
with quite strong differences from state to state. Even more surprising is the time dependence, which exhibits a 
non monotonous and fluctuating behaviour of Rt in different regions.

For most regions in different countries, because of the interventions, Rt decreased, but there are some places 
where it increased. Because this increase is transient and constrained by the lockdown, it does not lead to a very 
strong explosion of new cases23,24. A tentative interpretation is that, as the lockdown was considered and being 
implemented, in a number of regions, it triggered large movements of people to relocate, hence promoting new 
contagions and epicenters for the epidemics to mature after the lockdown23–25. An additional mechanism, which 
underlies the Japanese policy, is the effect of closed spaces and close-contact settings within confined households, 
which has been shown to lead to increased infections within households, for instance23. But because the lockdown 
only allowed the new nucleii of contagion to develop locally, the number of cases did not explode. Examples of 
this effect can be found in Luzern and Solothurn in Switzerland, in Bremen in Germany, in Saga Ken in Japan 
and in Odisha in India. This effect, which has previously been described qualitatively, is given quantitative sup-
port by our systematic analysis.

Figure 9.   Joint distribution of the total number �S of confirmed cases within the first 30 days of intervention 
and of the absolute impact of intervention on the effective reproduction number ( �Rt ) within this period. 
Each panel represents the Kernel Density Estimation for the total number of confirmed cases within the first 
30 days of the intervention against the impact of interventions on effective reproduction number ( �Rt ) in 
different administrative divisions of a country. The bivariate distribution is constructed over the set of regions 
within each country. The yellow box contains the Kendall τ correlation value for this joint distribution. The inset 
in each panel represents the variation of �Rt during the intervention against the average initial Rt before the 
intervention. The yellow box gives the corresponding Kendalls τ’s. The countries are, from top left to bottom 
right: India, Switzerland, Germany, and Italy.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21939  | https://doi.org/10.1038/s41598-021-01276-5

www.nature.com/scientificreports/

The observation that lockdown led first to an increase in Rt in a significant number of regions and countries 
is confirmed by the correlation analysis presented in Fig. 9 relating the increase in cases to changes of Rt in dif-
ferent countries. There are many regions in each country where there were no epidemics before the lockdown. 
The lockdown triggered a preemptive movement of people to relocate, increasing Rt after the lockdown. But 
the increase in Rt did not increase �S too much due to the effect of confinement. The numerous local infectious 
cases could only infect their immediate relatives. In regions where the epidemic was at more advanced stages, 
the lockdown had the effect of decreasing Rt , as expected. The insets in Fig. 9 provide further support for this 
conclusion. The average correlations shown by the plots indicate that, where there was no epidemic, the epidemic 
started after the lockdown, and where there was an on-going epidemic, it came under control.

Implications for future intervention measures.  We quantify that there is not much advantage result-
ing from strict lockdowns. We demonstrate that behavioral changes caused by intervention measures have a 
considerable influence on epidemic control when compared to the strictness of lockdowns. For example, Japan 
and Switzerland did rather well in spite of weaker lockdowns, whereas Italy and Spain did much more poorly 
with stricter confinements. This is related to the effectiveness of early stage contact tracing, healthcare facility, 
testing options as well as effective awareness of the role of protection measures. Figure 7 exemplifies this point 
by showing the paradoxical results that lockdown led to an obvious strong collapse in mobility accompanied 
by an increase of Rt in several regions in France or Italy, for instance. For the other countries, the effect of the 
lockdown is more as expected.

Moreover, the timing of the lockdown is very important in determining the trajectory of the epidemic. Fig-
ure 8 shows the spatial correlation of the total growth of the epidemic after the lockdown. The larger the spatial 
diffusion (possible during the advanced stage of the epidemic), the larger is the spatial correlation. Our analysis 
shows that, for Italy, Switzerland, the United States, and Japan, the spatial correlation of �S is significantly posi-
tive. This means that, in these countries, the epidemic started much before the lockdown date and was developing 
silently, as revealed by the strong spatial diffusion of the epidemic. While Switzerland and Japan contained the 
epidemic with effective containment policies, Italy and the United States failed to do so because the intervention 
was ill-adapted to the spatial developments.

Figure 10.   Bayesian inference of the incubation period and confirmation period. A) Empirical cumulative 
probability of developing a symptom on a particular day following the day of exposure to the virus. We use 
individual level clinical data9,10 to conduct these Bayesian estimations. The lighter color of the square represents 
low probability and the deep color represents high probability. The solid lines represent the fraction of people 
remaining asymptomatic (decreasing curve) or becoming symptomatic (increasing curve) on a given day. 
following exposure. The inset figure represents the empirical probability distribution of duration between 
the date of exposure and the date of onset of symptom or the clinical confirmation. B) Same as A) but for the 
probability of being confirmed. C) Estimation of the posterior probability distribution (with 95% confidence 
interval) of the incubation period (i.e., of getting the clinical confirmation on day = t , provided the individual 
is exposed to the virus on day = 0 ). The dashed solid line represents the most likely posterior probability 
estimation and the light band represent the 95% confidence interval. The inset figure presents the distributions 
of the two estimated parameters in the logistic model (1). D) Same as C) for the probability distribution of 
confirmation period. The median value (and also mode) of the incubation period is 4.38 days. The median value 
(and also mode) tc of the confirmation period is 9.94 days.
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When comparing the German, Swiss and US lockdowns via their mobility data, we find very similar severity 
levels of the confinements. However, the effectiveness of the lockdown to control the epidemic in the USA is quite 
low, while it is very significant in Germany26 and Switzerland. While Switzerland and the USA both imposed 
a lockdown at a rather late stage of their unfolding epidemic, the Swiss containment and awareness policy was 
significantly superior to that in the USA. We quantify that the epidemic has diffused to many states in the USA, 
as revealed by the spatial correlation in Fig. 8, even after the lockdown was implemented. This explains the fail-
ure to reduce the transmission to a large degree. For Italy and Spain, because there were a significant number of 
confirmed cases across different regions of Italy and Spain before the lockdown, it is difficult to determine the 
effectiveness of cross-region transmission control.

In most Indian states, we do not observe any significant impact of the lockdown on reducing the effective 
reproduction number. A possible explanation is that, in most places, there is no real epidemic and the majority 
of the infection cases are found in a small number of states. The complete lockdown of the entire country might 
have been ignorant of this very strong heterogeneity.

We also unearthed some outliers, e.g, Maharastra state in India, and Saarland in Germany, where, despite 
a strict lockdown (quantified in our analysis by a strong reduction in workplace activity), both the number of 
cases and Rt exploded. This poses the questions of unobserved contagion paths, likely associated with specific 
events, perhaps the existence of super-spreaders, and so on.

Our analysis overall suggests that the interventions may not have been optimal in many countries and that 
there are probably better alternatives to complete lockdowns. One alternative is a sequential and selective lock-
down approach, putting in selective quarantine based on a threshold value for the number of confirmed cases 
while leaving the other places more open with social distancing but not complete lockdown. One should, however, 
stress that this alternative intervention requires very strong testing support in order to determine with sufficient 
reliability the positive cases. The case of India supports the idea that the policy was too early in implementing 
a complete lockdown of the country for such a long time, but too late in implementing an effective quarantine 
of people coming from affected places. The cases of Italy, France, and other regions where confinements led to 
a transient increase of Rt over the following 30 days also underlie the plausible importance of controlling close 
contacts and confined places: with the aim of doing good, confining might have worsened the transmission of 
the disease in a number of cases.

Conclusion
The epidemic due to the SARS-CoV-2 virus was declared a global pandemic on March 11, 2020 by the World 
Health Organization (WHO). Lockdown and distantiation measures of varied levels of stringency were taken 
by governments across the globe with the goal to control or suppress the progression of the epidemic in their 
respective countries. This article has presented a framework to understand and quantify the effectiveness of 
these interventions.

We first evaluated the time evolution of effective reproduction numbers in various geographical regions with 
the help of a probabilistic contagion model. We then estimated the counterfactual evolution of this effective 
reproduction number to quantify the impact of various lockdown measures. We observed that most regions 
obtained positive results in reducing the reproduction number after implementing lockdown. However, one 
of the surprising results of our study is that there was a transient increase in the contagion after the lockdown 
in some regions. We hypothetize that this resulted in part from large geographic movements and relocation of 
people performed in reaction to the announced lockdown measures, hence creating new contagion epicenters 
for the epidemics to mature after the lockdown. However, other factors, such as the dynamics of hospital/ICU 
admissions, would need to be considered for a better and more conclusive interpretation. The heterogeneity in 
observed reproduction numbers Rt in different regions in this study can be attributed to different public policies 
applied by local governments. Also, different healthcare supports were offered in these places, including testing 
options. This would also affect disease spread and count.

The methodology used in our study is based on the probabilistic contagion model developed by Bettencourt 
and Ribeiro20. There exist different methods to estimate the reproduction number Rt and they differ in their 
accuracy with pros and cons that go beyond the scope of this paper27. A future direction for further improvement 
would be to perform systematic comparisons of how different estimation methods for Rt impact our main conclu-
sions. More important would be to improve the calibration of Rt , both in consistency, accuracy and time resolu-
tion. Further, our results are based on an estimation of a counterfactual evolution21 of the effective reproduction 
number. Thus the presented results are sensitive to the limitations of the above method. Another limitation of 
our study is that, for the sake of simplicity, we only considered lockdown and distantiation measures at national 
levels, thus neglecting regional heterogeneities. While most local lockdown measures were close to their national 
level policies, more accurate dates for the regional lockdown measures would improve the results of this study.

Data availability
All data, code, and materials used in the analysis are available at https://​bit.​ly/​3jMrf​vn.
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