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In this study we propose a Coronavirus Disease 2019 (COVID-19) mathematical model that stratifies infectious subpopulations
into: infectious asymptomatic individuals, symptomatic infectious individuals who manifest mild symptoms and symptomatic
individuals with severe symptoms. In light of the recent revelation that reinfection by COVID-19 is possible, the proposed
model attempt to investigate how reinfection with COVID-19 will alter the future dynamics of the recent unfolding pandemic.
Fitting the mathematical model on the Kenya COVID-19 dataset, model parameter values were obtained and used to conduct
numerical simulations. Numerical results suggest that reinfection of recovered individuals who have lost their protective
immunity will create a large pool of asymptomatic infectious individuals which will ultimately increase symptomatic
individuals with mild symptoms and symptomatic individuals with severe symptoms (critically ill) needing urgent medical
attention. The model suggests that reinfection with COVID-19 will lead to an increase in cumulative reported deaths.
Comparison of the impact of non pharmaceutical interventions on curbing COVID19 proliferation suggests that wearing face
masks profoundly reduce COVID-19 prevalence than maintaining social/physical distance. Further, numerical findings reveal
that increasing detection rate of asymptomatic cases via contact tracing, testing and isolating them can drastically reduce
COVID-19 surge, in particular individuals who are critically ill and require admission into intensive care.

1. Introduction

The world is currently in the midst of a COVID-19 pan-
demic. In December 2019 the Wuhan city of China was con-
sidered as the epicenter of the novel coronavirus. The
pandemic unfolded as a cluster of patients being admitted
to hospital in late December 2019. These patients were diag-
nosed with pneumonia [1]. At first the medical practitioners
linked the cause of the disease to a seafood and wet animal
market in Wuhan, Hubei Province, China [1]. As it is now
known the aetiological agent of the disease is a novel corona-
virus identified as Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2) and the disease caused by the virus
was named by the World Health Organization (WHO) as

Coronavirus Disease 2019 (COVID-19) [2]. WHO declared
COVID-19 a pandemic in March 2020 [2]. As at Mid July
2020 COVID-19 had spread to over 213 countries causing
about 15,969,465 infections and 643,390 deaths.

Similar to two other coronaviruses that in recent years
triggered major outbreaks in humans (namely, the Severe
Acute respiratory Syndrome Coronavirus 1 (SARS-CoV-1)
and the Middle Eastern Respiratory Syndrome Coronavirus
(MERS-CoV) [3, 4]), COVID-19 is transmissible from
human-to-human through direct contact with objects or
surfaces that are contaminated with the virus. Moreover,
inhalation of respiratory droplets from both asymptomatic
and symptomatic infectious individuals causes transmission
[5]. The scientific community via WHO reported that the
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virus can also be exhaled through normal breathing and this
ultimately leads to new infections. COVID-19 has an incu-
bation period ranging from 2-14 days with approximately
97.5% of infected people manifesting disease symptoms
within 11.5 days of infection [6–9]. Generally a larger pro-
portion of infected individuals exhibit mild symptoms or
no symptoms [2].

The global spread and unstoppable nature of COVID-19
compelled China and many nations to institute draconian
containment measures [10]. As the pandemic unfolds there
are currently several vaccines in use, including AstraZeneca,
Johnson and Johnson, Modena, Pfizer etc, approved by the
WHO for the management of COVID-19. However, for
many developing countries, getting the vaccines to adminis-
ter to significant proportions of their populations has proven
to be a tall order due to high demand among developed
countries where these vaccines are manufactured. Conse-
quently, in these developing countries efforts aimed at
mitigating COVID-19 are mainly focusing on non-
pharmaceutical interventions which include; using face
masks, social-distancing, quarantine of suspected cases and
contact tracing [11]. These non-pharmaceutical contain-
ment measures proved to be a success in some countries,
e.g., in Wuhan City in China, while the same measures failed
in some countries probably due to non adherence to the
measures by the general populace, individual irresponsibility
or inefficient contact tracing of asymptomatic and symp-
tomatic cases [11]. On the other hand, in developed coun-
tries where vaccines are available more than 60% of their
population have received the first dose of the vaccine [12].

In Kenya, the first case (index case) of COVID-19 posi-
tive was reported on 13 March, 2020, with Nairobi being
the epicenter. In the following months of April and May
the COVID-19 increased at a slow pace creating an illusion
that the containment measures that were put in place by
the Kenyan Government were a success. This resulted to
even the government setting the date of reopening of schools
and partial lifting of strict measures on June 1, 2020. How-
ever, this never happened as COVID-19 started to spread
rapidly at the end of May, prompting the Government to
rethink its containment strategies. As of 27 July, 2020, 43
counties in Kenya had COVID-19 cases with about 17,975
infections, 7,833 discharged cases (recoveries) and 290
deaths. During that same time, Nairobi county (capital city)
had the highest COVID-19 cases (about 12,500). As on June
7, 2021, the total number of positive cases reported in Kenya
was 172,325 while the total number of fatalities reported was
3,264. The Kenyan government has continued to urge its cit-
izens to adhere to the various non-pharmaceutical interven-
tions as it awaits for more vaccines. Meanwhile countrywide
community transmission ccontinuesto unfold.

Both modellers and medical practitioners acknowledge
that COVID-19 pandemic is compounded with a multitude
of challenges. First the epidemiological characteristics of the
COVID-19 is currently unfolding and this is yet to be
entirely elucidated [1]. The available scientific evidence clas-
sify COVID-19 infected individuals into three broad
cohorts: individuals who manifest severe symptoms, individ-
uals who manifest mild symptoms and those individuals

who do not manifest any COVID-19 symptoms (asymptom-
atic) and yet they remain infectious. The non-manifestation
of COVID-19 symptoms amongst some infected people
complicates the epidemiology of the COVID-19 pandemic.
First asymptomatic individuals are unlikely to seek medical
care or self-quarantine given that they cannot tell whether
they have the disease unless confirmed through testing or
contact tracing. Secondly, they will continue interacting with
healthy people thereby spreading the virus. Again although
the asymptomatic cohort form the large proportion of
COVID-19 infections, it is not yet known to what extent
they spread the virus relative to cohorts with severe symp-
toms which constitute a small proportion of COVID-19
infections. Questions that are currently asked by many med-
ical professionals regarding asymptomatic cases include:

(i) Could the asymptomatic cases be the one that will
lead to a prolonged COVID-19 pandemic?

(ii) Could the asymptomatic cases lead to sporadic out-
breaks in future?

According to the findings published by [13], more than
half of new infections of COVID-19 are attributed to people
not exhibiting symptoms (pre-symptomatic and asymptom-
atic). In their work they suggested that approximately 40%
of people infected with COVID-19 are asymptomatic. The
fact that people can transmit the virus without knowing
complicates epidemiological dynamics of COVID-19.

As the pandemic continues to spread there remains
many unsolved questions. The initial assumption that recov-
ered patients developed a long lasting protective immunity
lead to disagreement among distinguished scientists, (see
e.g., [14]). This is due to the fact that the duration of protec-
tive immunity will not only impact the epidemiological
dynamics of the current pandemic but also the post-
pandemic period. At some point some researchers suggested
that recovered individuals need to be classified as so-called,
“immunity passport” and be allowed to relax social distanc-
ing measures. According to [15], it was argued that such an
action would provide data on levels of herd immunity in the
population. The recent emergence of SARS-CoV-2 and the
limited scale at which SARS-CoV-1 and MERS-CoV epi-
demics occurred obscure the availability of data which could
act as a concrete evidence of reinfection by SARS-CoV-2.
However, reinfection with SARS-CoV-2 cannot be ruled
out [14].

According to the recent published research on serologi-
cal testing for seasonal Human Coronavirus229E (HCoV-
229E) which investigated antibody dynamics after infection,
they found that majority of patients lost 50% of their Nct-
antibodies after a duration of six months, 75% after a year
and completely returned to baseline 4 years post-infection
[14]. Thus, from these findings, the prospect of gaining a
functional herd immunity seems unreasonable. Further-
more, the rapid decline of protective immunity challenges
the idea of herd immunity. Thus, once the short-lived
immunity is lost; people can be reinfected once they are
exposed to the same coronavirus or a new variant, (e.g.,
Delta variant). One of the research question conducted in
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this study stems from asking how reinfection with SARS-
CoV-2 will impact COVID-19 dynamics in the long-term.
Consequently, the challenge posed by the asymptomatic
cases in conjunction with reinfection calls for further
research that needs to forecast the likely disease burden,
morbidity and mortality. We identify this as a gap that
should be addressed urgently so as to project and predict
COVID-19 dynamics in real time and also fully elucidate
on the epidemiological characteristics of the COVID-19
pandemic.

Epidemiological models are increasingly becoming an
important tool in helping understand the intricate dynamics
governing the spread of infectious diseases [16–20]. Numer-
ous mathematical models attempting to unravel the popula-
tion dynamics of COVID-19 have been formulated and this
trend is ongoing, for instance see [21–25]. In the current
study, we propose a mathematical model for COVID-19 in
human population with the aim of examining the following:

(i) How does silent transmission (asymptomatic trans-
mission) relative to the symptomaticcase transmission
impact the long term epidemiological dynamics of
COVID-19?

(ii) In light of the recent revelation that reinfection by
COVID-19 is possible, how willreinfection alter the
future dynamics of the recent unfolding pandemic?

The mathematical model is fitted using Kenya COVID-
19 data to project and predict the cumulative number of
reported cases as well as give insights on the likely peak time
for COVID-19 in Kenya in presence of reinfection infection
mechanism.

2. Materials and Method

2.1. Construction of COVID-19 Mathematical Model. In the
spirit of Kermack-McKendrick-type mathematical models
[16, 26, 27] that track the transmission dynamics of infec-
tious diseases, we constructed and analyzed a COVID-19
model in a human population (see also [21, 24]). The total
human population at time t denoted by Ph is stratified into
nine mutually exclusive subpopulations, namely; the suscep-
tible (S(t)), the exposed subpopulation, (E(t)), asymptomat-
ically infectious individuals (Ia(t)), symptomatically
infectious individuals with mild symptoms (Im(t)), symp-
tomatically infectious individuals who manifest severe
symptoms Is(t), hospitalized individuals (H(t)), detected
infectious individuals through contact tracing and mass test-
ing Id(t) and recovered individuals (RIt) and RL(t). RI(t) rep-
resents recently recovered individuals with high levels of
COVID-19 antibodies. However, the protective immunity
acquired is not permanent. With time these individuals lose
the protective immunity and progress to RL(t) class which
represent recovered individuals with weak or zero immunity.
Thus, the total human population is given as

Ph tð Þ = S tð Þ + E tð Þ + Ia tð Þ + Im tð Þ + Is tð Þ +H tð Þ + Id tð Þ + RI tð Þ + RL tð Þ:
ð1Þ

The mathematical model governing the transmission
dynamics of COVID-19 in humans is described by a system
of deterministic nonlinear differential equations given in
equation (2).

dS
dt

= −λS,

dE
dt

= λS + θλRL − σE,

dIa
dt

= fσE − α + ξ + da + γ1ð ÞIa,
dIm
dt

= 1 − fð ÞσE + ξIa − v + η1 + dm + γ2ð ÞIm,
dIs
dt

= vIm − ds + η2ð ÞIs,
dH
dt

= η1Im + η2Is − γ3 + dhð ÞH,

dId
dt

= αIa − dc + γ4ð ÞId ,
dRI

dt
= γ1Ia + γ2Im + γ3H + γ4Id − ρRI ,

dRL

dt
= ρR1 − θλRL,

ð2Þ

where λ is the force of infection and is given by

λ = 1 − ωð Þ 1 − κð Þβ Is + θmIm + θaIa + θhHð Þ
Ph − q H + Idð Þ : ð3Þ

In equation (3) β represents the contacts that are capable
of resulting to COVID-19 transmission (i.e., effective contact
rate), ω is the fraction of the members of the public who cor-
rectly and consistently wear face masks in public. The
parameter ω which is assumed to lie within 0 < ω ≤ 1, is
the efficacy of the face masks in preventing community
transmission of COVID-19. Values of ω close or equal to
zero indicate that face masks are not effective in preventing
widespread transmission of COVID-19 if worn by suscepti-
ble humans or in preventing transmission if worn by; infec-
tious symptomatic, infectious asymptomatic with mild
symptoms or infectious symptomatic with severe symptoms.
On the other hand ω values close or equal to unity imply
that use of face masks significantly reduces transmission or
acquisition of COVID-19 in the community. Further, we
introduced a parameter that account for reduction of
COVID-19 transmission if individuals adhere to social-
distancing (or physical distancing). According to WHO
and MOH (Ministry of Health) COVID-19 protocols, indi-
viduals are required to maintain a minimum distance of at
least one metre apart to prevent transmission of COVID-
19. Hence, parameter κ, (with 0 < κ ≤ 1) represent the pro-
portion of the population who strictly observe the minimum
social distance required to prevent one from acquiring or
transmitting COVID-19. The modification parameters
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0 < θm, θa, θh ≤ 1, respectively, account for the relative infec-
tiousness of symptomatic infectious individuals with mild
symptoms Im, infectious asymptomatic individuals Ia and
infectious hospitalized individuals H in relation to the infec-
tious symptomatic individuals with severe symptomatics Is
(i.e individuals manifesting severe symptoms and need hos-
pitalization). The parameter q (0<q≤1) is a measure of how
effective hospitalization of infectious individuals with severe
symptoms and detection of asymptomatic individuals (via
contact tracing and mass testing) reduce transmission of
the COVID-19.

Upon coming into contact with an infectious COVID-19
individual, a person progresses to the exposed compartment
E, where they sojourn for a certain period (i.e., intrinsic
incubation period). A fraction of these individuals develop
mild symptoms at a rate (1−f)σ while the rest transition to
infectious asymptomatic individuals class at a rate fσ. Thus,
1/σ is the intrinsic incubation period for exposed
individuals. The parameter ξ represents the rate at which
infectious asymptomatic individuals develop mild symp-
toms and move to symptomatic-mild infectious class. The
symptomatic-mild infectious humans manifest severe
symptoms and progress to the class of infectious individ-
uals with severe symptoms at a rate v. Infectious humans
with mild symptoms are detected via contact tracing and

mass testing and hospitalized at a rate η1 while infectious
humans with severe symptoms are detected and hospital-
ized (move to class H) at a rate η2. The parameter α repre-
sents the rate at which infectious asymptomatic individuals
are detected via contact tracing and isolated at home
(home-based care) or quarantined such that they have no
contact with the susceptible humans. The parameters γi,
(i=1,2,3,4), respectively, represents the rates at which indi-
viduals residing in infectious asymptomatic (Ia), infectious
symptomatic-mild (Im), infectious hospitalized (H) and
detected asymptomatic (Id) classes, recover and move to
RI class (recovered individuals with temporary immunity).
Moreover, humans in classes Ia,Im,Is,H,Id experience
COVID-19-induced mortality at rates da,dm,ds,dh,dc, respec-
tively. Individuals in RI class lose post-COVID-19 protec-
tive immunity at a rate ρ and move to class RL (which
constitute humans with weak or no protective immunity).
Hence, 1/ρ is the duration of protective immunity amongst
recovered individuals, RI. Due to weak or no protective
immunity individuals in RL become susceptible again and
once exposed to infectious humans become reinfected at a
rate θλ. The modification parameter 0<θ≤1 accounts for
partial protection among humans in RL in relation to sus-
ceptible humans S. It is imperative to note that death due
to COVID-19 is inevitable in Kenya, just like any other

S E Im
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Is

RI RL

H

Id

λS

(1−f) σE

fσE
ξIa

vIm

αIa

η2Is

η1Im
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γ1Ia
γ4Id

ρRI

θλRL

daIa

ddId

dsIs

dsH
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γ3H

Figure 1: A schematic diagram of COVID-19 model equation (2). All arrows indicate transition from one disease status to another. Blue
arrows show recovery rates for classes Ia,Im,Id,H while the curved magenta arrow indicates reinfection pathway. Red arrows indicate
COVID-19 induced mortality.

Table 1: Represent state variables of COVID-19 model equation (2).

S Population of susceptible individuals

E Population of individuals exposed to COVID-19

Ia Population of infectious asymptomatic individuals (manifest no symptoms)

Im Population of infectious symptomatic individuals with mild symptoms (non-critical symptoms)

Is Population of infectious symptomatic individuals with severe symptoms (critically ill)

Id Population of infectious asymptomatic individuals isolated from the general population via contact tracing

H Population of infectious individuals hospitalized due to COVID-19

RI
Population of recovered (tested negative) individuals with strong post COVID-19 protective immunity

(protected against reinfection)

RL
Population of recovered individuals with weak or no COVID-19 protective immunity (partially protected

against reinfection if exposed to COVID-19)
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country experiencing the COVID-19 pandemic. Thus, we
introduce the state variable Cd(t) which measures the num-
ber of COVID-19 induced mortality in Kenya. This state
variable is introduced for the purpose of calibrating our
model with the readily available COVID-19 data, and also
for quantifying and predicting the burden of COVID-19.
Hence, from model equation (2), the rate at which
COVID-19 infected individuals succumb to death is
described by

dCd

dt
= daIa + dmIm + dhH + ddId + dsIs: ð4Þ

A schematic diagram for the COVID-19 mathematical
model is shown in Figure 1. The state variables and param-
eters values are, respectively, tabulated in Tables 1 and 2.

The proposed model equation (2) is different from the
recent model analyzed by [24] in that we split the symptom-
atic class into two cohorts depending on the severity of
COVID-19 symptoms. That is we have incorporated into
our model individuals with mild symptoms and individuals
with severe symptoms. This is evidenced by COVID-19 doc-
umented literature, e.g., [10], which established that exposed
individuals do not suddenly manifest severe symptoms
rather progress at a slower pace from mild to severe symp-
toms to critically ill. According to our knowledge there is
no other model that has attempted to understand the epide-
miological impact of the duration of protective immunity

Table 2: Desription of model parameters.

Parameter Description Units

β Effective contact rate (contact capable of leading to COVID-19 transmission) Day−1

ω The fraction of the members of the public who correctly and consistently wear masks in public. Day−1

κ Proportion of the population who strictly observe social/physical distance Day−1

θm, θa, θh Modificationn parameters for the assumed reduction of infectiousness among infectious asymptomatic
individuals, mild-symptomatic individuals and hospitalized individuals

Day−1

q
Measure of efficacy of contact tracing of asymptomatic humans and hospitalization in preventing

COVID-19 transmission 0≤q≤1 Day−1

f Proportion of exposed individuals who progress to infectious asymptomatic class after incubation period Day−1

(1−f) Proportion of exposed humans who progress to a class of infectious individuals with mild symptoms
after incubation period

Day−1

1
σ

Intrinsic incubation period for individuals exposed to COVID-19 Day−1

1
ρ

Duration of COVID-19 protective immunity Day−1

ξ Rate at which infectious asymptomatic humans develop COVID-19 mild symptoms and move to Im class Day−1

α
Represents the rate at which infectious asymptomatic individuals are detected via contact tracing, tested and

isolated at home (home-based care) or quarantined such that they have no contact with the susceptible humans
Day−1

v Rate at which infectious humans with mild symptoms develop severe symptoms and move to is class Day−1

γi i = 1, 2, 3, 4f g Respectively, represent recovery rates for individuals in the Ia, Im, H, Id classes Day−1

η1,η2
Respectively, represent the rate at which individuals with mild COVID-19 symptoms and individuals

with severe COVID-19 symptoms are hospitalized
Day−1

θ
Modification parameter accounting for partial protection against COVID-19 reinfection among individuals

with weak or no protective immunity 0<θ≤1 Day−1

da,dm,ds,dd,dh Respectively represent COVID-19 induced mortality rates for individuals in the Ia,Im,Is,Id,H classes Day−1

Table 3: Represents the baseline parameter values and the
corresponding PRCC values.

Parameter Baseline value Range Rc PRCC values

κ 0.5 0.01−0.8 −0.697
β 0.5 0.05−1.5 +0.853

θm 0.48 0.1− 0.75 +0.193

θa 0.48 0.1− 0.75 +0.127

θh 0.48 0.1− 0.75 +0.425

f 0.8 0.1− 0.95 −0.269
α 0.1168 0.05−0.25 −0.118
ξ 0.0025 0.05−0.15 +0.105

da 0.0008 0.001−0.008 −0.010
dm 0.0008 0.001−0.008 −0.016
dh 0.0016 0.001−0.008 −0.026
ds 0.0016 0.001−0.008 −0.034
γ1 0.05 0.01−0.25 −0.115
γ2 0.05 0.01−0.25 −0.351
γ3 0.05 0.01−0.25 −0.517
η1 0.20 0.01−0.35 −0.166
η2 0.20 0.01−0.35 −0.526
v 0.15 0.01−0.25 +0.345

ω 0.3 0.01−0.8 −0.711
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among COVID-19 recoveries. Many COVID-19 models
classify recovered individuals as one group with uniform
and permanent protective immunity (see [10, 21, 25]). Per-
haps the most distinguishable feature for the proposed
COVID-19 model is the incorporation of reinfection path-
way that so far has not been accounted for in any COVID-
19 mathematical model despite evidence being available that
reinfection can occur [14].

2.2. Baseline Values of Model Parameters. The baseline epi-
demiological parameter values of the proposed model are
estimated from the readily available COVID-19 data and
also from the existing published literature. The intrinsic
incubation periods for COVID-19 have been estimated by
some studies to range between 2 to 14 days, with approxi-
mately 97.5% manifesting clinical symptoms of COVID-19
within 11.5 days of infection [7–9]. From other documented
sources the incubation period has been estimated to be about
5-6 days [6]. We thus consider an average incubation period
of about 5.1 days which are taken from documented ranges.
Hence, σ=1/5.1 per day [7]. The rates at which asymptom-
atic infectious individuals manifest mild clinical symptoms
of COVID-19 and thus progress to Im is taken to be ξ = 1/
4 per day [21]. Similarly, we shall set the rate at which infec-
tious individuals with mild symptoms progress to severe
symptomatic class Is to v = 1/4 per day.

According to the studies conducted in [28, 29], viral
shedding of COVID-19 amongst infected patients lasts
about 10 days. Consequently, we set the recovery rates from
COVID-19 infection to be γifi = 1, 2, 3, 4g = 1/10 per day.
The hospitalization rates of individuals manifesting mild
and severe symptoms are estimated based on Ferguson
et al. [28] study, who assumed that there is a short time lag
of approximately 5 days between the onset of COVID-19
symptoms and the time humans seek medical attention
(hospitalization). We thus set η1 = η2 = 1/5 per day. The
findings of some studies suggest that for most of COVID-
19 infections, about 80% manifest mild or no symptoms
[2, 29, 30] while about 14% manifest severe symptoms.
Another proportion of about 6% show severe symptoms that

require intensive care unit admissions. Here we assume that
during early progression of COVID-19 infection 80% of all
infections in Kenya are asymptomatic while the remaining
have mild symptoms (thus, we set f=0.80 and 1−f=0.20).
The modification parameter accounting for the relative
infectiousness of infectious asymptomatic individuals was
estimated to be 0.5 in [28, 31]. Moreover, Li et al. [32] esti-
mated the same modification parameter to range between
0.42 and 0.55. Hence, we set θm = θa = θh = 0:48. The current
mortality rate in Kenya is about 1.6% which is much lower
in comparison to the world projections which indicates that
about 10% of COVID19 patients die [33]. We estimate dh=
ds=0.0016 per day and the mortality rates for those infectious
asymptomatic individuals, infectious individuals with mild
symptoms and detected asymptomatic class to be da = dm
= dd = 0:5dh per day. The parameter q that accounts for
the effectiveness of detection of asymptomatic individuals
(via contact tracing) and hospitalization of individuals with
mild and severe symptoms is estimated to be q=0.5. From
the recent research on how long COVID-19 protective
immunity last upon infection, it was found that majority of
patients lost 50% of their Nct-antibodies after a duration of
six months, 75% after a year and completely returned to
baseline 4 years post-infection [14]. Thus we estimate ρ=
1/180 per day. Based on the study of Ngonghala et al. [21]
the rate at which infectious asymptomatic individuals are
detected via contact tracing and isolated is set at α=0.1168.
The remaining parameters (β,κ,ω) are estimated using the
Kenya COVID-19 dataset.

3. Basic Properties of the Model

In this section, the dynamical properties of model equation
(2) are qualitatively are analyzed.

3.1. Positivity and Boundedness. Since we are considering a
human population the model equation (2) need to be epide-
miolgically meaningful. Thus, we show that all state vari-
ables of model (2) are nonnegative for all time, t>0 and
that the region
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–0.5
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ĸ 𝛽 𝜃m 𝜃a 𝜃h 𝛼 𝜉 da dm dh ds γ1 γ2 γ3 𝜂2𝜂1 𝜔𝜈f

Figure 2: Represent the PRCC values for the control reproduction numberRc. The baseline parameter values used to generate the figure are
depicted in Table 3.
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Ω = S, E, Ia, Im, Is, Id ,H, RI , RLð Þ ∈ℝ9
+ : S + E + Ia + Im

�

+ Is + Id +H + RI + RL ≤ Ph 0ð Þg
ð5Þ

is bounded. Hence, the following Theorem:

Theorem 1. Let the initial data supplied to the model (2) be;
Sð0Þ ≥ 0, Eð0Þ ≥ 0, Iað0Þ ≥ 0, Imð0Þ ≥ 0, Isð0Þ ≥ 0, Idð0Þ ≥ 0,
Hð0Þ ≥ 0, RIð0Þ ≥ 0, RLð0Þ ≥ 0. Then the solution for model
(2) remain positive for all time, t > 0, in the region Ω.

Proof. Let t1 = sup ft > 0 : S > 0, E > 0, Ia > 0, Im > 0, Is > 0,
Id > 0,H > 0, RI > 0, RL > 0 ∈ ½0, t�g. Thus, t1 > 0. Consider-
ing the first equation of the model equation (2), we have

dS
dt

= −λS, where ð6Þ

remains as defined in equation (3). Equation Equation (6)
can be re-written as

ð
dS
dt

=
ð
λS, ð7Þ

so that

S t1ð Þ = S 0ð Þ exp −
ðt1

0
λ τdτð Þ

� �
> 0: ð8Þ

Following a similar procedure we can verify that E > 0,
Ia > 0, Im > 0, Is > 0, Id > 0,H > 0, RI > 0, RL > 0. Thus, all
the trajectories of model equation (2) remain positive for
all nonnegative initial conditions.

Lemma 1. The region Ω = fðS, E, Ia, Im, Is, Id ,H, RI , RLÞ ∈
ℝ9

+ : S + E + Ia + Im + Is + Id +H + RL ≤ Phð0Þg is positively
invariant and absorbing with respect to the set of nonlinear
differential equations of model (2).

Proof.We show that the biologically meaningful solutions of
model (2) are uniformly bounded in the region Ω. Let
S,E,Ia,Im,Id,H,RI,RL be solutions of model system (2)
obtained upon supplying model (2) with nonnegative initial
conditions. It is not difficult to note that the total population
Ph, fulfils the inequality

dPh

dt
= − daIa + dmIm + dsIs + dhH + ddIdð Þ ð9Þ

Equation (9) can be re-written as

dPh

dt
≤−�δPh where �δ =min da, dm, ds, dh, ddð Þ: ð10Þ

Thus,

dPh

dt
≤−�δPh: ð11Þ

which implies that

Ph tð Þ ≤ Ph 0ð Þe−�δt: ð12Þ

Note that Ph(t) tends to Ph(0) as t→∞. Hence, the
region Ω attracts all solutions in ℝ9

+.

3.2. Asymptotic Stability Analysis of the Disease-Free
Equilibrium. The model (2) has a disease-free equilibrium
D = ðS∗, E∗, I∗a , I∗m, I∗s , I∗d ,H∗, R∗

I , R∗
LÞ = ðSð0Þ, 0, 0, 0, 0, 0, 0,

0, 0Þ wher S(0) represent the initial size of the population
that is susceptible to COVID-19. The asymptotic stability
of the disease free equilibrium will be analyzed using the
next generation operator method [34, 35]. The next genera-
tion operator matrices, F and V representing new infection
terms and the transition terms are, respectively, given by

F =

0 1 − ωð Þ 1 − κð Þβθa 1 − ωð Þ 1 − κð Þβθm 1 − ωð Þ 1 − κð Þβ 1 − ωð Þ 1 − κð Þβθh 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

V =

σ 0 0 0 0 0
−fσ K1 0 0 0 0

− 1 − fð Þσ −ξ K2 0 0 0
0 0 −v K3 0 0
0 0 −η1 −η2 K4 0
0 −α 0 0 0 K5

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

,

ð13Þ
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Figure 3: Continued.
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where K1 = ðα + ξ + da + γ1Þ, K 2 = ðv + η1 + dm + γ2Þ, K 3
= ðds + η2Þ, K 4 = ðdh + γ3Þ, K5 = ðdd + γ4Þ:

The basic reproduction number Rc is difined as Rc = �ϱ
ðFV −1Þ, where ¯ ̺ denote the spectral radius of the next gen-
eration matrix �ϱðFV −1Þ. Thus,

Rc =Ra +Rm +Rs +Rh, ð14Þ

where

Ra =
β 1 − κð Þ 1 − ωð Þf θa

K1

Rm = β 1 − κð Þ 1 − ωð Þ 1 − fð Þ α + da + γ1ð Þ + ξ½ �θm
K1K2

,

Rs =
β 1 − κð Þ 1 − ωð Þv 1 − fð Þ α + da + γ1ð Þ + ξ½ �

K1K2K3
,

Rh =
β 1 − κð Þ 1 − ωð Þ η1K3 + η2v½ � 1 − fð Þ α + d − a + γ1ð Þ + ξ½ �θh

K1K2K3K4
:

ð15Þ

The following result is obtained from Theorem 2 of [34]
and is stated as:

Theorem 2. The infection-free equilibrium (DFE) of the
model (2) is locally-asymptotically stable whenever Rc < 1 ,
and unstable whenever Rc < 1.

The threshold quantity Rc shown in equation (14) is the
control reproduction number.Rc measures the average num-
ber of new COVID-19 infections generated by a single infec-
tious individual when introduced into a wholly susceptible
population where basic public health mitigation strategies
(such as social distancing, contact tracing, isolation, hospi-
talization etc.) are implemented [35]. It is apparent that
the control reproduction number is a sum of the constituent
reproduction numbers associated with four infectious classes
(Ia,Im,Is,H). That is, Ra represent the reproduction number
of new COVID-19 cases generated by infectious asymptom-
atic humans (with no symptoms),Rm represent the number
of new infections generated by symptomatically-infectious
humans with mild symptoms, Rs is the reproduction num-
ber of new COVID-19 cases generated by symptomatically-
infectious humans with severe symptoms and Rh is the
reproduction number associated with the number of new
COVID-19 cases generated by infectious hospitalized indi-
viduals. The epidemiological interpretation of Theorem 2 is
that, there will be no COVID-19 outbreak in the population
if the initial sizes of the infectious cases of COVID-19 are in
the basin of attraction of the disease free equilibrium such
that Rc is less than unity.

4. Numerical Simulations and Results

In this section we shall conduct numerical simulation of the
proposed COVID-19 model. It is imperative to note that
when estimating model parameters, uncertainty may arise.
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Figure 3: (a) Projections for the cumulative number of reported deaths. The baseline parameters used and the predicted parameter values
are shown on Table 4. (b) Represents the projection of the cumulative reported active cases. (c) Illustrate maintaining social/physical
distance will result in a decline in mortality cases. (d) Show a decline in death cases as the proportion of those wearing masks increases.
(e) Depict the impact of reinfection on the long term dynamics of cumulative death cases. Figures (b), (c) and (d) are plotted using
semi-logarithmic scale for clarity.

9Computational and Mathematical Methods in Medicine



Hence, we shall first conduct uncertainty and sensitivity
analysis of the model parameters. Secondly, we shall carry
out numerical simulation of our model with the aim of
assessing two key objectives: (a) how various intervention
strategies being implemented in Kenya to mitigate
COVID-19 spread influence disease dynamics b) how will
reinfection alter the long-term dynamics of COVID-19 in
Kenya as well as globally. To achieve these objectives we
shall numerically solve model equation (2) using MATLAB.

4.1. Uncertainty and Sensitivity Analysis. To identify the crit-
ical inputs of the COVID-19 epidemic model we perform
sensitivity analysis so as to gain insights on how input uncer-
tainties impact model outcome [36]. We conduct uncer-
tainty and sensitivity analysis using the Latin hypercube
sampling (LHS) technique which offers a comprehensive
method for assessing model sensitivity to parameters over
multidimensional parameter space [36]. One of the merits
for using LHS technique in comparison to simple random
sampling is that it requires fewer samples of parameters to
achieve same accuracy (see [36] and the references therein
for in-depth discussion on LHS). In our formulated
COVID-19 model there are 25 parameter values. Thus,
LHS technique becomes an important tool due to the rela-
tively large uncertainty of the model parameter estimates
used in conducting numerical simulation. The LHS tech-
nique works in synergy with the partial rank correlation
coefficient (PRCC) which approximates the sign and
strength of the relationship that exists between each model
parameter and any specified output variable [37]. The PRCC
values are only considered within a specific range, namely -1
and 1. The PRCC values that are near 1(-1) signal a strong
positive (negative) correlation. Consequently, the relative
importance of how model parameters influence model out-
put is directly assessed by comparing the respective PRRC
values [37]. The procedure for conducting uncertainty and
sensitivity analysis requires two key steps. First, baseline
parameter values are obtained. Then the lower and upper
bound for each parameter in the model is set (see Table 3).
After this multiple runs for a given outcome variable or
response function is performed. For the proposed COVID-
19 model the control reproduction number Rc is selected
as response function and to enhance accuracy 1000 random
samples of parameter values are used.

Figure 2 depicts the sensitivity analysis of the control
reproduction numberRc. It is clear that the effective contact
rate β, the modification parameters (θa,θm,θh), the rate at
which infectious-asymptomatic humans progress to
infectious-symptomatic class denoted by ξ and the rate at
which infectious-symptomatic humans with mild symptoms
progress to a class of individuals with severe symptoms
denoted by v are all positively correlated to the control
reproduction number. This implies that an increase in these
parameters increases the Rc. Amongst these positively cor-
related parameters the contact rate β has the highest PRCC
values suggesting that non-pharmaceutical intervention pro-
grams being implemented to mitigate COVID-19 spread
should target on reducing social/physical contacts within
the community. Hence, maintaining the recommended min-

imum social distance can have a positive impact. Further-
more the parameter v which account for the progression of
humans with mild COVID-19 symptoms to a class of indi-
viduals with severe symptoms has a high PRCC value, sug-
gesting that intervention measures such as hospitalization
of these individuals can be implemented to reduce
COVID-19 spread. The parameters that are negatively corre-
lated to the control reproduction number Rc include:
κ,ω,η1,η2,γ1,γ2,γ3,f,α,da,dm,dh,ds. Thus, increasing these
parameters decreases the control reproduction number.
The parameters κ and ω which, respectively, account for
the proportion of humans who wear face masks and the pro-
portion of individuals who observe the minimum physical/-
social distance are highly negatively correlated to Rc Thus,
the intervention measures such as face mask and observing
social distance as being implemented worldwide by govern-
ments can significantly reduce the spread of COVID-19.
Moreover, hospitalization of both individuals with mild
and severe symptoms of COVID-19 can have a positive
impact in controlling COVID-19 as suggested by their high
negative PRCC values.

Table 4: Represent the baseline parameter values and the
corresponding predicted parameter values using Kenya COVID-
19 data.

Parameter
symbol

Baseline
value

Source
Data predicted

value

κ 0.5 Estimated 0.511

β 0.5 Estimated 0.575

θm 0.48 [39] 0.65

θa 0.48 [39] 0.581

θh 0.48 [39] 0.566

q 0.6 [21] 0.558

σ 0.196 [7] 0.183

f 0.80 [2, 29, 30] 0.707

α 0.1168 [21] 0.119

ξ 0.0025 [21] 0.002

da 0.0008 [33] 0.0009

dm 0.0008 [33] 0.000786

dc 0.0008 [33] 0.000698

dh 0.0016 [33] 0.000023

ds 0.0016 [33] 0.000151

γ1 0.05 [28, 29] 0.0564

γ2 0.05 [28, 29] 0.0465

γ3 0.05 [28, 29] 0.0521

γ4 0.05 [28, 29] 0.0663

η1 0.20 [33] 0.234

η2 0.20 [33] 0.234

ρ 1/180 [14] 0.0056

υ 0.15 [21] 0.207

ω 0.30 Estimated 0.344

θ 0.01 Estimated 0.0533
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5. Model Fitting

In this section we use the data for the daily reported death
cases and new cases of infection to fit COVID-19 model
inorder to estimate the model parameters. We chose initial
conditions with the assumption that almost the entire Kenya
population is susceptible to COVID-19. The initial data
recorded suggest that there were three cases of COVID-19
as on March 3 2020, however we assume the disease was
spreading undetected for sometime within the Kenyan pop-
ulation. Consequently, we use the following initial condi-

tions; S(0)=47000000,E(0)=0,Ia(0)=100,Im(0)=50,Is(0)=20,
Id(0)=3,H(0)=0,RI(0)=0,RL(0)=0. The baseline parameters
are obtained from the relevant COVID-19 literature.
Figures 3(a) and 3(b) represent the projections of Kenya data
fitted on model equation (2). It is clear that there is an expo-
nential increase in the number of cumulative reported
deaths and cumulative active cases. Note that cumulative
death cases refer to the total number of deaths (caused by
COVID-19) recorded within a specified period of time
(interval). The total number of deaths increase on a daily
basis given there are deaths recorded everyday. The
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Figure 4: Show the impact of wearing face masks on the exposed, asymptomatic, symptomatic (with mild symptoms) and symptomatic
(with severe symptoms) subpopulations. The parameter values used remain as shown on Table 4.
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cumulative active cases refer to the total number of
COVID-19 cases recorded within a given time interval.
The cumulative active cases increase on a daily basis since
there are new infections recorded every day. The predicted
model parameters shown on the Table 4 corresponds to a
control reproduction number of about ≃ Rc = 1:1117
which is greater than one, hence, suggesting that each infec-
tious individual is able to transmit the COVID-19 to more
than one person. The epidemiological implication of this is
that in Kenya COVID-19 will continue to spread but at a
slightly lower rate in comparison to other countries where
Rc is much higher (> 2 see [21]). The predicted model
parameter values are then used to numerically investigate
the key questions pertinent to this paper. That is the impact
of reinfection on long term dynamics of COVID-19 in
Kenya.

6. Impact of Non Pharmaceutical Interventions
(Wearing Face Mask and Maintaining
Physical/Social Distance) in Kenya

The Kenya data project that about 34.4% of the members of
the public correctly and consistently wear masks in public
and about 50% strictly observe and maintain social and
physical distance (see Table 4). We now explore the epide-
miological implication these non pharmaceutical interven-

tions offer in mitigating COVID-19 proliferation in Kenya.
It is evident from.

Figure 4 that wearing face masks consistently and cor-
rectly significantly reduces the spread of COVID-19. With
just over 30% wearing face masks the COVID-19 curve is
much flatter than when 0% wear a face mask. Besides flatten-
ing the curve, an increasing percentage of those who wear
face masks delay the peak of the epidemic outbreak in Kenya
(see Figure 4). This implies that the health facilities will not
be overburdened and will adequately manage the infectious
cases. Moreover, it is imperative to note that when the entire
general public does not adhere to wearing a face mask, the
number of individuals with severe symptoms or critically
ill can be over >80,000 as illustrated in Figure 5(d). This
value is much higher than for individuals with mild symp-
toms. This can be explained by the fact that individuals with
mild symptoms can transition to the cohort of individuals
with severe symptoms once their immune system is compro-
mised by the coronavirus.

Figure 6 depicts that the non pharmaceutical interven-
tion of maintaining physical/social distance within the gen-
eral public has a positive impact. It can be observed that if
Kenyans ignored Ministry of Health guidlines and main-
tained no physical/social distance the epidemic curve could
have peaked after six months (on day 200-see Figure 7(d)).
This could have resulted in overwhelmed health facilities
and high mortality rate. In fact the number of individuals
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Figure 5: Show the impact of reinfection with COVID-19 on the exposed, asymptomatic, symptomatic (with mild symptoms) and
symptomatic (with severe symptoms) subpopulations. The parameter values used remain fixed as shown on Table 4 except θ that is
varied as shown in the figures.
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with severe COVID-19 symptoms could have reached
>300000 (as suggested by Figure 7(d)) which is far much
higher than Kenya health system capacity which has about
64,181 hospital beds across all sectors (i.e., private, public
and faith based/NGO health facilities) [38]. This fast surge
of COVID-19 could have been exacerbated further given
that of the available hospital beds only about 58% (37,216)
have oxygen supply fitted [38]. In general wearing face
masks consistently and correctly and maintaining physical/-
social distance delayed, significantly the peak of COVID-19
in Kenya. Figure 7 show the impact of quarantine and isola-

tion of individuals suspected of being exposed with COVID-
19. The Figure suggest that although quarantine is assumed
to be an important control strategy of COVID-19, its impact
in reducing COVID-19 is relatively low in comparison to
wearing face masks (correctly and consistently) and main-
taining social/physical distance.

Further, assuming there is no reinfection (i.e., θ=0) and
varying equally the proportions of those who wear face
masks and those who maintain physical/social distance, it
is observed that wearing face masks correctly and consis-
tently is more beneficial (as far as a decline in death cases

0
0

0.5

1

1.5

2

2.5

3

3.5

200 400 600 800 1000

Time (day)

Ex
po

se
d

κ = 0.0
κ = 0.10
κ = 0.20

κ = 0.30
κ = 0.40
κ = 0.5

×106

(a)

Time (days)

A
sy

m
pt

om
at

ic
 ca

se
s

×106

0

0.5

1

1.5

2

2.5

3

3.5

κ = 0.0
κ = 0.10
κ = 0.20

κ = 0.30
κ = 0.40
κ = 0.5

0 200 400 600 800 1000

(b)

Time (days)

Sy
m

pt
om

at
ic

 (m
ild

)

×105

0

1

2

3

4

κ = 0.0
κ = 0.10
κ = 0.20

κ = 0.30
κ = 0.40
κ = 0.50

0 200 400 600 800 1000

(c)

0
0

1

2

3

4

200 400 600 800 1000

Time (day)

Sy
m

pt
om

at
ic

 (s
ev

er
e)

κ = 0.0
κ = 0.10
κ = 0.20

κ = 0.30
κ = 0.40
κ = 0.50

×105

(d)

Figure 6: Show the benefit of maintaining physical/social distance on the exposed, asymptomatic, symptomatic (with mild symptoms) and
symptomatic (with severe symptoms) subpopulations. The parameter values used remain as shown on Table 4 except κ that is varied as
shown in the figures.
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are concerned) in comparison to maintaining physical/social
distance. Although maintaining physical/social distance
leads to a significant decline in death cases, the impact of κ
in reducing death cases is slightly lower as compared to ω.
This observation is suggested by Figures 3(c) and 3(d),
respectively.

6.1. Impact of Reinfection and Detection of Asymptomatic
Cases on COVID-19 Dynamics. During the early stages of
COVID-19 outbreak there was scant information on its epi-
demiology. Some researchers suggested that recovered indi-
viduals acquired permanent immunity against reinfection.
After a few months, empirical evidence established that this
was not the case after some individuals who previously
recovered, tested positive from COVID-19 virus. The

research done by [14] which analysed antibody dynamics
after infection shed some light on this debated issue by
showing that about 50% of recovered individuals start losing
their antibodies after a duration of six months. Figure 3(e)
suggest that if reinfection coefficient, θ increases, the mortal-
ity cases will profoundly increase to larger values than the
one presently shown by Kenya data of about 3000 cases
when the reinfection coefficient is predicted to be relatively
small (≅ 0.05). Figure 5 suggests that if high reinfection
occurs (θ=0.30) within the community, the COVID-19 epi-
demic curve will peak on day 200. Further, on day 200, there
will be about 4,500,000 individuals exposed to the COVID-
19 virus, 3,000,000 asymptomatic cases, 490,000 individuals
exhibiting mild symptoms and 400,000 individuals manifest-
ing severe symptoms that require them to be hospitalized at
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Figure 7: Depict the impact of quarantine/isolation on individuals suspected of being exposed to COVID-19, asymptomatic individuals,
symptomatic individuals with mild symptoms and symptomatic individuals with severe symptoms. Semi-logarithmic scale is used along
the y-axis for the purpose of clarity.
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the intensive care unit. Again this high number of critically
ill patients outnumbers the hospital beds available within
Kenya health system.

Moreover, if reinfection with COVID-19 occurs on a
larger scale it will be catastrophic for many countries across
the globe, both with weak and advanced health systems. This
is because, if reinfection occur within the community, it will
lead to a large pool of exposed individuals being exposed to
the virus which will ultimately lead to a large pool of asymp-
tomatic individuals, individuals with mild and severe symp-
toms, some of which require to be put on ventilator and
supplementary oxygen. For instance, Figure 8(a) suggest that
if reinfection coefficient θ approach one there will be
approximately 40,000,000 Kenyans exposed to the virus.

Currently, it is not yet established how much protection
previous infection or vaccination will offer. Mitigation mea-
sures such as (wearing face masks, maintaining social/physi-
cal distance and avoiding crowds) can still reduce the
likelihood of being exposed to a second episode of

COVID-19 (reinfection). Hence, adhering to non pharma-
ceutical interventions remains an important strategy in mit-
igating COVID-19 proliferation, especially in countries
where vaccines are not affordable or available. Figure 8(b)
depict how an increase in parameter v will increase subpop-
ulation of individuals with severe symptoms.

It is now apparent that reinfection will lead to a surge in
mortality rate and accumulation of COVID-19 active cases
which the Kenya health system can not handle. However,
even in the presence of reinfection, the surge in COVID-19
cases can be prevented by interrupting the chain of progres-
sion of the virus through detecting asymptomatic individ-
uals who silently transmit the disease. Given reinfection
creates a large pool of asymptomatic individuals who as we
know are capable of spreading the virus, mass testing of
the general public to identify and isolate the asymptomatic
cases can be effective in curbing COVID-19. As shown in
Figure 8(c) increasing detection rate (α) through mass test-
ing of the public can drastically reduce asymptomatic cases
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Figure 8: (a) Show the impact of increasing the reinfection coefficient on asymptomatic subpopulation. (b) Show the effect of increasing the
rate of conversion of symptomatic individuals with mild symptoms to symptomatic individuals manifesting severe COVID-19 symptoms.
(c) Show time series of asymptomatic individuals as a function of the detection rate (α). Increasing detection rate of asymptomatic cases and
isolating them can significantly reduce the asymptomatic individuals who are silent spreaders of COVID-19. (d) Show time series of
symptomatic individuals as a function of detection rate (α). There is an indirect relationship between removal of the asymptomatic cases
from the general population and a reduction of symptomatic individuals who are critically ill and need urgent medical attention.
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to almost zero. Reduction of asymptomatic cases as sug-
gested in Figure 8(d) has an indirect relationship with indi-
viduals who are critically ill (or manifesting severe
COVID-19 symptoms). This is because increasing detection
rate of asymptomatic cases leads to a decrease of symptom-
atic individuals with mild symptoms and ultimately a reduc-
tion of individuals with severe symptoms. Currently, testing
of the general public for COVID-19 is ongoing in Kenya but
not on a large scale due to lack of adequate resources to con-
duct mass testing. As such those who are tested in Kenya
health facilities consist of those individuals who present
themselves to the health facilities with either mild or severe
symptoms and also their closest contacts who are traced
through contact tracing. However, this has been considered
to have some loopholes as not all individuals who test positive
for COVID-19 disclose all the people they have come into
contact with. Consequently, community transmission of
COVID19 continue to occur because individuals not detected
through contact tracing remain in the general public. Further-
more, there has been shortages in supply of testing equipments
and reagents, not only in Kenya but across Africa which
largely depend on developed countries. Hence, large scale
detection of asymptomatic individuals is again hampered.

7. Discussion and Conclusion

Reinfection with COVID-19 was a contentious issue during
the early onset of COVID-19 pandemic. This followed from
the fact that it was not understood whether initial infection
offered an everlasting or partial protective immunity. As
such some medical practitioners and researchers argued that
previously infected individuals acquired “passport immu-
nity” and therefore could be allowed to relax COVID-19
mitigation measures and mingle freely with the general pop-
ulace [15]. However, further research involving serological
testing for seasonal Human Coronavirus (HCoV-229E)
found that the majority of patients lost 50% of the acquired
antibodies after a duration of six months, 75% after a year
and completely returned to baseline four years post-
infection [14]. Based on this scientific information regarding
reinfection with COVID-19 we developed a mathematical
model with the aim of investigating how reinfection mecha-
nisms will influence COVID-19 dynamics in Kenya. We cat-
egorized the infectious cohorts based on symptoms
manifestation. Consequently, the proposed model has
asymptomatic infectious individuals, symptomatic infectious
individuals with mild symptoms and symptomatic infectious
individuals with severe symptoms. First sensitivity and
uncertainty analysis was conducted on the basic reproduc-
tion number and findings suggest that non pharmaceutical
intervention measures such as wearing face masks and
maintaining social/physical distance are effective in curbing
the spread of COVID-19 as supported by a high negative
PRCC values (-0.711 and -0.697, respectively). Other inter-
vention measures such as hospitalization of both individuals
manifesting mild and severe symptoms seem to be beneficial
in reducing the basic reproduction number, with highest
reduction occurring when individuals with severe symptoms
are removed from the community and managed at hospital

facilities. This is also confirmed by strong negative correla-
tion of η2 on Rc.

Fitting the proposed model on the Kenya dataset, we
obtained model parameter values which were used to
numerically investigate the impact of variation of these
parameter values on COVID-19 dynamics. The numerical
findings indicate that if Kenya did not implement non phar-
maceutical interventions the cumulative death cases could
have surged to higher values than the current one of about
3000 cases. With just wearing of face masks and maintaining
physical distance, COVID-19 peak infections have been sig-
nificantly delayed. This has been strongly supported by the
numerical simulations where parameters accounting for
wearing face masks consistently and maintaining social/phy-
sical distance were varied while others remain fixed. In fact
both the sensitivity and uncertainty analysis as well as time
series simulations suggest that wearing face masks is more
beneficial in comparison to maintaining social distance.
However, combining both wearing face masks and main-
taining social distance can be more effective in curbing
COVID-19. However, in densely populated cities/countries
(e.g., Mumbai in India) maintaining physical/social distance
can be much of a challenge to a significant proportion of the
populace in comparison to sparsely populated cities with
underdeveloped infrastructure facilities. Thus, non pharma-
ceutical interventions have profoundly minimized the
COVID-19 related demands on the health care system in
Kenya.

Further, exploration on reinfection infection mecha-
nisms suggest that an increase of reinfection with COVID-
19 can lead to a surge of cumulative COVID-19 active cases.
In particular there will be a large pool of asymptomatic indi-
viduals. Given asymptomatic individuals are also infectious,
having such a cohort acting as silent spreader of COVID-19
can be detrimental to the general public as it is likely to
result to a prolonged COVID-19 outbreak in Kenya or spo-
radic outbreaks. However, numerical simulations suggest
that even in presence of reinfection, if Kenya increases the
detection rate of those who are asymptomatic through con-
tact tracing, mass testing and isolating the positive cases,
COVID-19 surge can be averted. Detection of asymptomatic
cases during the period when Kenya is not vaccinating the
general public on a large scale can be effective in curbing
COVID-19 proliferation. Furthermore, without adequate
medical equipment and reagents being available in Kenya
to test asymptomatic cases, it remains elusive to completely
eradicate COVID-19.

Data Availability

We used the world Health Organization Covid-19 data which
is freely available: https://covid19.who.int/table or (https://
www.worldometers.info/coronavirus/country/kenya/).
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