Skip to main content
. 2021 Nov 10;53:87. doi: 10.1186/s12711-021-00681-8

Table 2.

Summary of statistics of near-infrared prediction models for colostrum immunoglobulins concentrations

Traita, g/L n Mean SD Math treatment LV RMSEC R2C RMSECV R2CV RMSEV R2V Relative RMSEV
IgG
 100% 189 88.39 36.08 MSC 2,5,5,1 14 6.72 0.97 14.22 0.84 25.21 0.63 0.27
 80% 152 91.14 36.28 SNV 2,5,5,1 14 5.26 0.98 14.55 0.84 29.15 0.53 0.32
 60% 115 91.81 35.04 MSC 2,5,5,1 16 3.20 0.99 15.93 0.79 29.46 0.49 0.32
IgA
 100% 153 4.25 2.48 MSC 1,4,4,1 4 1.84 0.45 2.00 0.35 2.23 0.40 0.46
IgM
 100% 187 4.71 2.08 DET 2,5,5,1 2 1.58 0.42 1.73 0.31 2.10 0.32 0.41

SD standard deviation, LV number of latent variables, RMSEC root mean squared error in calibration, R2C coefficient of determination in validation; RMSECV root mean squared error in cross-validation, R2CV coefficient of determination in cross-validation, RMSEV root mean squared error in external validation, R2V coefficient of determination in external validation, Relative RMSEV relative root mean squared error in external validation, expressed as the ratio between the RMSEV (this table) and the mean of the reference trait (Table 1).

IgG immunoglobulins G, IgA immunoglobulins A, IgM immunoglobulins M, MSC multiplicative scatter correction, SNV standard normal variate, DET detrend

aPredicted from NIRS spectra using 100, 80, or 60% of calibration set