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Abstract

Knowledge of the specificity of DNA-protein binding is crucial for understanding the mechanisms of gene expression,
regulation and gene therapy. In recent years, deep-learning-based methods for predicting DNA-protein binding from
sequence data have achieved significant success. Nevertheless, the current state-of-the-art computational methods have
some drawbacks associated with the use of limited datasets with insufficient experimental data. To address this, we
propose a novel transfer learning-based method, termed SAResNet, which combines the self-attention mechanism and
residual network structure. More specifically, the attention-driven module captures the position information of the
sequence, while the residual network structure guarantees that the high-level features of the binding site can be extracted.
Meanwhile, the pre-training strategy used by SAResNet improves the learning ability of the network and accelerates the
convergence speed of the network during transfer learning. The performance of SAResNet is extensively tested on 690
datasets from the ChIP-seq experiments with an average AUC of 92.0%, which is 4.4% higher than that of the best
state-of-the-art method currently available. When tested on smaller datasets, the predictive performance is more clearly
improved. Overall, we demonstrate that the superior performance of DNA-protein binding prediction on DNA sequences can
be achieved by combining the attention mechanism and residual structure, and a novel pipeline is accordingly developed.
The proposed methodology is generally applicable and can be used to address any other sequence classification problems.
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Introduction
Transcription factors (TFs) are proteins that bind to DNA
sequences and regulate gene expression and play a major role
in the regulation of genome function and also have important
implications for personalized medicine [1–3]. The transcription
factor-binding site (TFBS) is a DNA fragment that a TF binds
to, which is typically within the range of 4–30 bp [4, 5]. The
transcription factor usually regulates several genes at the
same time, and to some extent its binding sites on different
genes are conservative, but not identical [6, 7]. Accordingly,
accurate prediction of DNA-protein binding is important for
understanding the physiological role of transcription factors,
characterizing specific functional characteristics of the genome,
and elucidating how highly specific sequence expression
program is orchestrated in complex organisms [8, 9]. With
the development of high-throughput sequencing technology, a
variety of experimental methods can identify these binding sites
in vivo, such as ChIP-seq [10] and SMiLE-seq [11]. However, these
methods are expensive and time consuming. In this context,
development of fast and accurate computational methods for
the identification of DNA-protein binding sites is needed and
as such, many machine-learning-based methods have emerged
[12, 13].

Early-stage methods such as those developed based on
traditional machine learning algorithms mainly focused on
identifying DNA-protein binding sites [14]. For example, Wong
et al. proposed kmerHMM [15] based on Hidden Markov models
(HMMs) and belief propagation to predict DNA-binding sites.
Ghandi et al. designed gkm-SVM [16] based on the gap k-mers
support vector machine method to identify DNA-binding sites.
However, with the increasing and rapid accumulation of DNA
sequence data, the performance of traditional machine learning
algorithms is not satisfactory.

In recent years, deep learning techniques have achieved
remarkable success in computer vision [17–19]. Moreover, they
have been successfully applied to solve many bioinformatics
and computational biology problems including DNA-protein
binding site identification [20, 21]. Alipanahi et al. proposed
the first deep-learning-based method DeepBind [22] to identify
the sequence specificity of DNA- and RNA-binding protein
through a single-layer convolutional neural network. Zeng’s
work [23] further systematically explored the effects of various
structural parameters such as the number of the convolution
layers and pooling methods and proved the value of CNN. Luo
et al. proposed a novel global pooling method [24] based on
the EM algorithm [25] and redesigned the pooling layer based
on the network architecture of DeepBind. These CNN-based
algorithms have achieved promising performance; however, due
to the limits of the convolution, they can only focus on extracting
the local information and cannot handle long sequence features
well. To address this problem, KEGRU [26] successfully combined
the Bidirectional Gated Recurrent Unit (GRU) network framework
with the k-mer embedding to identify DNA-protein binding.
Researchers have also constructed hybrid models by combining
CNNs and RNNs [27] to predict the DNA-binding sites, such as
DeepSite [28] and DeepTF [29]. The increased LSTM layers can
improve the prediction performance of binding sites by learning
the long-distance dependence in sequences. Nevertheless,
despite the efficiency and accuracy achieved, the existing
methods still have the two following critical deficiencies: First,
since 690 ChIP-seq experimental datasets produced by the
Encyclopedia of DNA Elements (ENCODE) project [30], each
dataset corresponded to a combination of human cells and

specific regulatory factors, and the amount of data included
in different datasets varied considerably. Most methods used
shallow networks to fit the data because some datasets are
not sufficiently large to support the training of deep networks.
Second, although these algorithms used shallow networks, their
performance on small datasets is still unsatisfactory.

In this study, we propose a novel deep-learning algo-
rithm, termed Self-Attention Residual Network (SAResNet),
for improving the prediction of DNA-protein binding sites in
DNA sequences. Importantly, SAResNet contains two specific
modules, the self-attention mechanism and residual structures.
The self-attention module focuses on capturing the position
information of the sequence, whereas the residual structure
guarantees the extraction of the high-level features of the
binding site. At the data preprocessing stage, we combine the
training subsets containing 690 ChIP-seq datasets; however,
the merged dataset may not be reliable. Because the combined
data come from different types of human cells and different
transcription factors, the sequence that needs to be predicted
is the combination of a certain human cell and a specific
transcription factor. To overcome this limitation, we first utilize
the dataset to train a global model, and then we employ each
small dataset to fine-tune the model. Compared with the
suboptimal method, our method achieves a 4.4% performance
improvement in terms of the average AUC. The AUC improves on
618 out of the 690 datasets. The online web server of SAResNet is
implemented and publicly freely available at http://csbio.njust.e
du.cn/bioinf/saresnet. In addition, the source code of SAResNet
is available at https://github.com/shenlongchen/saresnet.

Materials and methods
Benchmark datasets

To evaluate the performance of the proposed method, we chose
690 ChIP-seq datasets, which were previously used to evaluate
the deep learning architectures in DeepBind [22], DeepSEA [31]
and CNN-Zeng [23] as the benchmark datasets. These 690 ChIP-
seq datasets included 91 human cell types and 161 specific DNA-
binding proteins, some of which were collected under different
treatment conditions. For each of the 690 ChIP-seq datasets,
Zeng et al. divided it into the training subset (80%) and the corre-
sponding testing subset (20%). All the datasets were downloaded
from http://cnn.csail.mit.edu/. Each training subset (testing sub-
set) consists of a positive subset and a corresponding negative
subset. The positive subset consists of 101-bp DNA sequences,
each of which has at least one transcription factor binding
event, while the negative subset was generated by shuffling the
positive subset by matching the dinucleotide composition [22].
The ‘fasta-dinucleotide-shuffle’ package in MEME [32] is used
for shuffling. DeepBind [22], CNN-Zeng [23] and Expectation-Luo
[24] all use the same method for negative sample generation.

In this study, we combined these training subsets as the
global training dataset and testing subsets as the global testing
dataset, respectively. To avoid overfitting and improve the
generalization ability of the model trained by unbalanced
samples, we partitioned the positive and negative samples and
used the under-sampling strategy (For the global training set,
random sampling was used to keep the balance between the
positive and negative samples from the 690 training subsets.
For the global testing set, 400 000 positive samples and 400
000 negative samples were obtained by random sampling from
the 690 testing subsets) to rebuild the global dataset. Finally,
we obtained 4 614 580 training sequences and 800 000 testing

http://csbio.njust.edu.cn/bioinf/saresnet
http://csbio.njust.edu.cn/bioinf/saresnet
https://github.com/shenlongchen/saresnet
http://cnn.csail.mit.edu/


Self-attention residual network for predicting DNA-protein binding 3

Figure 1. The procedures for generating the global training dataset (global-TR), global validation dataset (global-VL) and global testing dataset (global-TS).

sequences for the global training. These training sequences
were randomly split into 90% for training (denoted as global-
TR), 10% for validation (denoted as global-VL) and 800 000
testing sequences (denoted as global-TS) for independent test,
respectively. In order to examine the impact of training sequence
division on our proposed model, we compared the performance
of the model based on different proportions of data division
in Supplementary Table S1. Finally, considering the scale of the
global dataset and the performance of the model, we adopted the
90/10% data splitting for model generation. Figure 1 illustrates
the procedures for generating global training dataset (global-TR),
global validation dataset (global-VL) and global testing dataset
(global-TS). As shown in Figure 1, we divided the global dataset
on the basis of the training and testing subsets divided by Zeng
et al. Specifically, our global-TR/global-VL (i.e., training) are
constructed based on 690 divided training subsets, while global-
TS (i.e., testing) is constructed based on 690 divided testing
subsets. As a result, this partition could effectively ensure the
independence of the training and testing subsets. Moreover,
the model trained on such global training subset can learn the
common knowledge on the 690 ChIP-seq datasets. Therefore, in
order to improve the performance on each of the 690 datasets,
it is necessary to transfer this global model to each of the 690
datasets by further fine-tuning.

Performance evaluation metrics

DNA-protein binding site prediction is formulated and solved as
a binary classification problem. We used the accuracy, precision,
recall and F1 score as the primary performance measures to
evaluate the performance of the developed method. These are
calculated using the following equations:

Acc = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

where TP, FN, TN and FP denote the numbers of true positives,
false negatives, true negatives and false positives, respectively.

However, all these four performance measurements depend
on the prediction cutoff threshold. Therefore, it is critical to

find a rational method to compare different predictors. In this
study, the area under the receiver operating characteristic (ROC)
curve (AUC) [33], which is classification-threshold-invariant and
reflects the most comprehensive prediction performance, serves
as another important evaluation metric [34].

Feature representation

The input to SAResNet is a DNA sequence represented by a
binary one-hot vector of size L × 4. L is the length of the DNA
sequence (101 bp in our tests) and ‘4’ corresponds to the number
of base pairs (A, C, G, T). In one-hot encoding, each base pair in
a sequence is denoted as one of four one-hot vectors [1,0,0,0],
[0,1,0,0], [0,0,1,0] and [0,0,0,1], the value of 1 corresponding to the
nucleotide at that position and 0 elsewhere [35].

Model architecture and training procedures

If we considered a DNA sequence as a 1-D sequence with four
channels (A, C, G, T), then the task of sequence motif discovery
can be interpreted as the computer vision task of two-class
image classification [36]. Recent works show that deep learning
architectures are effective in solving this problem [23, 37]. It
has also been shown that the attention mechanism plays an
important role in the field of computer vision [38] and NLP [39]
and has been widely used in imaging analysis tasks.

Self-attention module

Since the information obtained by the convolution process is
often confined to a local neighborhood, it is inefficient to employ
convolutional layers solely to model long-range dependencies in
the sequences. In this study, we referred to the idea of non-local
model [40] and proposed a new self-attention module, which
allowed the model to efficiently identify connections between
long-distance separated regions. The self-attention module and
the residual blocks are illustrated in Figure 2B and C, respec-
tively.

We defined the self-attention module in deep neural net-
works as follows:

yi = 1
N

∑
∀j

F
(
xi, xj

)
h

(
xj

)
(5)

where x is the representation of the previous hidden layer and
y is the output feature of the attention module. i and j are the
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Figure 2. Illustration of SAResNet: (A) Block diagram of the network architecture of SAResNet. (B) Its self-attention module. (C) Its residual block.

indices of the output position of the input signal and the index
of enumerating all possible positions, respectively. A pairwise
function F computes the attention between i and allj. The func-
tion h calculates a representation of the input feature map at
the position j, while h(xj) = Wpf̂ (xj). N is the number of positions
in x.

F
(
xi, xj

) = softmax
(
p(xi)

Tq
(
xj

))
(6)

In this module, sequence features transform the feature
space through the functions p and q, while p(xi) = Wpf̂ (xi),
q(xj) = Wqf̂ (xj). The function f̂ means batch normalization (BN)
[41] and the activation function. Here, the activation function is
softmax [42]. In the above formulation, Wp ∈ R

C×C, Wq ∈ R
C×C and

Wh ∈ R
C×C are the learnable weight matrices. C is the channel

number of x, while C is the number of channels reduced by
the 1 × 1 convolution kernel. For memory efficiency and model
accuracy, 32 filters were selected in all our experiments. In other
words, C = 32. In addition, we further enhanced the dimension
of the output of the attention layer through the 1×1 convolution
and added it back to the input feature map. Therefore, the final
output is

z = θWuf̂ (y) + x (7)

where Wu ∈ R
C×C, θ is a learnable weight, initialized to 0.

θ was introduced to allow the network to focus on the local
neighborhood, and then gradually learn non-local information.
Let the network learn simple content first, and then gradually
learn complex information. We verified our hypothesis in the
experiment, which showed that this parameter is conducive to
improving the generalization of the model.

Through adding layers of the neural network, the expression
ability of the model can be enhanced [23]. However, traditional
feedforward networks with deep layers are difficult to train
because of the instability of gradient renewal. In this regard,
the residual network (ResNet) [43] provides a new solution to
the problem through ‘shortcut connections’. The pre-activated
residual unit proposed by He et al. [44] was used in SAResNet. It is
shown in Figure 2C that the implementation of the l-th residual
block can be expressed as follows:

xl+1 = xl + F
(
f̂ (xl) ,Wl

)
(8)

where xl and xl+1 denote the input and output of the l-th residual
basic block, respectively; Wl is a set of weights associated with
the l-th residual block, while F stands for the residual function.
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Table 1. The hyper-parameters of SAResNet and the corresponding search space

Calibration parameters Search space Sampling

Learning rate (global model) [0.001, 0.0005]a Evaluate all
Learning rate (transfer learning) [0.001, 0.0003]a Evaluate all
Kernel numbers {32, 64, 128} Uniform
Attention block {1, 2, 3} Uniform
Optimizer Adam Fixed
Weight initialization Truncated normal Fixed
Dropout ratio {0.5, 0.7} Uniform

astep = 1e-4.

SAResNet pipeline and network architecture

Leveraging the power of the self-attention module and the
residual structure, we designed and implemented our SAResNet
pipeline. As shown in Figure 2A, the one-hot encoded DNA
sequence was used as the input feature (1 × L × 4). Since the
length of the sequence is long, the computational cost would
be intensive if the original feature was directly input into the
residual block. Hence, we first employed a convolutional layer of
1×7 to transform the input into a signal with a big channel size;
i.e., 64. A larger convolution kernel saves as much information
as possible from the original input. The ELU activation function
follows, and the experiments show that training models using
ELU converges faster than RELU [45]. Then, we used the max-
pooling layer for further down-sampling. The learned features
were then fed into a group of residual basic blocks. Each
block contains two convolutional layers, and the size of both
kernels was 1 × 3. The ELU activation function and the Batch
Normalization technology [41] were used in each of these blocks.
Next, the average pooling layer was used to reduce the amounts
of parameters and save computing power. To a certain extent, the
application of the average pooling layer can control overfitting
and improves the model performance. All convolution padding
parameters were set to ‘SAME’, which means that the size
of the feature map remained unchanged after convolution.
Finally, two fully connected layers (FC) with dropout [46] and
a softmax activation function were used in the final stage of
the SAResNet architecture. A dropout rate of 0.7 was utilized in
the hidden layers to suppress overfitting. The softmax function
converts the output into the probability distribution over two
classes.

Model implementation and hyperparameter settings

The model, which was implemented using the Tensorflow
framework (v1.12) [47], was trained on a single NVIDIA
TITAN X Graphics Card. In the model training process, we
utilized the softmax cross-entropy function to calculate the
loss and optimized the model by the Adam method [48].
We adjusted the network’s hyperparameters by observing
the model performance on the validation set (global-VL).
The detailed hyperparameter settings are summarized in
Table 1. In this study, we tuned the hyper-parameters by
optimizing on global-TR and testing on global-TS through
grid search (i.e., by enumerating the possible value of each
hyper-parameter, a set of which can lead to a relatively high
accuracy and ensure the execution efficiency of the model).
Then, transfer learning was performed to further train the
model on the respective training subsets. The trained models
were tested independently with the corresponding testing
subsets.

Transfer learning

Transfer learning [49]: Based on a large model, which is trained
on a large dataset for a specific task, we utilized limited data to
further train the models for other related tasks. In the present
study, we used the large dataset global-TR for initial training,
and then transfer learning was employed by using 690 ChIP-
seq datasets. Irrespective of global training or transfer learning,
search for hyper-parameters was conducted on the validation
set and the model performance was evaluated on each testing
subset. During transfer learning, we trained all the weights of
the initial model without freezing any layers, because we found
that this worked better than the models that froze part of the
layers. We reached the above conclusions by comparing the per-
formance of the transfer learning models under different freez-
ing conditions on 690 ChIP-seq testing sets. The correspond-
ing experimental results are shown in Supplementary Table S2.
We can see that the SAResNet-no-freeze method scored higher
on various performance indicators than the other models that
froze part of the layers. At this stage, we used the same hyper-
parameters as those used for training on global-TR, except for
the learning rate, which was set at smaller values. The smaller
learning rate ensures that the model converges more smoothly.

Results and discussion
Global learning is better than direct learning

We trained our SAResNet model using the curated non-
redundant set of DNA sequences (i.e., global-TR, global-VL and
global-TS). We used the optimal hyper-parameters obtained
by grid search to train the global model on the training set
containing the global-TR and global-VL. At the test stage, the
performance of SAResNet model was tested on the global-TS
through the global model. The architecture of our proposed
SAResNet model is shown in Figure 2. The performance of the
global model on 690 ChIP-seq testing subsets is given in Table 2.
The individual models were generated by training on 690 ChIP-
seq datasets, respectively. In detail, the global model achieved a
11.1% improvement in terms of the average AUC for predicting
DNA-protein binding over the individual model. As shown
in Table 2, the global model has significantly improved the
accuracy, precision, recall and F1 score. ‘Direct learning’ means
the process of training individual models. ‘Global learning’
means the process of training the global model. Figure 3A–C
provides the head-to-head AUC score comparison among direct
learning, global learning and transfer learning on 690 ChIP-seq
testing subsets through the scatter diagrams, where each of
690 testing subsets corresponds to a point whose X coordinate
and Y coordinate indicate the AUC scores of the corresponding
methods. Figure 3D–F correspond to Figure 3A–C respectively,
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Table 2. Performance of the individual model and global model on the 690 ChIP-seq testing sets

Method Accuracya Precisiona Recalla F1 scorea AUCa

Individual model 0.728 0.735 0.723 0.723 0.790
Global model 0.794 0.808 0.771 0.786 0.878

aAll performance evaluation metrics are obtained by averaging the performance on the 690 testing subsets.

Figure 3. Head-to-head AUC score comparison of direct learning, global learning and transfer learning on 690 ChIP-seq testing subsets. The scatter plot A shows the

performance comparison between direct learning and global learning. The scatter plot B shows the performance comparison between direct learning and transfer

learning, while the scatter plot C shows the performance comparison between global learning and transfer learning. The stacked histograms D, E and F correspond to

the scatter plots A, B and C, respectively. Each of them describes the performance improvement in terms of the AUC score of the corresponding scatter plot’s y-axis

method compared to the x-axis method with respect to the scale of the datasets. For example, the stacked histogram D corresponds to scatter plot A, where the x-axis

in panel D corresponds to the x-axis of panel A, with the x-axis representing the AUC score and the y-axis representing the number of datasets of different scales,

respectively. Panel D shows the performance improvement on different scaled datasets represented by the points above the diagonal in panel A. Explanations of Panels

E and F are similar to that of panel D.

reflecting the performance differences of direct learning, global
learning and transfer learning from the perspective of different
scaled datasets. Taking Figure 3A as an example, we can see
that 509 points are located above the diagonal line, while the
other 181 points are below the diagonal line. This illustrates
that global learning performed better than direct learning on
the majority of the testing subsets. Figure 3D clearly shows
that the performance improvement of global learning compared
with direct learning is mainly on small and medium datasets,
while the performance improvement on large datasets is small
(The definition of small datasets, medium datasets and large
datasets refers to the Section ‘Comparison of SAResNet with
other predictors’.) Figure 4 provides the ROC curve and PR
curve of the global learning on the global-VL and global-TS
subsets. From Figure 4, we can observe that the classification
performance of the model is approximately the same for both
the global-VL and global-TS irrespective of the ROC curve and

the PR curve. Such consistent performance in terms of the
AUC highlights the robustness of the global model, which
achieved an AUC of 0.889 and 0.892 for global-VL and global-TS,
respectively.

Transfer learning further improves
the prediction performance

The global model obtained from pre-training was transferred to
each of the 690 ChIP-seq datasets for further training. The com-
prehensive performance of the transfer model is given in Table 3.
The results indicate the performance of directly applying the
global model to predict 690 ChIP-seq datasets, which provides
inferior but reasonable performance compared with the model
after transfer learning. In 690 testing subsets, the average AUC
increased by 4.8% from 0.878 to 0.920. Its F1 score improved over
the global model by 7.5% from 0.786 to 0.845.
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Figure 4. ROC Curve and PR Curve of the global training assessing the performance on global-VL and global-TS.

Table 3. Performance of the global model and transfer model on the 690 ChIP-seq testing sets

Method Accuracya Precisiona Recalla F1 scorea AUCa

Global model 0.794 0.808 0.771 0.786 0.878
Transfer model 0.849 0.861 0.831 0.845 0.920

aAll performance evaluation metrics are obtained by averaging the performance on the 690 testing subsets.

To further examine the effectiveness of transfer learning, we
also directly trained the model with the same network architec-
ture and hyper-parameters (i.e., the number of residual blocks,
the number of self-attention blocks, the number of filter and
the kernel size) on the 690 ChIP-seq datasets. The performance
of the resulting model by individual learning is also shown in
Table 2. However, this model achieved a much lower perfor-
mance than that of transfer learning (i.e., 16.5% reduction of the
average AUC). These results proved the difficulty of using small
datasets to directly train the deep network and also showed
that the large dataset could be used to effectively enhance the
learning ability of the deep network. As shown in Figure 3B,
we also found that 688 points were located above the diagonal
line, while only two points were located below the diagonal line.
The results indicate that the performance of transfer learning
was significantly improved compared to that of direct learn-
ing. Figure 3C also exhibits the same phenomenon. Importantly,
transfer learning outperformed direct learning and global learn-
ing across almost all the testing subsets. Both Figure 3E and F
shows that the performance of transfer learning is better than
direct learning and global learning on different scaled datasets.

Although the data volume of these datasets was very
small, the performance of trained model has been significantly
improved because of transfer learning. The pre-training phase
of transfer learning is equivalent to giving a satisfactory set
of initialization parameters, which enables the network to
find a better local optimal solution even with less training
data available. Individual learning initialized the model by
truncating the normally distributed random numbers. In the
case of sufficient data, more iterations are needed to approach
the performance of the transfer learning model. If the amount
of training data is insufficient, the performance of the model

after direct learning is hard to achieve the performance of the
transfer learning model.

Of course, the prerequisite for transfer learning to work is
that the pre-training data and the fine-tuning data have a cer-
tain similarity. In this study, the relationship between the pre-
training data and fine-tuning data is commonality and individ-
uality. More specifically, the pre-training dataset was used to
predict whether the DNA sequence can be bound to any tran-
scription factor, and the task of this work is to predict whether
the DNA sequence can be bound to a specific transcription factor.

Is the self-attention mechanism effective?

To better understand the effect of the proposed self-attention
mechanism, we added the self-attention block in front of the
first three residual structures of the deep network and per-
formed the side-by-side comparison with the network without
the self-attention mechanism. As shown in Table 4, nearly all
the performance metrics of the model after adding the self-
attention mechanism have been improved, thus illustrating the
effectiveness and reliability of the self-attention mechanism.
In the case of different numbers of convolutions in the resid-
ual structure (i.e., 32 and 64), comparative experiments were
performed respectively, and the distribution of AUC is shown
in Figure 5A and B. Irrespective of which network architecture
with convolution kernel of 32 or 64, the overall performance
of the model with the self-attention mechanism was consis-
tently better than that of the residual network with the same
structure. For example, the average AUC of the model increased
from 0.912 to 0.920 after adding the attention mechanism in
the model with 64 convolution kernels. In Figure 5C and D, the
models with the self-attention mechanism performed better
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Table 4. Performance of the transfer learning models with different convolution quantities under the two conditions with or without the
self-attention mechanism on 690 ChIP-seq testing sets

Method Accuracya Precisiona Recalla F1 scorea AUCa

Non-Attention-32 0.825 0.835 0.812 0.822 0.900
Self-Attention-32 0.838 0.850 0.822 0.835 0.911
Non-Attention-64 0.839 0.844 0.832 0.838 0.912
Self-Attention-64 0.849 0.861 0.831 0.845 0.920

aAll performance evaluation metrics are obtained by averaging the performance on the 690 testing subsets.

than the models without the attention mechanism on 95.1 and
93.5% of the datasets, respectively. These results show that the
models trained with the self-attention mechanism achieved a
clear performance improvement.

The traditional convolution operation can only obtain local
sequence information, whereas the global information can be
obtained by superimposing the number of network layers [50].
The proposed residual structure makes the network deeper
while ensuring effective learning [43] and achieves excellent
results in computer vision tasks. However, due to continuous
sampling and the layer-by-layer transfer of information, a large
amount of information is lost, and the correlation within the
long-distance sequence is also weakened. The self-attention
mechanism enhances the attention to the protein binding
fragments in the sequence by incorporating the correlation
between different positions in the network model. It can well
capture the long-distance dependence of the sequence, integrate
the spatial information into the network, and then complement
with the local information obtained by convolution, so that
the network can effectively learn both the spatial location
information and local information. The experimental results
show that the spatial location information obtained by the
self-attention mechanism indeed improved the performance
of the model.

Comparison of SAResNet with other predictors

The existing DNA-protein binding prediction pipelines often
use transcription factor ChIP-seq from the ENCODE project as
the datasets. HOCNN [51], KEGRU [26] and DeepRAM [37] used
214, 125 and 83 ChIP-seq experiments, respectively, from the
ENCODE project to evaluate their respective models. To ensure
the integrity of the experiments and fairly evaluate the perfor-
mance of the model, we utilized all 690 ChIP-seq experimental
datasets to evaluate the model and compared it with gkm-SVM
[52], DeepBind [22], CNN-Zeng [23], DeepTF [29] and Expectation-
Luo models [24], all of which also used all the datasets.

We used the gkm-SVM R package (https://cran.r-project.org/
web/packages/gkmSVM) [53] with the default parameters for
performing the model training and prediction on 690 ChIP-seq
datasets. As described by Zeng et al. [23] and Zhou et al. [31],
because gkm-SVM cannot use all the training data to calculate
the complete kernel matrix, we adopted a method consistent
with these two studies: If the number of positive samples in the
training subsets was greater than 5000, we randomly selected
5000 positive samples from it, and also selected the same num-
ber of negative samples. We obtained the experimental data
of CNN-Zeng and DeepBind from http://cnn.csail.mit.edu/. In
addition, we obtained the source code of Expectation-Luo from
https://github.com/gao-lab/ePooling and trained and tested it on
a single NVIDIA TITAN X Graphics Card. The experimental data
of DeepTF were provided by its authors. For the convenience

of other researchers, the above experimental results can be
downloaded from our website.

Figure 6 shows the performance of SAResNet on these
datasets in comparison with gkm-SVM, DeepBind, CNN-
Zeng, DeepTF and Expectation-Luo. It can be seen that the
performance of SAResNet was better than all other methods.
Compared with these state-of-the-art methods, SAResNet has
achieved a significant performance improvement. Specifically,
the median AUC of SAResNet was 0.923, which was 4.4%
higher than the suboptimal model (0.884). This indicates that
SAResNet performed better than the other models. In terms of
the maximum value of AUC, the maximum values of all the
six models were higher than 0.990, but the minimum AUC of
SAResNet was considerably improved compared with the other
models, indicating that our model has a strong generalization
ability.

We further analyzed the impact of the amount of training
data on the model and then compared the performance of these
models on the datasets of different sizes. Since the sizes of 690
ChIP-seq experimental datasets were not consistent, we divided
these datasets into three major categories according to the size
of the training subset. The specific classification is detailed as
follows:

• Small datasets: there were 73 datasets with the size of the
training subset less than 3000.

• Medium datasets: there were 429 datasets with the size of
the training subset between 3000 and 30 000.

• Large datasets: there were 188 datasets with the size of the
training subset greater than 30 000.

From Table 5, it is clear that SAResNet achieved a statistically
significant performance improvement in terms of the AUC (stu-
dent’s t-test, p<1.9×10−11) on the three different-scaled datasets.
Compared with Expectation-Luo, which is the second-best per-
former, SAResNet has improved by 4.9, 5.6 and 2.0% on the three
types of datasets. In particular, we found that the performance
improvement was the most significant on small- and medium-
sized datasets. Moreover, to comprehensively understand the
performance of the proposed SAResNet method, we further
compared its performance with that of Expectation-Luo, CNN-
Zeng, DeepBind and gkm-SVM on different-scaled datasets in
terms of all five performance metrics (i.e., Accuracy, Precision,
Recall, F1 score and AUC) based on bar charts, as shown in
Figure 7. As can be seen, SAResNet outperformed the other four
methods on different scaled datasets in terms of almost all
the five performance metrics. As the precision of gkm-SVM
was very high but the recall was low, for fair evaluation, we
mainly compared its performance with SAResNet and other
methods based on the F1 and AUC indicators. Taken together, the
results demonstrate that transfer learning offers great advan-
tages over traditional training methods especially on small-scale
datasets.

https://cran.r-project.org/web/packages/gkmSVM
https://cran.r-project.org/web/packages/gkmSVM
http://cnn.csail.mit.edu/
https://github.com/gao-lab/ePooling
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Figure 5. Performance comparison the models trained with and without the self-attention module. Panels A and B, respectively, compare the AUC distribution of the

models with different convolution quantities under the two conditions with and without the self-attention mechanism. On each box, the intermediate mark indicates

the median, and the top and bottom edges of the box indicate the upper and lower quartiles, respectively. The upper and lower sides indicate the upper and lower

limits, while the diamond marks indicate outliers. Panels C and D, respectively, show the performance improvement effect of the model with self-attention mechanism

compared with the no-attention model on 690 ChIP-seq datasets through histograms. The x-axis represents the AUC difference between the self-attention and no-

attention model. In panel C, the models with the self-attention mechanism outperformed the no-attention models on 656 datasets, but performed worse than the

no-attention models on 34 datasets. Similar results are shown in panel D.

Table 5. Performance comparison between SAResNet and the other prediction methods on the datasets with different scales

Methods All datasets Small datasets Medium datasets Large datasets P-valuea

SAResNet 0.920 0.876 0.907 0.966 -b

Expectation-Luo 0.881 0.835 0.859 0.947 1.9 × 10−11

CNN-Zeng 0.875 0.818 0.850 0.953 6.1 × 10−12

DeepTF 0.845 0.809 0.818 0.919 9.8 × 10−14

DeepBind 0.830 0.785 0.809 0.896 2.2 × 10−14

gkm-SVM 0.818 0.798 0.805 0.856 5.7 × 10−168

aThe P-values of student’s t-test for the difference in AUC values between SAResNet and the existing DNA-protein binding predictors.
b‘-’ indicates that the corresponding value does not exist.

Conclusions
In this study, we have designed and implemented a novel
deep transfer learning approach, SAResNet, to predict DNA-
protein binding in DNA sequences. In particular, we combined
the self-attention mechanism and the residual structure to
develop a deep learning architecture and trained the network
model through transfer learning. Benchmarking experiments
show that the performance of SAResNet is superior to other
state-of-the-art methods on the 690 ChIP-seq datasets. The
characteristics of this approach are summarized as follows:

First, we merged 690 ChIP-seq datasets and performed sequence
homology removal to avoid any biased model training. The
model was then initialized with the generated dataset, and fine-
tuned on the respective datasets by transfer learning to predict
specific binding sites. This approach has a faster convergence
rate than other deep learning prediction methods. Second, we
designed a self-attention mechanism to effectively learn the
long-range dependencies from the DNA sequence, which can
compensate for the global information loss caused by the stack-
ing of residual structures. Furthermore, we demonstrate that
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Figure 6. The distribution of AUCs across 690 experimental datasets for DNA-protein binding prediction.

Figure 7. Performance evaluation on small, medium, large and all datasets. Panels A, B and C display the performance comparison of gkm-SVM, DeepBind, CNN-Zeng,

Expectation-Luo and SAResNet on the small, medium and large datasets. Panel D shows the performance result of gkm-SVM, DeepBind, CNN-Zeng, Expectation-Luo

and SAResNet on all 690 ChIP-seq datasets. Note that the values on the y-axis represent the performance metrics scores.

the attention mechanism and transfer learning can effectively
improve the prediction performance of the trained models.

Although SAResNet has achieved a good performance on
predicting DNA-protein binding, it has roughly determined the

hyper-parameter of SAResNet in limited experiments due to the
limitation of time and computing resources. Therefore, there
is still a further room for SAResNet to improve. In addition,
there are some other important aspects that may be improved,
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which include: First, SAResNet is currently only used to pre-
dict fixed-length DNA sequences. In this regard, we could con-
sider adding bidirectional LSTM to process input sequences of
different lengths. Second, SAResNet is a network architecture
designed to predict DNA-protein binding. In the future, it can
be generally applied to address other prediction problems in
bioinformatics and computational biology such as predicting
DNA-protein binding sites from protein sequences [53–55] and
RNA-binding sites [56, 57]. Finally, we hope that SAResNet will be
exploited as a useful tool to improve our further understanding
of deep learning models and contribute to the elucidation of
gene regulation mechanisms at the genomic level.

Key Points
• This study proposes a novel transfer learning-based

deep learning pipeline, which combines the self-
attention mechanism and transfer learning, to
improve the prediction of DNA-protein binding from
DNA sequences.

• The pre-training strategy employed in the pipeline
improves the learning ability of the network and accel-
erates the convergence speed of the network during
transfer learning.

• The self-attention mechanism can enable the effec-
tive learning of the long-range dependencies from the
DNA sequence, thereby compensating for the global
information loss caused by the stacking of residual
structures.

• Based on the proposed pipeline, a novel DNA-protein
binding predictor, termed SAResNet, is implemented.
Benchmarking results demonstrates the superior per-
formance of SAResNet compared to other exist-
ing state-of-the-art predictors on the 690 ChIP-seq
datasets.

• A web server (http://csbio.njust.edu.cn/bioinf/saresne
t/) has been made publicly available for the prediction
of DNA-protein binding, providing a faster tool than
other deep learning-based methods for DNA-binding
prediction.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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