Skip to main content
. 2021 Oct 26;9(10):e25110. doi: 10.2196/25110

Table 4.

Performance of machine learning models using different sets of features as predictors (logistic regression).

Algorithm Accuracy, mean (SD) Sensitivity, mean (SD) Specificity, mean (SD) AUCa, mean (SD) Macro F1, mean (SD)
115 features 0.8400 (0.0100) 0.7767 (0.0321) 0.8933 (0.0416) 0.9188 (0.0048) 0.8367 (0.0153)
67 features 0.8400 (0.0200) 0.8333 (0.0945) 0.8333 (0.0643) 0.9177 (0.0066) 0.8367 (0.0252)
22 features 0.8567 (0.0208) 0.8100 (0.0173) 0.8933 (0.0503) 0.9108 (0.0045) 0.8567 (0.0208)

aAUC: area under the curve.