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Abstract

Epidemiological surveys suggest that excessive drinking is associated with higher risk of 

Alzheimer’s disease (AD). The present study utilized data from the National Alzheimer’s 

Coordinating Center data set to examine cognition as well as gray/white matter and ventricular 

volumes among participants with AD and alcohol use disorder (AD/AUD, n=52), AD only 

(n=701), AUD only (n=67), and controls (n=1283). AUD diagnosis was associated with higher 

Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) in AD than in non-AD. AD performed 

worse on semantic fluency and Trail Making Test A + B (TMT A + B) and smaller total 

GMV, WMV, and larger ventricular volume than non-AD. AD had smaller regional GMV in the 

inferior/superior parietal cortex, hippocampal formation, occipital cortex, inferior frontal gyrus, 

posterior cingulate cortex, and isthmus cingulate cortex than non-AD. AUD participants had 

significantly smaller somatomotor cortical GMV and showed a trend towards smaller volume in 

the hippocampal formation, relative to non-AUD participants. Misuse of alcohol has an additive 

*Correspondence: Simon Zhornitsky, Ph.D., Connecticut Mental Health Center, S110A, 34 Park Street, New Haven, CT 06519-1109, 
USA, simon.zhornitsky@yale.edu, Phone: 203-974-7362. 

Conflict of Interest
The authors have no conflicts of interest to declare.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Psychiatry Res Neuroimaging. Author manuscript; available in PMC 2022 November 30.

Published in final edited form as:
Psychiatry Res Neuroimaging. 2021 November 30; 317: 111380. doi:10.1016/j.pscychresns.2021.111380.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effect on dementia severity among AD participants. Smaller hippocampal volume is a common 

feature of both AD and AUD. Although AD is associated with more volumetric deficits overall, 

AD and AUD are associated with atrophy in largely distinct brain regions.

1. Introduction

1.1 Alcohol use, AD risk and cognitive function

Epidemiological studies suggest that excessive drinking and life-time alcohol use are 

associated with the risk of Alzheimer’s disease (AD) (Rehm et al., 2019; Xu et al., 

2017). Among patients with possible or probable AD, a history of heavy drinking was 

associated with an earlier onset of AD (Harwood et al., 2010). A prospective 7-year 

study of over 3,000 men showed that daily drinking was associated with a hazard ratio 

of 2.14 of AD (Zhou et al., 2014). A study evaluating 1394 participants with mild cognitive 

impairment (MCI) showed that, among the AD risk factors, including depression, obesity, 

and hypercholesterolemia, alcohol use most significantly elevated the risk of cognitive 

decline, regardless of AD pathology (Bos et al., 2017). Heavy drinkers dually diagnosed 

with AD demonstrated faster cognitive decline on the Mini-Mental State Examination, 

relative to mild-moderate drinkers or abstainers during 19-year follow-up (Heymann et al., 

2016). On the other hand, some studies suggest that lower-level drinking can be protective 

against AD. For example, individuals who consumed less than one drink per week showed 

lower Modified Mini-Mental State Examination scores at follow-ups, compared to abstainers 

(Koch et al., 2019). The adjusted odds for dementia were lower in individuals consuming 

less than one (0.65), one to six (0.46), seven to 13 (0.69) drinks but higher for those with 14 

or more drinks (1.22) per week, relative to non-drinkers (Mukamal et al., 2003). Thus, how 

alcohol use impacts the brain and influences the onset of AD likely depends on the severity 

of alcohol consumption (Rehm et al., 2019). A meta-analysis of eleven studies with 73,330 

participants and 4,586 cases of all-cause dementia (AD and vascular) reported that modest 

(≤12.5 g/day) and excessive (≥38 g/day) alcohol consumption are associated with a reduced 

and elevated risk of dementia respectively (Xu et al., 2017).

Despite this literature suggesting potential effects of heavy alcohol use on the development 

of AD, few studies have systematically investigated cognition in AD, relative to AUD. An 

earlier work reported that individuals with AD relative to those with AUD exhibited worse 

performance on all cognitive measures, including attention, naming, immediate and delayed 

recall, visuo-constructive ability, semantic fluency, and executive function (Liappas et al., 

2007). Further, it remains unclear whether AD and AUD share or show distinct neural 

pathology at the systems level.

1.2 Alcohol use and AD pathology

Experimental research has aimed to elucidate the mechanisms underlying alcohol use 

as a risk factor for AD. AD pathogenesis is driven by abnormal extracellular β­

amyloid plaques and intracellular neurofibrillary tangles of tau proteins, leading to 

neurodegeneration and progressive cognitive impairment. Post-mortem studies have revealed 

early neurodegenerative changes in the entorhinal cortex, followed by the hippocampal 

formation and isocortex (Braak et al., 2006; Braak et al., 1993). β-amyloid is produced 
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by β-secretase (BACE1) and γ-secretase via proteolytic cleavage of amyloid precursor 

protein (APP) (Heneka et al., 2015; Hooper, 2005; Tiraboschi et al., 2004). Animal research 

suggests that chronic alcohol administration accentuates AD pathogenesis by increasing the 

expression of APP, BACE1, and γ-secretase subunits in the hippocampus, cerebellum, and 

striatum (Kim et al., 2011). Chronic alcohol administration increases levels of APP and 

BACE1 and promotes β-amyloid production both in vitro and in vivo in transgenic AD 

model mice (Huang et al., 2018). Furthermore, chronic alcohol administration increases 

β-amyloid deposition and neuritic plaque formation in the brain and worsens learning and 

memory impairments (Huang et al., 2018). In addition to these effects on the primary 

disease process of AD, alcohol alone exerts neurotoxic effects and reduces neuroreceptor 

densities in the hippocampal formation and other brain regions (Freund and Ballinger, 1988, 

1989a, b, 1992; Laukkanen et al., 2013; Nordberg et al., 1983), which can produce AD-like 

cognitive deficits, though less severe and reversible (Sullivan and Pfefferbaum, 2005). Thus, 

AD and AUD may demonstrate shared and distinct neuropathologies.

1.3 Brain imaging studies of AD and AUD

Structural brain imaging provides a venue to investigate the neuropathology shared by and 

potentially distinct to AD and AUD. A recent study found that frequent alcohol use was 

independently associated with diminished gray matter volumes (GMV) in the posterior 

cingulate cortex (PCC), thalamus, hippocampus, and orbitofrontal cortex, brain regions 

widely implicated in the progression of AD (Suzuki et al., 2019). Alcohol-dependent 

patients showed smaller GMV in the medial frontal and lateral prefrontal cortex as well 

as posterior cortical regions, and the extent of GMV reduction predicted relapse to heavy 

drinking (Rando et al., 2011). Recent mega-analyses/meta-analyses identified smaller and/or 

thinner anterior/posterior cingulate, superior frontal, lateral orbitofrontal, and temporal 

cortex as well as the hippocampus, insula, thalamus, and striatum in alcohol-dependent 

individuals (Hahn et al., 2020; Mackey et al., 2019; Yang et al., 2016). A recent meta­

analysis revealed deficits in the frontal white matter and corpus callosum in AUD relative to 

healthy participants (Nowaczyk, 2019). These volumetric deficits have also been reported in 

AD. A meta-analysis showed significantly smaller GMV in the parahippocampal gyrus, 

PCC, fusiform and superior frontal gyri in AD versus controls (Wang et al., 2015). 

Another meta-analysis reported smaller white matter volumes in the inferior temporal gyrus, 

splenium of the corpus callosum, parahippocampal gyrus, and hippocampus in AD relative 

to controls (Wang et al., 2015). These data suggest both shared and distinct gray and white 

matter volumetric deficits in AD and AUD.

However, very few imaging studies have directly compared individuals with AD and AUD, 

and none have compared AD-alone to participants dually diagnosed with AD and AUD. 

An earlier work reported higher spin lattice relaxation times (T1) – indicative of higher 

water content and atrophy – in the frontal and temporal gray and white matter as well 

as the parietal and occipital white matter in AD, and higher T1 only in the frontal white 

matter in alcohol-related dementia, as compared to healthy individuals (Besson et al., 

1989). Further, AD participants had higher T1 in the parietal and temporal white matter, 

relative to those with alcohol-related dementia. Another study reported larger ventricles and 

disrupted integrity of the corpus callosum in both AD and AUD vs. controls, and in AD vs. 
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AUD (Pitel et al., 2010). More studies are warranted to investigate whether AD and AUD 

may demonstrate different cerebral volumetric deficits as well as the volumetric bases of 

cognitive dysfunction.

1.4 The present study

The present study examined cognition and brain volumes in participants with AD and AUD 

(AD+AUD+), AD only (AD+AUD−), AUD only (AD−AUD+), and controls (AD−AUD−). 

Our goal was to explore both shared and distinct volumetric changes and how these 

structural brain deficits may relate to cognitive dysfunction in AD and AUD. In particular, 

we examined whether AUD would add significantly to cognitive dysfunction and volumetric 

deficits observed in AD.

2. Methods

2.1 Dataset: participants and clinical assessments

We included participants from the National Alzheimer’s Coordinating Center (NACC) data 

set (https://naccdata.org/; September 2020 data freeze). The NACC data are contributed 

by approximately 39 past and present Alzheimer’s Disease Research Centers (ADRCs) 

supported by the U.S. National Institute on Aging. Since 2005, ADRCs have contributed 

standardized cognitive, behavioral, and functional data from approximately annual study 

visits to a common database, known as the NACC-Uniform Data Set or UDS (Beekly et al., 

2004; Besser et al., 2018; Morris et al., 2006; Weintraub et al., 2009). A subset of ADRCs 

have also submitted structural MRI data (Alosco et al., 2018) to NACC to include with 

the UDS. The clinic-based population includes participants with AD and related disorders 

and MCI as well as cognitively normal participants. The recruitment and data collection 

procedures have been described previously (Beekly et al., 2007; Morris et al., 2006). All 

ADRCs that contribute data to NACC are approved by their local Institutional Review 

Boards and participants provided informed consent at the ADRC where they were enrolled.

Figure 1 shows the flow chart of participant inclusion and exclusion. We included 

participants with AD and a history of alcohol abuse (AD+AUD+ group; n=52), AD without 

a history of alcohol abuse (AD+AUD−; n=701), alcohol abuse without AD (AD−AUD+; 

n=67), and non-demented non-AUD controls (AD−AUD−; n=1283). MRI scans were not 

always performed at the time of UDS visits, when neuropsychological, neurological, and 

neuropsychiatric data were collected. Thus, MRI visits were matched ± 6 months within 

a UDS visit. When multiple MRI visits were available, the latest visit was chosen. The 

diagnosis of alcohol abuse was based on DSM-IV criteria. The diagnoses of AD were based 

on available UDS data, including neuropsychological, neurological, and neuropsychiatric, 

and imaging findings. Clinical research diagnoses of cognitive status and disease etiology 

were made at each UDS visit using established criteria for MCI and AD dementia. 

The NACC variable ALCOHOL was used to identify participants with (1=recent/active; 

2=remote/inactive) and without a history of alcohol abuse (0=absent). It is defined as 

clinically significant impairment occurring over a 12-month period and manifested in 

one of the following areas: work, driving, legal, or social. The UDS protocol does not 

exclude participants with alcohol dependence. Thus, participants with [ALCOHOL] may 
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be presumed to have a history of AUDs (i.e., alcohol abuse or dependence). Among those 

with an AUD, the ratio of current to past to unknown alcohol abuse history was 13:37:2 

in AD+AUD+ group and 10:57:0 in AD-AUD+ group (χ2=4.833; p=0.09). Due to missing 

data on the ALCOHOL variable (n=584), additional participants without alcohol abuse were 

identified using the coding ALCABUSE = 8 (participants with normal cognition or who are 

cognitively impaired without an etiologic diagnosis of alcohol abuse).

As shown in Table 1, AD participants were older than non-AD (F=40.7; p<0.001) 

participants, and AUD participants were older than non-AUD participants (F=7.0; p=0.008). 

The ratio of men vs. women among AD and AUD participants was higher than among non­

AD (χ2=47.8; p<0.001) and non-AUD (χ2=27.8; p<0.001) participants, respectively. The 

level of education among AD and AUD participants was lower than among non-AD (F=6.9; 

p=0.009) and non-AUD (F=20.7; p<0.001) participants, respectively. Thus, we included age, 

sex, and years of education in all data analyses, including the analysis of variance and 

stepwise linear regression (See Results).

All participants were administered a standardized battery of neuropsychological tests at each 

study visit. These NACC-UDS tests are described in detail elsewhere (Beekly et al., 2004; 

Besser et al., 2018; Monsell et al., 2016; Weintraub et al., 2009). Dementia severity was 

examined using the CDR® Dementia Staging Instrument Sum of Boxes (CDR-SB) (Morris, 

1993). Participants were asked to name as many 1) animals and 2) vegetables as they could 

in 60 seconds and scores were combined into a composite measure of semantic fluency. 

Speed of information processing and executive function were examined using Trail-making 

tests (TMT) A and B, respectively. Higher scores reflect worse performance on the CDR-SB 

and TMT A and B but better performance on semantic fluency.

2.2 MRI procedures and data processing

NACC MRI data used in the current study were acquired at fifteen different ADRCs using 

fifteen different scanner models of three different manufactures at 1.5 or 3 Tesla. The 

distribution of participants scanned on various models among the groups was skewed: 

AD+AUD+ were scanned on 8 of the 15 models; AD+AUD− on all of the 15 models; 

AD−AUD+ on 9 of the 15 models; and AD−AUD− on 14 of the 15 models. MRI data at 

NACC are best characterized as a convenience sample of images. Imaging data collection 

and acquisition protocols varied by ADRC. Each individual was scanned with a number of 

sequences but for this study we only used the baseline T1-weighted volumetric scans. GMV, 

WMV, and ventricular volume were computed by the IDeA lab at UC Davis following 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) protocols (Supplementary Methods).

2.3 Data analyses

Data were analyzed using IBM SPSS Statistics 26.0. Chi-square was used to analyze 

categorical data. A two-way analysis of covariance (ANCOVA) was used to analyze 

continuous data between the groups with sociodemographic, cognitive and MRI data as 

dependent variables and groups AD and AUD as fixed factors. Age and sex were entered as 

covariates in the analyses of clinical and cognitive test data.
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The data of total intracranial volume (TIV), total GMV, WMV, lateral and third ventricular 

volume as well as the GMVs of 62 distinct brain regions were derived from data processed 

by IDeA lab (Aljabar et al., 2009; Fletcher et al., 2012a; Leung et al., 2011). The 

hippocampal volume was noted to comprise both gray and white matters. In the analyses of 

the 64 regional volumes, we performed principal component analysis (PCA) with promax 

rotation (K=4) and factor scores saved using a regression method. Component extraction 

was based on the latent root criterion where all factors with eigenvalues < 1 were discarded 

as insignificant. We set a minimum loading value at 0.4 for inclusion in a component for 

interpretative purposes (Stevens, 1992). Age, sex, and TIV were entered as covariates in 

the AD (+ vs. −) × AUD (+ vs. −) ANCOVA, and false discovery rate (FDR, p<0.05) was 

employed to correct for multiple comparisons.

To identify the “predictors” of cognitive performance, we first performed PCA on CDR­

SB, TMT-A, TMT-B, and semantic fluency score to identify potentially distinct cognitive 

metrics. The PCA identified only one component with an eigenvalue > 1 and the weight 

of this PC served as the dependent variable of cognition. In stepwise linear regression with 

GMV components that differed significantly between the groups (see Results) and covariates 

(age, sex, years of education, and TIV) as the regressors, we identified the variables that best 

predicted this PC. Stepwise regression generates consecutive models in which significant 

predictors are sorted according to the amount of variance they account for in explaining a 

given dependent variable. An independent variable is added if the F test yields a p<0.05 and 

is removed if p>0.10. This is done until the model contains only the significant variables.

3. Results

3.1 Clinical characteristics

AD and AUD participants had higher CDR-SB than non-AD (F=473.4; p<0.0001) and 

non-AUD (F=10.2; p=0.001) participants, respectively. Further, there was a greater effect of 

AUD in AD than in non-AD participants (F=7.6; p=0.006). In the semantic fluency test, AD 

participants were able to name fewer animals and vegetables in 60 seconds than non-AD 

participants (F=295.6; p<0.0001). Finally, AD participants took more time to complete TMT 

A (F=100.4; p<0.0001) + B (F=212.7; p<0.0001) than non-AD participants. There were no 

significant interaction effects in semantic fluency or TMTs.

PCA of CDR-SB, semantic fluency and TMTs identified a single component with an 

eigenvalue > 1, which accounted for 70.1% of the variance. ANCOVA on this PC showed 

that AD and AUD participants had poorer cognitive performance than non-AD (F=490.4; 

p<0.0001) and non-AUD (F=5.7; p=0.02) participants, respectively, without a significant 

interaction effect.

3.2 Brain volumes

In ANCOVA with age, sex, years of education, and TIV as covariates, AD participants 

had smaller total GMV (F=70.5; p<0.0001) and WMV (F=5.2; p=0.02) than non-AD 

participants. AD participants also had larger lateral (F=83.2; p<0.0001) and third ventricular 
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volumes (F=25.9; p<0.0001) than non-AD participants (Table 2). There were no significant 

AUD group main or AD × AUD interaction effect in any of these volumetric measures.

PCA of the 64 regional brain volumes revealed 8 components with an eigenvalue > 1 

(Supplementary Table S1), with heaviest loadings on regions of the somatomotor cortex for 

component 1, inferior/superior parietal cortex (IPC/SPC) for component 2, the hippocampal 

formation for component 3, the occipital cortex for component 4, the inferior frontal 

gyrus (IFG) for component 5, the anterior cingulate cortex for component 6, the PCC for 

component 7, and the isthmus cingulate cortex (ICC) for component 8.

For each of the volumetric PCs, we performed an ANCOVA with age, sex, years of 

education and TIV as covariates. AUD vs. non-AUD showed smaller GMV for the 

somatomotor cortex (F=5.8; p=0.02) and a trend towards smaller hippocampal formation 

(F=4.7; p=0.03). AD vs. non-AD showed smaller GMV for the IPC/SPC (F=83.1; 

p<0.0001), hippocampal formation (F=235.6; p<0.0001), occipital cortex (F=9.6; p=0.002), 

IFG (F=23.4; p<0.0001), PCC (F=62.4; p<0.0001), and ICC (F=6.8; p=0.009) (Table 3). 

None of the interaction effects were significant.

3.3 Relationship between GMVs and cognitive performance

As described earlier, PCA on CDR-SB, semantic fluency and TMTs revealed one 

component with an eigenvalue > 1 and explaining 70.1% of the variance. The stepwise 

regression produced the best model with five volumetric predictors—hippocampal 

formation, IPC/SPC, PCC, somatomotor cortex, and ICC, in that order — which along 

with age, sex, education and TIV accounted for 50% of the variance (F=232.8; p<0.0001) 

(Table 4). Smaller volumes in the hippocampal formation (t= −6.1; p<0.0001), IPC/SPC (t= 

−14.9; p<0.0001), PCC (t= −3.9; p<0.0001), and somatomotor cortex (t= −3.8; p=0.0001) 

were associated with worse cognitive performance. Conversely, larger ICC volumes were 

associated with worse performance, though only at marginal statistical significance (t=2.2; 

p=0.02).

4. Discussion

Both AD and AUD are associated with cognitive deficits, with an interaction effect showing 

a significantly higher CDR-SB in AD+AUD+ than in AD+AUD−. Whereas AD is associated 

with widespread reduction in GMVs and white matter volumes (WMV), AUD is associated 

more specifically with GMV deficits in the somatomotor cortex. After accounting for 

age, sex, education and TIV, volume of the hippocampal formation represents the most 

significant predictor of cognitive function for the entire cohort. We highlighted the main 

findings in discussion.

4.1 Cognitive dysfunction

AD and AUD showed higher CDR-SB, relative to non-AD and non-AUD participants, 

respectively, and the effects of AUD diagnosis showed significant influences on CDR-SB 

in AD participants. This finding is consistent with epidemiological studies showing that 

heavy drinking represents a major risk factor of AD (Bos et al., 2017; Harwood et al., 

2010; Xu et al., 2017; Zhou et al., 2014) and an earlier report that patients with AD and 
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AUD dual diagnosis demonstrated faster cognitive decline, compared to those with AD who 

were mild-moderate drinkers or abstainers (Heymann et al., 2016). In contrast, patients with 

AD+AUD+ who were alcohol abstainers did not appear to demonstrate disproportionate 

cognitive deficits compared with those with AD alone (Rosen et al., 1993; Toda et al., 2013). 

These findings together suggest that the effects of AUD on cognitive functioning of AD may 

not be permanent (Sullivan and Pfefferbaum, 2005). In the present study, we included both 

past and current AUD participants, which may explain the lack of an interaction effect for 

semantic fluency and TMT performance.

AD had poorer semantic fluency, performance on TMT A + B, and cognitive PC1 than 

non-AD participants. Semantic processes are distinctively disrupted early in the course of 

AD, likely due to parietal/temporal cortical pathology (Baldo et al., 2006; Clark et al., 

2009; Eastman et al., 2013; Jutten et al., 2020). Semantic fluency declined the fastest in 

individuals at high risk for AD, including apolipoprotein E e4 carriers and those with 

amnesic MCI (Vonk et al., 2020). Semantic fluency captured significant one-year decline 

in AD as early as Stage 1 (no evidence of clinical impact) in the National Institute of 

Aging – Alzheimer’s Association clinical staging scheme, suggesting that it is disrupted 

early in the course of the disease (Jutten et al., 2020). A meta-analysis of 15,990 AD 

participants found that semantic but not phonemic fluency was significantly more impaired 

than measures of verbal intelligence and psychomotor speed (Henry et al., 2004). Structural 

MRI revealed that poorer semantic fluency was associated with bilateral atrophy of the IPC, 

frontal lobe, and temporal lobe in AD (Baldo et al., 2006). Lower baseline semantic fluency 

in AD was associated with less hippocampal volume as well as more cortical thinning and 

reduced glucose metabolism in the IPC, entorhinal cortex, ICC, and precuneus/PCC (Vonk 

et al., 2020). Further, some studies reported lower semantic fluency in alcohol misusers 

(Dao-Castellana et al., 1998; Heffernan et al., 2019; Villa et al., 2019), but others did not 

(Green et al., 2010; Nowakowska-Domagała et al., 2017; Topiwala et al., 2017). We also 

observed that AD took more time to complete TMT A + B than non-AD, consistent with 

previous studies (Jutten et al., 2020; Shindo et al., 2013; Terada et al., 2013). The TMT A 

and B each evaluates visuo-perceptual abilities and graphomotor speed, and task switching, 

respectively (Misdraji and Gass, 2010; Sánchez-Cubillo et al., 2009). AD who scored poorly 

vs. those who did well on the TMT-A showed hypoperfusion in the SPC (Shindo et al., 

2013). AD patients with poor vs. those with good TMT-B scores exhibited hypoperfusion in 

the anterior cingulate, caudate, putamen, and thalamus (Terada et al., 2013). In contrast, the 

findings were mixed for AUD, with some (Cordovil De Sousa Uva et al., 2010; Moggi et 

al., 2020; Scholey et al., 2019) but not other (Choi et al., 2014; Konrad et al., 2012) studies 

showing worse performance on TMTs, a discrepancy likely related to alcohol use severity 

and abstinence time, as reported in a meta-analysis of cognitive function in dependent 

drinkers (Stavro et al., 2013). Taken together, these data suggest that semantic fluency, 

visuo-perceptual abilities/graphomotor speed, and task switching are disrupted in AD. We 

did not find any AUD effect on these individual cognitive tests, but AUD participants scored 

worse than non-AUD participants in PC1, which is likely to be driven by the significant 

differences in CDR-SB between AUD and non-AUD.
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4.2 Brain volumes

AD but not AUD showed significantly smaller total GMV, WMV, and larger lateral and 

third ventricular volumes, indicating greater brain atrophy, than non-AD. Meta-analyses 

have reported GMV and WMV reductions in AD and AUD (Nowaczyk, 2019; Wang et al., 

2015; Yang et al., 2016; Yin et al., 2015). A previous study observed higher T1 – a measure 

of brain water content and tissue atrophy – among AD participants than controls in frontal 

and temporal gray and white matter, whereas individuals with alcohol-related dementia 

showed higher T1 only in the frontal white matter (Besson et al., 1989). Another imaging 

study found that AD and AUD participants had larger lateral ventricles than controls, and 

AD had larger ventricles than AUD participants, which indicates more significant brain 

atrophy in AD relative to AUD (Pitel et al., 2010). Moreover, both AD and AUD groups 

exhibited disruptions in the white matter integrity of the corpus callosum. It is possible 

that we did not observe smaller brain volume in AUD in the present study because our 

AUD group comprised a large number of individuals who were in abstinence. Indeed, a 

previous longitudinal MRI study of AUD participants showed that one-month abstinence and 

relapse is each associated with recovery of cortical GMV and further shrinkage of the third 

ventricle, respectively (Pfefferbaum et al., 1995). In addition, the literature has highlighted 

changes in white matter microstructure rather than volumetric changes in relation to the 

effect of aging on white matter (Giorgio et al., 2010; Shokri-Kojori et al., 2021), which may 

be why we did not find any differences in WMV between AUD participants and controls. 

Overall, our data suggest that AD has a more deleterious effect on the brain than normal 

aging, as evidenced by lower gray and white matter volume as well as larger ventricular 

volume.

Volumetric deficits may also be limited to specific brain regions. Indeed, we observed 

smaller somatomotor cortical GMV in AUD, but not AD. The pre, para- and post-central 

gyri are part of the primary motor and somatosensory cortices, which are responsible for 

movement control and somatic sensation. Alcohol is well-known for its deleterious effects 

on motor and somatosensory function (Bogart et al., 1992; Chu and Yang, 1987; Neiman et 

al., 1990; Zhornitsky et al., 2010). Reduced cortical thickness was previously found among 

abstinent alcohol dependent individuals with frontal and temporal regions, including the pre- 

and post-central gyri, relative to controls (Fortier et al., 2011). A meta-analysis revealed gray 

matter reductions in the precentral gyrus in people with AUD, relative to controls (Yang 

et al., 2016). In contrast, AD pathology appeared to affect the primary sensory and motor 

cortices only during the advanced stages of the illness (Braak et al., 2006; Braak et al., 

1993). These findings together suggest that GMV reductions in the somatomotor cortex may 

represent a specific marker of AUD, even in individuals who abstain from alcohol use. On 

the other hand, previous studies have reported volumetric and other morphometric markers 

in younger adults with AUD (Cao et al., 2021; Chye et al., 2020; Grace et al., 2021; Hahn 

et al., 2020; Ide et al., 2017; Mackey et al., 2019; Yang et al., 2020). It is likely that, in 

addition to potential recovery during abstinence, alcohol use-related structural brain changes 

may become less evident in older individuals, who have already manifested structural brain 

changes due to aging.
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AD had smaller volume in the hippocampal formation than non-AD, and AUD trended 

towards smaller volume in the hippocampal formation, relative to non-AUD participants. 

Moreover, after accounting for age, sex, education and TIV, volume of the hippocampal 

formation represented the most significant predictor of cognitive function for the entire 

cohort. Meta-analyses have consistently reported hippocampal and parahippocampal GMV 

reductions in MCI and AD (Chen et al., 2020; Wang et al., 2015). The hippocampus, 

entorhinal, and parahippocampal gyri are part of a network of brain regions that support 

memory encoding and retrieval, and the pathology of this hippocampal formation is evident 

in early stages of AD (Braak et al., 2006; Braak et al., 1993). The hippocampal formation 

demonstrates functional changes in healthy aging, MCI and AD (Hu and Li, 2020; Li 

et al., 2018). Post-mortem data showed that sector CA1 of the hippocampus, subiculum, 

entorhinal cortex, and parahippocampal isocortex were among the brain regions with most 

significant atrophy, whereas the dentate gyrus was much less affected, in AD vs. controls 

(Narkiewicz et al., 1993). In AUD, post-mortem and imaging studies have shown neuronal 

loss (Bengochea and Gonzalo, 1990) as well as smaller volume (Fein and Fein, 2013; 

Kurth et al., 2004; Lee et al., 2016; Oscar-Berman and Song, 2011) and blood flow in the 

hippocampus (Suzuki et al., 2010). Further, a meta-analysis found that problem alcohol use 

was associated with significantly smaller hippocampal volume (Wilson et al., 2017). In our 

sample, the hippocampal volume was smaller in AUD vs. non-AUD, but the difference failed 

to reach significance after correction for multiple comparisons, likely because of recovery in 

abstinent drinkers (Agartz et al., 1999; Crews and Nixon, 2009; Harding et al., 1997; Korbo, 

1999; Laakso et al., 2000). Further, we did not find an interaction effect, despite the fact that 

hippocampal function was disrupted in both AD and AUD. Nonetheless, low hippocampal 

formation volume was the most significant predictor of poor cognitive performance across 

all participants. This suggests a central role of hippocampal dysfunction in cognitive deficits 

in AD and AUD.

AD showed smaller regional GMV in the IPC/SPC vs. non-AD. Central to language 

functions, the left IPC has been implicated in deficits of semantic fluency in AD (Vonk 

et al., 2020). A previous study reported greater left and right IPC atrophy in participants who 

developed AD within 6 years of a baseline MRI scan, relative to those who were cognitively 

stable (Jacobs et al., 2011). Another longitudinal study showed faster atrophy of the IPC 

along with the hippocampus, entorhinal cortex, temporal pole, fusiform gyrus, and inferior 

and middle temporal gyri within 4–5 years in AD converters vs. non-converters (Desikan 

et al., 2006). The SPC is involved in spatial orientation, memory, and attention (Bagattini 

et al., 2019; Neufang et al., 2011; Wager and Smith, 2003; Wagner et al., 2005). Several 

studies have reported SPC atrophy in AD (Bakkour et al., 2013; Prvulovic et al., 2002; 

Teipel et al., 2007). Disconnection of the SPC from the precuneus was associated with worse 

memory capability in older relative to younger AD patients (Prawiroharjo et al., 2020). AD 

patients exhibited disconnection of the SPC from the middle frontal gyrus, in association 

with impairment in top-down attentional control (Neufang et al., 2011). Together, these 

earlier findings are consistent with IPC and SPC GMV loss and cognitive deficits in AD.

AD showed smaller regional GMV in the pericalcarine, cuneus, and lingual gyrus of the 

occipital cortex than non-AD participants. The occipital cortex processes visual information 

in the brain. Post-mortem data showed that the occipital cortex only begins to be affected 
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in the last two stages of AD (Braak et al., 2006). AD patients with visual hallucinations 

have been shown to exhibit a smaller occipital/whole brain ratio on MRI than those without 

(Holroyd et al., 2000). Furthermore, constructional apraxia in AD was strongly related to 

early-stage tau hyperphosphorylation in occipital cortical post-mortem samples (Nielson 

et al., 1996; Smith et al., 2001). As a whole, these data suggest that occipital cortical 

dysfunction is related to poor visuospatial and visuomotor functions in AD.

AD showed smaller GMV than non-AD patients in the pars triangularis and pars orbitalis 

of the IFG, consistent with deficits in attention, memory, and executive function in AD 

(Cai et al., 2017; Hu et al., 2015). Repetitive transcranial magnetic stimulation of the IFG 

improved performance on TMT A + B in early AD (Eliasova et al., 2014). In a meta-analysis 

of 28 fMRI studies, MCI patients exhibited attenuated activation in the IFG during verbal 

retrieval, relative to controls (Nellessen et al., 2015). Another consequence of damage to 

frontal regions is a lack of insight, which is a common symptom of AD (Wilson et al., 2016). 

Further, in a review of 32 structural and functional imaging studies, IFG dysfunction was 

most consistently associated with anosognosia or a lack of awareness of one’s own illness in 

AD (Hallam et al., 2020).

AD patients showed smaller GMV in the PCC than non-AD patients, in accord with an 

earlier meta-analysis (Wang et al., 2015). The PCC is a key hub of the default mode 

network (DMN), a network of interacting brain regions that is active when a person is 

inwardly focused, as during self-reflection or recollection of autobiographical memory 

(Leech and Sharp, 2014). Reduced metabolism, β amyloid deposition, and atrophy in the 

DMN, including the PCC, have been identified as early signs of AD (Buckner et al., 2009; 

Buckner et al., 2005; Johnson et al., 1998; Minoshima et al., 1997). Additionally, functional 

connectivity is disrupted within the DMN, especially between the PCC and hippocampus, in 

AD (Greicius et al., 2004). The PCC has also been associated with anosognosia and deficits 

in meta-cognition in AD (Hallam et al., 2020).

4.3 Limitations of the study and conclusions

The present study has limitations. Firstly, we used cross-sectional data, so the current 

findings fall short in addressing causal relationship between brain volumes and cognition. 

Secondly, the sample comprised very different number of participants and showed 

significant differences in age, sex, and education between the groups. Although we 

considered these variables in data analyses, it remains a possibility that the differences 

may have introduced biases in the findings; thus, whether the findings generalize to groups 

with more balanced age and gender composition remains unclear. Thirdly, UDS does not 

include questions assessing severity or duration of alcohol misuse, and thus the cumulative 

alcohol effects could not be assessed for individuals. Further, the low sample size of AUD 

participants did not allow us to perform separate analyses on current versus past alcohol 

misuse. Finally, the participants were scanned on 15 different scanner models, which were 

not evenly distributed among the groups, and it remains unclear how scanning sites and 

models may have influenced the findings.

In conclusion, this is the first study of its kind to examine brain volumes among dual 

diagnosis AD and AUD patients, relative to individuals with AD or AUD alone and 
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controls. We found that AUD contributed to cognitive deficits in AD patients. AD patients 

exhibited smaller total GMV, WMV, and larger ventricular volume, and all regional except 

somatomotor cortical GMVs, relative to non-AD patients. AUD demonstrated smaller 

GMV of the somatomotor cortex and a trend towards smaller volume in the hippocampal 

formation, compared to non-AUD participants. Further, hippocampal GMV represented 

the best predictor of cognitive dysfunction across all participants. Altogether, the findings 

suggest that chronic alcohol consumption may have an additive effect, leading to worse 

cognitive functioning, among AD participants. However, the magnitude of this effect is 

relatively small likely because the majority of our AUD participants were past users.
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Highlights

• A dual diagnosis of Alzheimer’s disease and alcohol use disorder is 

associated with higher dementia severity than subjects with either disorder 

alone.

• Subjects with Alzheimer’s disease had lower regional GMV in the inferior / 

superior parietal cortex, hippocampal complex, occipital cortex, inferior 

frontal gyrus, posterior cingulate cortex, and isthmus cingulate cortex than 

subjects without Alzheimer’s disease.

• Subjects with alcohol use disorders had lower regional GMV in the 

somatomotor cortex, and trended towards lower volume in the hippocampal 

complex than subjects without alcohol use disorders.
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Figure 1: 
A flow chart of inclusion/exclusion of the data set. NACCETPR = primary etiologic 

diagnosis variable.
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Table 1:

Socio-demographic, cognitive, and clinical characteristics of the subjects

AD+ AUD+ 
(N=52)

AD+ AUD− 
(N=701)

AD− AUD+ 
(N=67)

AD− AUD− 
(N=1283)

ANCOVA

AD group 
main effect

AUD group 
main effect

AD × AUD 
interaction

Age (yr) 74.7 (9.6) 77.0 (8.6) 68.5 (10.0) 71.2 (10.5) F=40.7; 
p<0.0001

F=7.0; p=0.008 F=0.0; p=0.8

Male % 75% 48% 54% 35% χ2=47.8; 
p<0.0001

χ2=27.8; 
p<0.0001

---

Education (yr) 13.4 (4.2) 15.0 (3.5) 14.4 (4.3) 15.7 (3.2) F=6.9; p=0.009 F=20.7; 
p<0.0001

F=0.4; p=0.5

CDR-SB 6.1 (4.8) 4.6 (3.8) 0.4 (0.7) 0.2 (0.5) F=473.4; 
p<0.0001

F=10.2; 
p=0.001

F=7.6; p=0.006

Semantic 
fluency

18.4 (9.0) 19.8 (8.6) 33.9 (9.7) 36.2 (9.0) F=295.6; 
p<0.0001

F=1.0; p=0.3 F=0.9; p=0.3

Trails A (s) 62.5 (33.2) 60.5 (36.3) 36.8 (23.7) 31.6 (14.9) F=100.4; 
p<0.0001

F=0.6; p=0.4 F=0.9; p=0.4

Trails B (s) 193.7 (79.2) 183.8 (79.8) 104.7 (77.9) 84.7 (48.3) F=212.7; 
p<0.0001

F=3.7; p=0.06 F=1.4; p=0.2

Cognitive PC1 1.2 (0.9) 1.0 (0.9) −0.3 (0.7) −0.6 (0.5) F=490.4; 
p<0.0001

F=5.7; p=0.02 F=0.0 p=0.9

Data presented as mean +/− SD. Age, sex, and education were used as covariates in the ANCOVA for CDR-SB, semantic fluency, and TMT A 
and B. R = right; L= left; AD+AUD+ = AD with history of alcohol use disorder; AD+AUD− = AD without a history of alcohol use disorder; 
AD−AUD+ = history of alcohol use disorder without AD; AD−AUD− = no history of AD or AUD. PC1: first principal component of the PCA of 
CDR-SB, semantic fluency, and TMTs. P values that met p<0.05, FDR-corrected are highlighted in bold.
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Table 2:

Total gray matter, white matter, and ventricular volume

AD+ AUD+ 
(N=52)

AD+ AUD− 
(N=701)

AD− AUD+ 
(N=67)

AD− AUD− 
(N=1283)

ANCOVA

AD group 
main effect

AUD group 
main effect

AD × AUD 
interaction

Total 
GMV

567.6 (61.9) 564.1 (61.8) 597.8 (63.6) 595.9 (62.6) F=70.5; 
p<0.0001

F=2.7; p=0.1 F=0.0; p=0.9

Total 
WMV

441.6 (61.0) 426.1 (56.0) 460.3 (65.3) 445.1 (64.4) F=5.2; p=0.02 F=0.1; p=0.8 F=0.0; p=0.9

Total 
LVV

52.0 (29.7) 49.3 (24.8) 29.2 (15.4) 29.8 (17.7) F=83.2; 
p<0.0001

F=0.7; p=0.4 F=0.5; p=0.5

Total 
TVV

1.7 (0.6) 1.7 (0.6) 1.3 (0.6) 1.2 (0.5) F=25.9; 
p<0.0001

F=0.1; p=0.7 F=1.1; p=0.3

Data presented as mean +/− SD. Age, sex, education, and total intracranial volume were used as covariates in the ANCOVA. AD+AUD+ = AD 
with history of alcohol use disorder; AD+AUD− = AD without a history of alcohol use disorder; AD−AUD+ = history of alcohol use disorder 
without AD; AD−AUD− = no history of AD or AUD. GMV = gray matter volume; WMV = white matter volume; LVV = lateral ventricle volume; 
TVV = third ventricle volume. P values that met p<0.05, FDR-corrected are highlighted in bold.
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Table 3:

ANCOVA of the eight principal components identified of regional brain volumes

AD+ AUD+ 
(N=52)

AD+ AUD− 
(N=701)

AD− AUD+ 
(N=67)

AD− AUD− 
(N=1283)

ANCOVA

AD group 
main effect

AUD group 
main effect

AD × AUD 
interaction

Component 1

Somatomotor c. −0.3 (1.0) −0.2 (1.0) −0.1 (1.0) 0.1 (1.0) F=0.0; p=0.9 F=5.8; 
p=0.02

F=2.0; p=0.2

Component 2

Inferior / superior 
parietal c.

−0.3 (1.0) −0.4 (1.0) 0.3 (0.9) 0.2 (0.9) F=83.1; 
p<0.0001

F=0.6; 
p=0.4

F=0.0; p=0.9

Component 3

Hippocampal c. −0.7 (1.1) −0.6 (1.0) 0.4 (0.9) 0.4 (0.8) F=235.6; 
p<0.0001

F=4.7; 
p=0.03

F=1.6; p=0.2

Component 4

Occipital c. −0.2 (1.0) 0.2 (1.0) 0.1 (0.9) 0.1 (1.0) F=9.6; 
p=0.002

F=2.0; 
p=0.2

F=0.6; p=0.4

Component 5

Inferior frontal g. −0.2 (0.9) −0.3 (1.0) 0.3 (0.9) 0.2 (1.0) F=23.4; 
p<0.0001

F=0.0; 
p=0.9

F=0.1; p=0.7

Component 6

Anterior cingulate c. 0.2 (1.1) 0.1 (1.0) −0.0 (0.9) −0.1 (1.0) F=2.1; p=0.1 F=0.1; 
p=0.7

F=0.2; p=0.7

Component 7

Posterior cingulate c. −0.2 (0.9) −0.4 (1.0) 0.3 (1.0) 0.2 (0.9) F=62.4; 
p<0.0001

F=0.1 
p=0.8

F=0.0; p=0.9

Component 8

Isthmus cingulate c. −0.2 (1.0) −0.2 (1.0) 0.1 (1.0) 0.1 (1.0) F=6.8; 
p=0.009

F=1.8; 
p=0.2

F=1.0; p=0.3

Data presented as mean +/− SD. Age, sex, education, and total intracranial volume were used as covariates in the ANCOVA. AD+AUD+ = AD 
with history of alcohol use disorder; AD+AUD− = AD without a history of alcohol use disorder; AD−AUD+ = history of alcohol use disorder 
without AD; AD−AUD− = no history of AD or AUD. P values that met p<0.05, FDR-corrected are highlighted in bold.
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Table 4:

Predictors of cognitive performance in stepwise regression

r2 β Statistics

Model 0.50 F=232.8; p<0.0001

 Hippocampal complex −0.39 t=−16.1; p<0.0001

 Inferior / superior parietal cortex −0.38 t=−14.9; p<0.0001

 Posterior cingulate cortex −0.09 t=−3.9; p<0.0001

 Somatomotor complex −0.08 t=−3.8; p=0.0001

 Isthmus cingulate 0.05 t=2.2; p=0.02

Components 1–5, 7, 8, sex, age, education and total intracranial volume were entered into the model.
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