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Abstract

Objectives:  Widespread SARS-CoV-2 testing is critical to identify infected people and implement public health action to interrupt 
transmission. With SARS-CoV-2 testing supplies and laboratory capacity now widely available in the United States, understanding the 
spatial heterogeneity of associations between social determinants and the use of SARS-CoV-2 testing is essential to improve testing 
availability in populations disproportionately affected by SARS-CoV-2.

Methods:  We assessed positive and negative results of SARS-CoV-2 molecular tests conducted from February 1 through June 17, 
2020, from the Massachusetts Virtual Epidemiologic Network, an integrated web-based surveillance and case management system in 
Massachusetts. Using geographically weighted regression and Moran’s I spatial autocorrelation tests, we quantified the associations 
between SARS-CoV-2 testing rates and 11 metrics of the Social Vulnerability Index in all 351 towns in Massachusetts.

Results:  Median SARS-CoV-2 testing rates decreased with increasing percentages of residents with limited English proficiency (me-
dian relative risk [interquartile range] = 0.96 [0.95-0.99]), residents aged ≥65 (0.97 [0.87-0.98]), residents without health insurance 
(0.96 [0.95-1.04], and people residing in crowded housing conditions (0.89 [0.80-0.94]). These associations differed spatially across 
Massachusetts, and localized models improved the explainable variation in SARS-CoV-2 testing rates by 8% to 12%.

Conclusion:  Indicators of social vulnerability are associated with variations in SARS-CoV-2 testing rates. Accounting for the spatial 
heterogeneity in these associations may improve the ability to explain and address the SARS-CoV-2 pandemic at substate levels.
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In 2020, the United States had the highest number of cumulative 
COVID-19 cases, the disease caused by infection with SARS-
CoV-2, of any country.1 As of May 14, 2021, the Centers for 
Disease Control and Prevention (CDC) reported 32 643 851 
cases of SARS-CoV-2 and 580 837 deaths from SARS-CoV-2 
infection in the United States.2 Early on, geographic hotspots of 
SARS-CoV-2 infection in the United States were primarily 
located in metropolitan areas on the West Coast and among states 
in the Northeast,3 such as Massachusetts, where the increase in 
the number of COVID-19 cases was initially driven by a large 
international meeting.4 Moreover, major drivers of the rising 
number of SARS-CoV-2 infections in the United States are 
asymptomatic and presymptomatic cases or cases with mild 
symptoms.5-8 Therefore, in addition to preventive measures such 
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as social distancing, wearing face masks, and hand washing, 
widespread testing to identify people who may be unknowingly 
contributing to the transmission of SARS-CoV-2,9 regardless of 
symptom onset, is imperative to slow the COVID-19 pandemic. 
Consequently, new initiatives, such as the Rapid Acceleration of 
Diagnostics program developed by the National Institutes of 
Health, were established with an emphasis on increasing testing 
capacity across the United States.10

SARS-­CoV-­2 testing facilitates the identification of new 
infections, the follow-up and isolation of infected people, 
and the quarantine of infected people’s contacts, which are 
the basic principles for controlling infectious disease pan-
demics, including the transmission of respiratory infections 
as in SARS-CoV-2.11 However, widespread inequities in 
access to SARS-­CoV-­2 tests have been identified across the 
United States, particularly driven by population density and 
disparities among racial/ethnic minority populations.12 In 
contrast, with Massachusetts experiencing one of the first 
outbreaks of SARS-CoV-2 infection in the United States,4 
Massachusetts public health officials undertook early efforts 
to implement extensive SARS-CoV-2 testing services across 
the state to detect people newly infected with SARS-CoV-2.13 
As the availability of SARS-CoV-2 testing supplies and lab-
oratory capacity expands across the United States, it is 
important to understand the spatial distribution of and deter-
minants associated with SARS-CoV-2 testing.

Data are scarce on the geographic extent and factors facil-
itating SARS-CoV-2 testing in the United States. Our study 
had 2 objectives. First, we identified the geographic varia-
tions of SARS-CoV-2 testing rates and spatial clusters of 
high and low SARS-CoV-2 testing rates at the town level in 
Massachusetts. Second, we assessed the demographic and 
socioeconomic factors associated with the geographic varia-
tion of SARS-CoV-2 testing rates in Massachusetts. Lastly, 
we explored the spatial autocorrelation between SARS-
CoV-2 testing rates and COVID-19 incidence rates in 
Massachusetts. Findings may inform where to direct testing 
resources and for which populations to conduct tailored 
SARS-CoV-2 testing in Massachusetts.

Methods

SARS-CoV-2 Testing Data Sources
The Massachusetts Department of Public Health Bureau of 
Infectious Disease and Laboratory Sciences (BIDLS) estab-
lished the Massachusetts Virtual Epidemiologic Network 
(MAVEN) in 2006 to serve as an integrated, web-based disease 
surveillance and case management system.14 BIDLS receives 
results from state laboratory testing facilities electronically 
using Health Level 7 messaging standards.15 Disease events are 
automatically populated into the MAVEN surveillance system 
when a case or laboratory report is received and triaged in real 
time by state and local public health personnel for follow-up. 
When the COVID-19 pandemic began, MAVEN had already 

required all tests, including positive and negative results, related 
to SARS-CoV-2 infection to be reported under a novel corona-
virus reporting requirement developed during the SARS out-
break in 2003. We included all molecular tests reported to 
MAVEN from February 1 through June 17, 2020, in this analy-
sis and calculated SARS-CoV-2 testing rates per 100 000 popu-
lation in 2018 by city/town using estimated annual population 
denominators developed by the University of Massachusetts 
Donahue Institute.16 We computed the coefficient of variation in 
the rate of SARS-CoV-2 testing per 100 000 population as the 
ratio of the SD and mean rate to express the extent of variability 
in testing rates in relation to the mean testing rate. CDC 
reviewed this activity and determined it to be conducted consis-
tently with applicable federal law and CDC policy.

SARS-CoV-2 Testing Descriptive Statistics
From February 1 through June 17, 2020, a total of 919 679 
molecular SARS-CoV-2 tests were reported for 727 549 
Massachusetts residents. Of these tests, 30 733 (4.2%) had 
incomplete information on city or town of residence, leaving 
696 816 (95.8%) people with tests in the analysis. All but 1 
town reported at least 1 test, and this town had a population 
of <100 residents. Of the remaining 350 towns, the testing 
rates per 100 000 population ranged from <1000 in Leyden 
to >28 000 in Bedford. The mean testing rate per 100 000 
population for Massachusetts was 8066 (SD = 3363). The 
coefficient of variation was 0.4, indicating great dispersion 
in the testing rates by city/town.

The Social Vulnerability Index
We used the Social Vulnerability Index (SVI) to examine the 
extent of associations between social vulnerability factors and 
SARS-CoV-2 testing rates. Developed by the CDC/Agency for 
Toxic Substances and Disease Registry (ATSDR), the SVI is a 
database and composite index that models social vulnerability 
in communities in the United States using 15 census-based indi-
cators that capture data in domains of social vulnerability. It can 
be used to identify the locations of communities in the United 
States that are socially vulnerable to hazardous events, such as 
pandemics.17,18 Our analysis included SVI data on the follow-
ing 11 indicators in raw single percentage units: population liv-
ing below the federal poverty threshold, civilian 
noninstitutionalized population living with a disability,19 unem-
ployed population aged ≥16 years, population aged ≥65 years, 
racial/ethnic minority population, people aged ≥5 years with 
limited English proficiency (ie, who speak English “not well” or 
“not at all,” according to US Census Bureau terminology), 
uninsured people in the civilian noninstitutionalized population, 
multiunit housing (ie, housing structures with ≥10 units), people 
living in group quarters,20 crowded housing (ie, households 
with more people than rooms), and households without vehicle 
access. We selected these variables on the basis of existing liter-
ature citing social determinants of risk for disaster events18,21 
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and the current COVID-19 pandemic.22-25 In addition, our anal-
ysis included data on the following SVI themes: socioeconomic 
status, household composition and disability, racial/ethnic 
minority status and language, and housing type and transporta-
tion (Figure 1). For ease of interpretation, we transformed the 
SVI theme values so that each point increase in testing rates 
corresponded to a 10% (or 0.1) increase in the theme value.

Statistical Analysis
The Geospatial Research, Analysis, and Services Program 
(GRASP) team at CDC/ATSDR produced an SVI database at 
the Massachusetts township level by transforming the 

Massachusetts state-­specific SVI database from the census 
tract level (n = 1475) to the township level (n = 351). Despite 
having census tracts and counties, Massachusetts uses town-
ship as its primary level of operation. For the transformation, 
we adapted methodology from Hallisey et al.26 Details on 
this transformation are available from the authors upon 
request. To summarize, for one-to-one geographic relation-
ships (ie, one tract to one town), variable values remained 
the same after transformation. We aggregated SVI variables 
for many-to-one geographic relationships and disaggregated 
variables for split census tracts or one-to-many geographic 
relationships. To estimate count variables, such as the 

Figure 1. Indicators and themes in the Centers for Disease Control and Prevention Social Vulnerability Index (SVI). The following 
indicators and SVI themes were analyzed: socioeconomic status (living below the federal poverty threshold, unemployed aged ≥16 years), 
household composition and disability (aged ≥65, living with a disability), racial/ethnic minority status and language (racial/ethnic minority, 
aged ≥5 years with limited English proficiency [ie, who speak English “not well” or “not at all”]), and housing type and transportation 
(multiunit housing structures [ie, housing with ≥10 units], crowded housing [ie, households with more people than rooms], no vehicle, 
living in group quarters). Indicators were selected on the basis of a literature review or were excluded because of multicollinearity. 
Uninsured in the civilian noninstitutionalized population is not a part of the overall SVI or themes but is included in the SVI database as an 
adjunct variable. Based on the literature, “uninsured” was included in the analysis. Modified and adapted from Agency for Toxic Substances 
and Disease Registry.17
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number of people aged ≥65 years, we assigned a weight to 
each census tract, dependent on the type of geographic rela-
tionship, with which to multiply each count. We summed 
weighted counts for each census tract to estimate town 
counts. To validate this transformation, we compared 
GRASP-transformed town population estimates, produced 
during transformation, with town population estimates from 
the Donahue Institute.16 We found agreement between the 2 
sets of population estimates. We summed weighted normal-
ized value estimates for each census tract to estimate per-
centages for each town.

We conducted generalized linear models (GLMs) with 
Poisson distribution and with robust variance estimation to 
examine associations at the township level between SARS-
CoV-2 testing rates and SVI indicators and themes. To 
address model multicollinearity, we eliminated variables 
with variance inflation factors >10. We assessed model fit 
using the Akaike information criterion. We found significant 
spatial autocorrelation of residuals in both GLM models with 
a Poisson distribution using SVI indicators and themes 
(Moran’s I = 0.14, P < .001 for the individual indicator model 
and Moran’s I = 0.22, P < .001 for the theme model). For this 
reason, we used geographically weighted Poisson regression 
(GWR) with a Poisson distribution to derive estimates for 
each township to account for the presence of spatial hetero-
geneity in the relationship between SARS-CoV-2 testing 
rates and SVI indicators and themes. We used a function 
from the SPGWR package in R version 4.04 (R Core Team) 
to identify a bandwidth for the given generalized geographi-
cally weighted regression by optimization. We cross-
validated bandwidth selection by scoring the root mean 

square prediction error for the GWR and choosing the band-
width that minimizes this quantity. In the final model, we 
selected a bi-square kernel density. In addition, because of 
the spatial heterogeneity in the GLM’s error and the GWRs 
having higher adjusted R2 values than the GLMs (0.87 vs 
0.75 in the individual indicator model; 0.76 vs 0.68 in the 
theme model), the GWR provides a more useful model than 
the GLM; thus, we present results for the GWR alone.

Geographically weighted Poisson regression models pro-
duce exponentiated coefficients, or relative risk (RR). In 
their base form, coefficients explain the difference in log the 
ratio between a 1-unit change in the predictor and the out-
come. We exponentiated them into RRs so we could explain 
the effects as the percentage change. Because separate 
regression equations are obtained for each feature in a GWR, 
we present the median RR and interquartile range (IQR) 
across all towns uto describe the magnitude and directional-
ity of the local effect for each independent variable. Lastly, 
we evaluated clustering between SARS-CoV-2 testing and 
case rates using bivariate Moran’s I and bivariate geographic 
mapping. We conducted all analyses in R version 4.04.

Results

Geographically Weighted Regression
In the GWR analysis, using 11 indicators as model covari-
ates, 7 indicators were associated with increases in SARS-
CoV-2 testing rates (Table  1). The greatest positive 
association with SARS-CoV-2 testing rates occurred with 
increasing percentages of unemployed population aged ≥16 

Table 1. Association of Social Vulnerability Indexa indicators of SARS-CoV-2 molecular polymerase chain reaction testing (per 100 000 
population) using geographically weighted Poisson regression, Massachusetts, February–June 2020

Indicator

Relative risk

Median (interquartile range) Range

Unemployed population aged ≥16 years 1.05 (0.99-1.12) 0.84-1.21

Population aged ≥65 years 0.97 (0.87-0.98) 0.83-1.00

Population living below the federal poverty threshold 1.05 (0.87-1.07) 0.84-1.08

Estimate of the civilian noninstitutionalized population living with a 
disability

1.07 (1.05-1.09) 1.01-1.18

Racial/ethnic minority population (ie, all people except non-Hispanic 
White)

1.02 (1.01-1.04) 1.00-1.08

People aged ≥5 years with limited English proficiency (ie, who speak 
English “not well” or “not at all”)

0.96 (0.95-0.99) 0.88-1.44

Uninsured people in the civilian noninstitutionalized population 0.96 (0.95-1.04) 0.88-1.16

Multiunit housing (ie, housing structures with ≥10 units) 1.05 (1.03-1.10) 1.02-1.36

People living in group quarters 1.01 (1.01-1.03) 0.99-1.22

Households without vehicle access 1.04 (1.03-1.16) 0.86-1.24

Crowded housing (ie, households with more people than rooms) 0.89 (0.80-0.94) 0.58-0.99

aDeveloped by the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry, the Social Vulnerability Index is a 
database and composite index that models social vulnerability in communities in the United States using 15 census-based indicators that capture data in 
domains of social vulnerability.17
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years (median [IQR] RR = 1.05 [0.99-1.12]), population liv-
ing below the federal poverty threshold (1.05 [0.87-1.07]), 
civilian noninstitutionalized population with a disability 
(1.07 [1.05-1.09]), racial/ethnic minority population (1.02 
[1.01-1.04]), population residing in multiunit structures 
(1.05 [1.03-1.10]), population living in group quarters (1.01 
[1.01-1.03]), and households without vehicle access (1.04 
[1.03-1.16]). The greatest inverse association with SARS-
CoV-2 testing rates occurred with increasing percentages of 
township population residing in crowded housing (0.89 
[0.80-0.94]). The IQR for 5 of the 11 indicators was >0.10.

In the GWR analysis using data on SVI themes, 3 of 4 
themes had a positive association with SARS-CoV-2 testing 
rates (Table 2). The rate of testing increased with each 10% 
increase in social vulnerability by socioeconomic status 
(median RR [IQR] = 1.12 [1.05-1.14]), racial/ethnic minority 
status and language (1.23 [1.18-1.38]), and housing type and 
transportation (1.23 [1.16-1.24]). The rate of testing 
decreased with each 10% increase in social vulnerability by 
household composition and disability (0.95 [0.94-1.04]). We 
illustrate standardized coefficients of the 4 SVI themes and 
the 11 factors associated with SARS-CoV-2 testing rates by 
township for Massachusetts to highlight geographic varia-
tion in the associations. For example, although the associa-
tion between rate of testing and SVI Theme 2 (household 
composition and disability) was protective in eastern 
Massachusetts, a pocket of townships in southwestern 
Massachusetts showed a harmful association (Figure 2).

Bivariate Spatial Autocorrelation
We found significant bivariate spatial autocorrelation 
between COVID-19 incidence rates and testing rates with a 
bivariate Moran’s I value of 0.278 (P = .001) as of June 17, 

2020. No towns had low testing rates and high incidence 
rates, although 31 towns had low testing rates and moderate 
incidence rates, and 30 towns had moderate testing rates and 
high incidence rates (Figure 3).

Discussion

Our findings indicate wide variability in testing rates and 
associated community factors in a single state 
(Massachusetts). Factors associated with a person’s resi-
dence and social circumstances were shown to be indepen-
dent risk factors for SARS-CoV-2 in-hospital mortality in a 
large, population-based study in the United Kingdom, even 
after accounting for clinical comorbidities.27 A study in 
Massachusetts found that affluent communities had higher 
access to testing resources compared with less affluent com-
munities.28 In the United States, census tract of residence 
may explain 70% of variation in individual health out-
comes.29 Understanding the complex social factors associ-
ated with access to SARS-CoV-2 testing is a national priority. 
For example, the National Institutes of Health established 
funding in June 2020 to improve “reach, access, uptake, and 
impact for SARS-CoV-2 testing in underserved and/or vul-
nerable populations.”30 In addition to providing insight into 
community factors associated with testing in Massachusetts, 
our study documents methods that other states or regions can 
use to identify town- or county-level need for increased 
SARS-CoV-2 testing.

In presenting GWR models, we illustrate the importance 
of accounting for spatial heterogeneity in analytic models, 
especially because the range of estimates from the GWR 
models indicate that the associations between SVI and test-
ing rates vary considerably among towns. For the individual 
indicators model, the smaller effect sizes relative to the 
theme model were expected given the raw single percentage 
unit of the independent variables compared with the incre-
mental 10% groups used with the theme variables. Highly 
granular continuous estimators often produce smaller effect 
sizes than aggregated or dichotomous variables.

Overall, the benefit of GWRs, in addition to having a bet-
ter model fit than GLMs, is that they allow public health 
authorities to obtain the separate coefficients, variance, and 
intercepts for each town, allowing interventions to be tai-
lored for the conditions in each town. With a GWR, it is pos-
sible to see how the effects of different covariates vary across 
Massachusetts. Our results indicate that some towns or coun-
ties can even exhibit contrasting effect directions for a single 
variable, which would not have been identified by a GLM or 
other global estimate model. Thus, the range in values illus-
trates the need to examine the unique effect of each covariate 
in each town as opposed to presenting an overall estimate at 
the state level.

Although several efforts have been made to under-
stand spatial variation in SARS-CoV-2 infection 

Table 2. Association of Social Vulnerability Indexa themes with 
rate of SARS-CoV-2 molecular polymerase chain reaction testing 
(per 100 000 population) using geographically weighted Poisson 
regression, Massachusetts, February–June 2020

Theme

Relative risk

Median 
(interquartile range) Range

Socioeconomic status 1.12 (1.05-1.14) 0.77-1.23

Household composition 
and disability

0.95 (0.94-1.04) 0.93-1.18

Racial/ethnic minority 
status and language

1.23 (1.18-1.38) 1.15-1.51

Housing type and 
transportation

1.23 (1.16-1.24) 1.05-1.32

aDeveloped by the Centers for Disease Control and Prevention/Agency 
for Toxic Substances and Disease Registry, the Social Vulnerability Index 
is a database and composite index that models social vulnerability in 
communities in the United States using 15 census-based indicators that 
capture data in domains of social vulnerability.17
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Figure 2. Standardized coefficients of the 4 Social Vulnerability Index (SVI) themes and 11 indicators, by town, Massachusetts, 2018. 
Values for all 4 themes and indicators were pooled and classified into quartiles. Developed by the Centers for Disease Control and 
Prevention/Agency for Toxic Substances and Disease Registry, the SVI is a database and composite index that models social vulnerability 
in communities in the United States using 15 census-based indicators that capture data in domains of social vulnerability.17 Values for all 4 
SVI themes and indicators were pooled and then classified into quartiles.
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rates,31-33 we believe our study is the first example of 
using such methods to examine testing variation.34 Based 
on results from the GWR models, the testing rates were 
negatively associated with the percentages of popula-
tions with limited English proficiency, aged ≥65, with-
out health insurance, and in households with more 
people than rooms. These results indicate that additional 
efforts to expand testing are necessary to address 
COVID-19 inequities and disparities in these communi-
ties, which have been found to be disproportionately 
affected by SARS-CoV-2.34

However, towns with higher percentages of racial/
ethnic minority residents, people who are unemployed, 
and residents living in group quarters or multiunit 

housing had increased relative median testing rates in 
Massachusetts, which is reassuring considering that 
elsewhere in the United States, racial/ethnic minority 
populations have had disproportionately higher rates of 
SARS-CoV-2 infection and related poor health out-
comes.35 In addition, results from the bivariate Moran’s 
I analysis and the bivariate choropleth visualization 
enable public health authorities to identify regions with 
both low testing rates and high infection rates, which 
were detected primarily in the central and western 
regions of Massachusetts. We also identified areas of 
high testing rates and high infection rates, such as the 
Boston metropolitan area.

Figure 3. Bivariate geographic distribution between the rate of SARS-CoV-2 molecular polymerase chain reaction (PCR) testing and rate 
of SARS-CoV-2 incidence, by city/town, Massachusetts, February 1–June 17, 2020. Tertiles classification was used to enable comparison of 
the distribution of the 2 variables (incidence rate and testing rate). Town counts shown for each category. The distribution of confirmed 
COVID-19 cases is complex and depends on a combination of interacting factors, including socioeconomic conditions, underlying health, 
health care access, and testing capacity. Comparing a single variable, COVID-19 testing rate is only part of the story and should be 
interpreted with caution. Data sources: Massachusetts Department of Public Health data from February–June 17, 201014; Centers for 
Disease Control and Prevention/Agency for Toxic Substances and Disease Registry Social Vulnerability Index 2018 for Massachusetts 
transformed to Massachusetts town level17; and University of Massachusetts Donahue Institute.16
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Limitations

This study had several limitations. First, the SVI uses 2018 
estimates from the American Community Survey 2014-
2018 database; thus, the effect of school closures, social dis-
tancing policies, and other interventions to control 
SARS-CoV-2 transmission was not captured. Second, 
unmeasured error may have occurred in transforming SVI 
from county to township level, particularly for disaggre-
gated, or split, census tracts. Fortunately, few census tracts 
were split: only 24 of 1475 total census tracts were disag-
gregated. Third, it is unknown which people received test-
ing in each township; thus, each association must be viewed 
as correlative in nature and representative of population-
level relationships.

Conclusions

Ensuring widespread testing for SARS-CoV-2 infection is a 
primary concern in the United States during the COVID-19 
pandemic. Ensuring community access to testing is a priority 
for public health. Relating variations in testing to various 
community characteristics is a key component of increasing 
testing in areas in need. Our results indicate that not only can 
numerous indicators of social vulnerability be associated 
with testing rate variation but also that accounting for the 
spatial heterogeneity in these associations can considerably 
improve the ability to explain and address the COVID-19 
pandemic at substate levels. We suggest that future investi-
gations into SARS-CoV-2 testing or infection rates include 
spatial components in their analyses to optimize the accuracy 
of their models and the efficacy of public health 
interventions.
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