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T he diagnosis of a disease is the first step on the road 
to its treatment. The evaluation of the underlying 
diagnostic procedures is performed in what are 

 referred to as diagnostic studies, which determine how 
well a diagnostic instrument, for example, a laboratory 
test, detects the presence of a disease. 

The correct determination of the results of diag-
nostic tests is of central importance, since a positive 
result impacts not only the affected person, but—as in 
the SARS-CoV-2 pandemic—potentially also the 
 social environment (1). In this context, the probability 
of the true presence of SARS-CoV-2 infection in 
 patients that have tested positive is of particular 
 importance—a probability that is also influenced by 
the increasing number of tests carried out in the popu-
lation and by current infection rates (1, 2). Against 
this backdrop, it is crucial that physicians are able to 
correctly assess diagnostic parameters. However, 
misinterpretation of measured values of this kind is 
not new, irrespective of the test or disease, and the 
situation has not improved significantly over the 
years  (3–6). 

Therefore, the aim of this paper is to present the 
various measures of accuracy of a diagnostic test and 
to describe the relationship between the measures in 
order that, after reading the article, the reader will be 
able to correctly interpret an individual test result.

Measures of diagnostic accuracy
In a first step, we present the diagnostic 2 × 2 contin-
gency table and prevalence, followed by the most 
 important parameters, sensitivity and specificity, as 
well as predictive values and accuracy. The equations 
of the empirical estimators are given in the Box, while 
in the text they are directly applied to an example. For 
diagnostic tests that yield a metric value or score rather 
than a binary result, we present the receiver operating 
characteristic (ROC) curve and the corresponding area 
under the curve (AUC). As a general rule, confidence 
intervals (CI) should also be given for all diagnostic 
parameters. For sensitivity, specificity, predictive val -
ues, and accuracy, we recommend logit confidence 
 intervals, since these yield plausible results, most 
 notably even when case numbers are small, and guaran-
tee that the limits do not lie outside the [0;1] interval. 
For details, the reader is referred to the relevant litera-
ture  (7, 8). 

Summary
Background: The accurate diagnosis of a disease is a prerequisite for its appropri-
ate treatment. How well a medical test is able to correctly identify or rule out a target 
disease can be assessed by diagnostic accuracy studies.

Methods: The main statistical parameters that are derived from diagnostic accuracy 
studies, and their proper interpretation, will be presented here in the light of publi-
cations retrieved by a selective literature search, supplemented by the authors’ own 
experience. Aspects of study planning and the analysis of complex studies on diag-
nostic tests will also be discussed. 

Results: In the usual case, the findings of a diagnostic accuracy study are presented 
in a 2 × 2 contingency table containing the number of true-positive, true-negative, 
false-positive, and true-positive test results. This information allows the calculation 
of various statistical parameters, of which the most important are the two pairs sen-
sitivity/specificity and positive/negative predictive value. All of these parameters are 
quotients, with the number of true positive (resp. true negative) test results in the 
numerator; the denominator is, in the first pair, the total number of ill (resp. healthy) 
patients, and in the second pair, the total number of patients with a positive (resp. 
negative) test. The predictive values are the parameters of greatest interest to phy -
sicians and patients, but their main disadvantage is that they can easily be misinter-
preted. We will also present the receiver operating characteristic (ROC) curve and 
the area under the curve (AUC) as additional important measures for the assess-
ment of diagnostic tests. Further topics are discussed in the supplementary materi-
als. 

Conclusion: The statistical parameters used to assess diagnostic tests are primarily 
based on 2 × 2 contingency tables. These parameters must be interpreted with care 
in order to draw correct conclusions for use in medical practice. 
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Diagnostic 2 × 2 contingency table
When the test result is binary (positive versus 
negative), the results of a diagnostic study can be 
mapped in diagnostic 2 × 2 contingency tables (Table 
1). Since a diagnostic test generally yields a metric 
value or score as its result, a cut-off value needs to be 
defined in order to maintain the binary coding. The 
diagnostic test to be evaluated will be referred to here-
after as the index test. This contrasts with the so-
called gold or reference standard, which defines the 
“true” disease state. These two terms are often used 
synonymously. However, since “gold standard” is 
often associated with an assumption of a perfect defi-
nition of the “true” disease status, a status that is not 
necessarily present in practice, we have chosen to use 
the term reference standard below. The most reliable 
method to  determine true disease status should be 
chosen as the reference standard. This is often not 
feasible in routine practice, for example due to the 
fact that it is too inva sive, expensive, or time-consum-
ing, or since it can only be used after death. Based on 
the results of the index test (T+ [positive] versus T– 
[negative]) and the reference standard (D1 [with dis-
ease] versus D0 [without disease]), classification is 
made as true-positive (TP), true-negative (TN), false-
positive (FP), or false-negative (FN). The respective 
row and column sums are given as n1 and n0 for the 
number of people with the disease and those without 
the disease, respectively, and by n+ and n– for the 
number of people that tested positive and negative, re-
spectively. N relates to the total number of study par-
ticipants.

Example study
For illustrative purposes, this article uses the study con-
ducted by Papoz et al., who evaluated HbA1c as a 
screening marker for the diagnosis of type 2 diabetes 
(9). The oral glucose tolerance test (OGTT) was used as 
the corresponding reference standard procedure. An 
HbA1c of 6.5 (among other parameters), which is cur-
rently used to diagnose type 2 diabetes, was used as the 
diagnostic cut-off value for the index test (10). This 
means that study participants in whom an HbA1c of 6.5 
or higher was measured were classified as positive. 
Table 2 shows the corresponding diagnostic 2 × 2 con-
tingency table.

Prevalence
Prevalence plays a crucial role in the correct interpre-
tation of test results. It denotes the proportion of indi-
viduals with disease in the studied collective and is 
 calculated as the number of individuals with disease 
 divided by the total number of study participants.

If we consider the study by Papoz et al. (9), we 
 obtain the following estimated prevalence:

 
The 95% logit confidence interval (CI) is [15.7%; 
21.9%].

TABLE 1

Diagnostic 2 x 2 contingency table as the result of a diagnostic study

TP: true positive, FP: false positive, FN: false negative, TN: true negative

Index test T Positive T+

Negative T–

Total

Gold standard

With disease D1

TP

FN

n1

Without disease D0

FP

TN

n0

Total

n+

n–

N

TABLE 2

Results of the study by Papoz et al. (9) on the HbA1c cut-off value of  6.5

Hemo globin A1c
(HbA1c) T

Positive T+

Negative T–

Total

Oral glucose tolerance test  (OGTT)

Type-2 
diabetes D1

 78

 34

112

No type-2 
diabetes D0

 24

465

489

Total

102

499

601

BOX 

Prevalence =  

Accuracy =  

Sensitivity =  

Specificity =  

Positive predictive value =  

Negative predictive value =  

Abbreviations used:
n1: Number of individuals with disease 

n0: Number of individuals without disease 

N: Total number of study participants 

TP: Number of true-positive test results

TN: Number of true-negative test results 

FN: Number of false-negative test results 

FP: Number of false-positive test results

T +: Positive result for the index test

T –: Negative result for the index test 

D +: True disease status “with disease”

D–: True disease status “without disease”

Note: the empirical estimators are given in each case
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Accuracy
Accuracy is calculated from the proportion of correct 
results (TN and TP) out of all test results: 

 

The 95% logit CI is [87.7%; 92.4%].
From this it follows that 90.3% of test results were 

correct. However, it is not possible to assess the pro-
portion of incorrect results among individuals who 
did or did not have disease, which is why this 
 parameter is generally not recommended. 

Sensitivity and specificity
Sensitivity and specificity are the most important 
 parameters in the development of tests. These two 
measures indicate the proportion of individuals with or 
without disease in whom a correct diagnosis was made. 
Sensitivity is calculated as the number of true-positive 
test results divided by the number of individuals with 
disease, while specificity is calculated as the number of 
true-negative test results divided by the number of per-
sons without disease.

The following values are derived for the sensitivity 
and specificity of the example:

 

Thus, there is a 69.6% probability that the HbA1c 
test will be positive if the investigated subject has type 
2 diabetes (sensitivity). Conversely, the probability 
that the HbA1c test will be negative is 95.1% if a study 
participant does not have type 2 diabetes  (specificity). 
The 95% logit CIs for sensitivity and specificity are 
[60.5%; 77.4%] and [92.8%; 96.7%], respectively.

Predictive values
While sensitivity and specificity are the recommended 
parameters for diagnostic test development (11), they 
are not informative for the patient and physician in rou-
tine practice. The true disease status is not known 
 outside the study since the reference standard is not 
 determined. The interesting information here is the 
probability that the disease is present in the case of a 
positive test result and absent in the case of a negative 
test result. These conclusions can be drawn with the 
help of the predictive values. These are calculated as 
the number of true-positive test results divided by the 
number of positive test results (positive predictive 
value, PPV) and as the number of true-negative test 
 results divided by the number of negative test results 
(negative predictive value, NPV). Therefore, these 
values are conditional probabilities. The PPV indicates 
the probability of the disease being present in the case 
of a positive test result, whereas the NPV indicates the 
probability of the disease not being present in the case 
of a negative test result.

The following values are obtained for the example: 

 

Thus, in the case of a positive HbA1c test result, the 
risk of suffering from type 2 diabetes is 76.5%. On the 
other hand, there is a 93.2% probability that type 2 
diabetes is not present if the HbA1c test result is 
negative. The corresponding 95% logit CIs are 
[67.3%; 83.7%] for the PPV and [90.6%; 95.1%] for 
the NPV. However, these results should be viewed 
with caution since predictive values, unlike sensitiv-
ity and specificity, depend on prevalence. 

Receiver operating characteristic curve
Diagnostic studies often evaluate not only one cut-off 
value to classify test positives and negatives, but rather 
several in order to determine an optimal diagnostic 

TABLE 3

Cut-off values evaluated by  Papoz et al. (9)* 

* with corresponding sensitivities, specificities, and Youden index; HbA1c: hemo globin A1c

HbA
1c

 
cut-off value

5.0

5.5

6.0

6.5

7.0

Sensitivity

111/112 = 99.1%

110/112 = 98.2%

100/112 = 89.3%

78/112 = 69.6%

60/112 = 53.7%

Specificity

 83/489 = 17.0%

225/489 = 46.0%

381/489 = 77.9%

465/489 = 95.1%

479/489 = 98.0%

Youden index

0.161

0.442

0.672

0.647

0.517

FIGURE

ROC curve in the study by Papoz et al. (9). The underlined value is the cut-off value with the 
highest Youden index.
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threshold for clinical practice. This is associated with 
different pairs of sensitivities and specificities, which 
belong to the respective threshold under evaluation. 
Papoz et al. (9) investigated a total of five different 
HbA1c cut-off values between 5.0 and 7.0. The corre-
sponding sensitivity and specificity was determined for 
each of these values  (Table 3).

The ROC curve was used to better depict the 
 results of the study. Thus, for each cut-off value 
 investigated, sensitivity is plotted on the y-axis and 
1-specificity on the x-axis of a graph (Figure).

One criterion to select a cut-off value is the Youden 
index. This is calculated as the sum of sensitivity and 
specificity in percentage points minus 100. The cut-
off value with the highest Youden index is often con-
sidered to be optimal. In the example study, this 
would be 6.0 (underlined value on the Figure with a 
Youden index of 0.672, Table 3).

In its classical form, the Youden index assumes an 
equal weighting of sensitivity and specificity and, 
thus, also an equal weighting of false-positive and 
false-negative test results. However, for a screening 
test, sensitivity in particular should be high, whereas 
for a confirmatory test, specificity should be high. In 
order to determine optimal cut-off values for these 
types of diagnostic tests, it is recommended that a 
minimum required sensitivity and specificity be 
 determined prior to starting the study. Alternatively, a 
weighted Youden index can be used, whereby sensi-
tivity or specificity are given a higher weight.

In particular, sensitivity and specificity depend on 
the selected cut-off value (Table 3). The higher the 
HbA1c cut-off value, the greater the specificity, but 
the lower the sensitivity. This means, conversely, that 
any sensitivity can be achieved if a correspondingly 
low specificity is accepted and vice versa. For this 
reason, the European and US guidelines on diagnostic 
agents (European Medicines Agency, EMA [11], 
Food and Drug Administration, FDA [12]) recom-
mend using sensitivity and specificity as primary end-
points. 

Area under the curve
The area under the curve, the AUC, is suited to 
 comparing the overall accuracy of one or more diag-
nostic tests. It indicates the probability that a person 

with disease has a higher test value than a person with-
out disease, assuming high values indicate the presence 
of the disease.

For the example study, we obtain an AUC of 
91.4%, meaning that there is a 91.4% probability that 
individuals with type 2 diabetes will have a higher 
HbA1c than individuals without type 2 diabetes. The 
higher the AUC, the better the new diagnostic test dis-
criminates between individuals with and individuals 
without disease. The maximum value for the AUC is 
100%. If the AUC is 50%, the test is useless and com-
parable to the toss of a coin. AUC values below 50% 
mean that low rather than high values suggest that the 
disease is present.

Dependence of predictive values on prevalence
Predictive values, in contrast to sensitivity and speci -
ficity, depend on prevalence. This becomes apparent if 
we artificially modify the study results obtained by 
Papoz et al. (9), as in Table 4. These results might be ob-
tained if the test is not used as a screening test in an at-
risk population, but rather as a confirmatory test in indi-
viduals with suspected type 2 diabetes. To do this, we 
multiplied the number of individuals with type 2 diabetes 
(TP, FN, and n1, respectively) by 10, but left the number 
of individuals without type 2 diabetes  unchanged. This 
yields a prevalence of 69.9% and the following values: 

 

Even after increasing the number of individuals 
with the disease, the sensitivity remains unchanged. 
However, the positive predictive value increases from 
76.5% [67.3%; 83.7%] to 97.9% [96.6%; 98.7%], 
while the negative predictive value drops from 93.2% 
[90.6%; 95.1%] to 57.8% [54.4%; 61.2%]. The gen-
erally valid result becomes evident: sensitivity and 
specificity are independent of prevalence, but the pre-
dictive values are not. Therefore, when interpreting 
predictive values, the prevalence of the disease in the 
target population for which a new diagnostic test is 
 intended to be used must be taken into consideration. 
If the study population is a representative sample of 
the target population and the study participants are 
 appropriately selected, this is assured and the predic-
tive values are interpretable. If study prevalence and 
target population prevalence do not match, predictive 
values can be determined by using Bayes’ theorem: 

 

TABLE 4

Artificially modified result of the study by Papoz et al. (9) on the 
HbA1c cut-off value of 6.5

Hemo globin A1c
(HbA1c) T

Positive T+

Negative T–

Total

Oral glucose tolerance test  (OGTT)

Type-2 
diabetes (D1)

  780

  340

1120

No type-2 
diabetes (D0)

 24

465

489

Total

  804

  805

1609
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Here, Se and Sp denote the sensitivity and speci -
ficity of the diagnostic test under evaluation, while Pr 
denotes the prevalence of the disease in the target 
population. Assuming a prevalence of type 2 diabetes 
of 18.6%, as found in the study by Papoz et al. (9), we 
obtain the following results: 

 

These are in agreement with the results determined 
on the basis of the 2 x 2 contigency table.

In order to the determine the predictive value for a 
different target population, the prevalence can be 
 adjusted accordingly. If we assume that the predictive 
values of the HbA1c test for screening type 2 diabetes 
are to be estimated in the entire German adult popu-
lation, we would use the prevalence of type 2 diabetes in 
Germany, which was approximately 9.5% in 2015  (13): 

 

This means that any adult person in Germany with 
a positive HbA1c test would have a 59.9% probability 
of developing type 2 diabetes, and if the test result 
was negative, a 96.9% probability of not developing 
type 2 diabetes. The positive predictive value in par-
ticular needs to be viewed critically, since it implies 
that of 100 individuals that test positive, only around 
60 actually have diabetes. As such, one would expect 
approximately 40 false-positive test results, which 
may lead to unnecessary further diagnostic tests or 
treatment. One should also question in a critical 
manner whether the extrapolation of sensitivity and 
specificity from the study by Papoz et al. (9) is plau -
sible. The assumption here is that sensitivity and 
 specificity are the same in all scenarios. However, it is 
conceivable that a test could, for example, differenti-
ate individuals with and without severe disease better 
than those with suspected disease and mild disease. 
Although sensitivity and specificity do not depend on 
prevalence, they do depend on disease pattern. It 
should additionally be noted that prevalence is also 
determined on the basis of studies, and thus associ-
ated with uncertainty. This needs to be taken into con-
sideration when interpreting predictive values, and 
underscores the importance of confidence intervals.

Discussion
Diagnostic studies are the basis for the evaluation of 
diagnostic tests. As such, they form the bedrock of the 
resulting treatment or preventive measures. The correct 
interpretation of results obtained in these types of 
studies is vital in order to be able to evaluate the benefit 
of a new diagnostic procedure.

We have presented the most important parameters 
for the interpretation of diagnostic studies. These 
 include sensitivity and specificity, which are pri-
marily of interest from a study perspective, since they 
describe the accuracy of the diagnostic test under 
evaluation if the “true” disease status is known and 
are independent of prevalence. Predictive values, on 
the other hand, are of particular importance from a 
practical and clinical perspective. These indicate the 
probability that a disease is present or absent in the 
case of a positive or negative test result. As such, they 
reflect the situation in everyday clinical practice, but 
are dependent on disease prevalence, which needs to 
be taken into account when interpreting the values. 
Even a positive result using a test with extremely high 
sensitivity and specificity is highly likely to be a 
false-positive result if prevalence is very low

These parameters form the basis for the planning 
and analysis of more complex diagnostic studies (7, 
14). An understanding of the measures used to evalu-
ate a new diagnostic procedure and the critical inter-
pretation of these measures are essential for the 
 procedure’s practical evaluation and application. 

The additional diagnostic parameters (diagnostic 
likelihood and odds ratios), as well as the further 
 aspects of confirmatory diagnostic accuracy studies 
(for example, hypotheses and sample size determi-
nation), sources of bias, and study quality presented 
in the eMethods Section enable careful planning and a 
more differentiated evaluation of diagnostic studies.
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Hemorrhagic Shock Following Nasopharyngeal Swab
A 49-year-old man with intellectual disability was admitted to the hospital for treatment of 
persisting epistaxis following routine collection of a nasopharyngeal swab specimen for 
SARS-CoV-2 screening. Although the specimen collection had been performed by trained 
personnel and no abnormalities had been noted during the procedure, epistaxis had 
 commenced immediately thereafter. Progressive hemorrhagic shock and hypoxemic 
 respi ratory failure due to aspiration of blood necessitated intubation and norepinephrine 
 therapy. Of note, the patient was on edoxaban therapy (60 mg/day) for paroxysmal atrial 
 fibrillation. In addition, low-dose aspirin was being administered (100 mg/day). The 
 bleeding was associated with recurring hemodynamically significant tachyarrhythmias. On 
 endoscopy, the hemorrhage appeared diffuse, originating primarily from the nasopharynx 
and the left nasal cavity. There was no interventional option to directly control the bleeding. 
After nasal tamponade for three days and discontinuation of anticoagulant and antiplatelet 
therapies, hemostasis could eventually be achieved. Because of aspiration pneumonia, 
 invasive mechanical ventilation was necessary for a total of seven days. Currently, naso -
pharyngeal swab specimens for SARS-CoV-2 testing are being collected very frequently. 
The presented case demonstrates a life-threatening complication of these procedures. 
 Especially in patients with hemorrhagic diathesis, collection of alternative specimen types 
should be considered. Anticoagulant and antiplatelet therapies and, in particular, combined 
therapies should be reviewed on a regular basis.
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Computed tomography of the head and neck region 
(sagittal reconstruction) three days after the 
 emergency situation (soft tissue window). Evident 
are partial hemorrhagic occlusions of the pharynx 
 (arrows), larynx, and paranasal sinuses with the 
 sphenoid sinus being majorly affected (asterisk). 
Of note, there was no evidence of morphological 
 alterations at risk of bleeding, such as tumors or 
 vascular malformations.
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Questions on the article in issue 33/2021:

Studies for the Evaluation of Diagnostic 
Tests
The submission deadline is 22 August 2022. Only one answer is possible per question.  
Please select the answer that is most appropriate.

Question 1
What should serve as the reference standard to construct a diagnostic 
2 x 2 table? 
a) The fastest diagnostic method
b) The most widely used diagnostic method
c) The diagnostic method in longest use
d) The most cost-effective diagnostic method
e) The most reliable diagnostic method

Question 2
How is the prevalence of a disease calculated? 
a) The total number of study participants in the collective divided by the number of 

individuals with the disease
b) The number of positive test results divided by the total number of all test results
c) The number of true positive test results divided by the number of individuals that 

actually have the disease
d) The number of individuals with the disease divided by the total number of study 

participants in the collective
e) The total number of study participants in the collective divided by the number of 

positive test results 

Question 3
How is the specificity of a diagnostic test calculated? 
a) Difference between true-negative test results the and number of individuals 

without disease
b) Ratio of true-negative test results to the number of individuals without disease
c) Ratio of positive test results to the number of individuals with disease
d) Ratio of all negative test results to the number of individuals without disease
e) Difference between all positive test results and the number of individuals with 

disease

Question 4
 Which area under the curve (AUC) of the receiver operating characteristic 
curve is considered to make the investigated diagnostic test unusable?
a) 50%
b) 65%
c) 75%
d) 90%
e) 100%

Question 5
Of a total of 2000 HbA1c tests performed, 1200 are positive. However, 200 
of these 1200 prove to be false-positive. What is the positive predictive 
value in this (hypothetical) case? 
a) 60%
b) 62%
c) 70%
d) 83%
e) 86%

cme plus  
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Question 6
How is the Youden index calculated? 
a) The sum of percentage points for sensitivity and specificity minus 100
b) The ratio of percentage points for sensitivity and specificity minus 100
c) The product of percentage points for sensitivity and specificity divided by 100
d) The sum of percentage points for sensitivity and specificity divided by 100 
e) The sum of percentage points for sensitivity and specificity multiplied by 100

Question 7
Which value depends on, among other factors, the prevalence of a disease? 
a) Sensitivity
b) Specificity 
c) The Youden index
d) The maximum Youden index
e) Positive predictive value

Question 8
What does the negative predictive value refer to?
a) The probability that a disease is not present when a test result is positive
b) The probability that a disease is present when a test result is negative
c) The probability that a disease is not present when a test result is negative
d) The probability of obtaining a positive test result when the disease is not present
e) The probability of obtaining a negative test result when the disease is present

Question 9
 Which Youden index is often used to determine the optimal 
cut-off value of a diagnostic test? 
a) The Youden index at which a specificity of 70% is reached
b) A Youden index of 0.5
c) The highest Youden index reached in the study
d) A Youden index of 0.7
e) The lowest Youden index reached in the study

Question 10
In the case of a positive screening test, which characteristic 
would you attach particular importance to when selecting a 
suitable confirmatory test? 
a) Its sensitivity should be as high as possible
b) It should have similar specificity to the screening test
c) It should use the same sample material as the screening test
d) Its specificity should be as high as possible
e) It should enable faster evaluation than the screening test
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Diagnostic likelihood ratios
Diagnostic likelihood ratios (DLR) are parameters that combine sensitivity 
and specificity. They indicate how much more likely a positive test result 
(positive DLR) or a negative test result (negative DLR) is in a person with 
disease compared to a person without disease. DLRs can take values 
 between 0 and infinity. If a positive or negative DLR takes the value 1, a 
positive or negative test result is just as likely in a person with disease as in 
a person without disease. In this case, the test would be of no use. The 
larger the positive DLR and the smaller the negative DLR, the better the 
test. In contrast to predictive values, diagnostic likelihood ratios do not 
 depend on prevalence. One disadvantage, however, is that they cannot be 
calculated if sensitivity or specificity is 100% or 0%. For the example 
study, this yields:
 

Thus, the likelihood for a positive test result in an individual with disease is 
14.2 times higher than in an individual without disease. Conversely, a 
negative test result is only 0.3 times more likely for an individual with dis-
ease than for an individual without disease. The corresponding approxi-
mate 95% Wald confidence intervals (CI) comprise [9.43; 21.38] for DLR+ 
and [0.23; 2.46] for DLR−.

Diagnostic odds ratios
Like diagnostic likelihood ratios (DLR), the diagnostic odds ratio (DOR) is 
another parameter that combines sensitivity and specificity. The DOR is the 
ratio of odds (chance) of a positive test result in an individual with disease 
to the odds of a positive test result in an individual without disease. As with 
the DLR, the range of possible values spans from 0 to infinity, and, like-
wise, a DOR of 1 is uninformative. The higher the DOR, the better the 
diagnostic test. Although the DOR does not depend on prevalence, it does 
have—like the DLR—a disadvantage in that it cannot be calculated at a 
sensitivity or specificity of 100% or 0%. The general equation for DOR is:

 

For the example study, the following value is obtained:

 

This result means that, with the test, the chance of a positive result in indi-
viduals with disease is 44.4 times greater than in individuals without dis-
ease.

Confirmatory diagnostic accuracy studies
Medicinal Products Act
Up until now, diagnostic tests that are used outside the body, known as in 
vitro tests, have not been approved, as is usual for drugs. These tests fall 
under the Medicinal Products Act (Medizinproduktegesetz, MPG; in the 
European context, medical device regulatory, MDR). To date, it was suffi-
cient to demonstrate the safety of a product. However, with the amendment 
to the MDR, and thus also to the MPG, that comes into force in 2021, the 
benefit of the product may also need to be demonstrated depending on the 

eMETHODS SECTION  
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risk category it is assigned. As such, confirmatory evidence of sufficient 
diagnostic accuracy will gain in importance.

Study design
In order to be able to assess the diagnostic accuracy of a test, both the index 
test and the reference standard need to be performed on the same person. If 
the test is to be compared with one or more tests, the recommendation is to 
perform all tests on all subjects, if practicable and ethically justifiable. 
Where this is not the case, the person receiving the index test and reference 
standard and the person receiving the comparison and reference standard 
should be randomized.

Endpoints
If no cut-off value has been defined as yet or the overall diagnostic accu-
racy is of interest, the area under the curve (AUC) should be selected as the 
primary outcome measure. If, on the other hand, a cut-off value has already 
been determined, the approval authorities recommend using sensitivity and 
specificity as co-primary endpoints (11, 12). “Co-primary” means that for a 
positive study, the null hypotheses regarding the two endpoints need to be 
rejected. As soon as one of the two hypotheses cannot be rejected, the study 
result is negative. As a result of this intersection–union test, no adjustment 
of the type 1 error (α) for multiplicity is needed. As such, the full α (in gen-
eral fixed at 5% two-sided) may be used for the two individual hypotheses.

Due to the importance of predictive values on the one hand and their 
dependence on prevalence on the other, the recommendation is to con-
sider them as the most important secondary endpoints.

Hypotheses
The hypotheses differ depending on whether the index test is compared 
with the reference standard or with a comparator test—using the gold stan-
dard as a reference. In the former case, the objective is to demonstrate a 
previously defined minimum accuracy (e1), while in the latter, the objec-
tive is to show superiority over the comparator, measured in each case by 
AUC or sensitivity and specificity. When comparing with a comparator in 
terms of sensitivity and specificity, it may also be a legitimate objective to 
show superiority in one endpoint and non-superiority in the other. Thus, if a 
more sensitive diabetes test is developed, one may accept the trade-off that 
it has comparable or slightly lower specificity.

For the comparison of the index test with the reference standard, the 
hypotheses for the AUC are accordingly:
 

For sensitivity and specificity, they are defined as follows in this con-
text:
  

  means that at least one of the two null hypotheses holds, while ∩ means 
that both alternative hypotheses must hold.

For the comparison of the index test (I) with another test (C for com-
parison test), the hypotheses for the AUC are: 
 

For sensitivity and specificity, they are given here only for superiority, 
in the interests of simplification:

 

Sample size determination
Also in a confirmatory diagnostic accuracy study, sample size 
 determination should be performed in advance in order to avoid including 

∩
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too few or an unnecessarily high number of subjects in the study. Programs 
and formulas for sample size determination can be used to compare one 
rate with a fixed value or to compare two rates, in each case separately for 
sensitivity and specificity. However, it is important here to ensure that suf-
ficient numbers of individuals with and individuals without disease are 
 included and, at the same time, that the study population is representative 
of the target population. As a result, sample size determination is methodo-
logically challenging, and the reader is referred to the literature for details 
(14, e2).

Statistical tests and confidence intervals
For the verification of hypotheses, statistical tests or confidence intervals 
can be used, whereby confidence intervals have the advantage of making it 
possible to assess the variability of the result in addition to assessing its sig-
nificance. The α error does not need to be adjusted here. Thus, either the 
p-values are compared with α in each case or the two-sided (1-α) confi-
dence intervals (when α = 5%, then 95%) are calculated.

When comparing the index test to the reference standard, the confi-
dence interval is governed by whether the prespecified minimum value 
(AUC or sensitivity and specificity) is included in the confidence inter-
val. If this is not the case, the null hypothesis cannot be rejected. If the 
index test is being compared with a comparator, the difference between 
groups with the corresponding confidence interval is calculated for the 
parameters (AUC, sensitivity, specificity) and the null hypothesis 
 retained if the null (or non-inferiority margin) is included in the inter-
val.

All tests and confidence intervals can be used to compare a rate to a 
fixed value or to compare two rates. However, when comparing a rate to 
a fixed value, one needs to bear in mind that rates (sensitivities and 
 specificities) close to 1 are often obtained and, as such, some confidence 
intervals are more suitable than others. For extensive discussions and 
comparisons of the various intervals and tests, the reader is referred to 
Newcombe et al.  (e3, e4).

In the case of a confirmatory diagnostic study, it is important to select 
a study design that is suited to the question being asked, as well as appro-
priate outcome measures. Furthermore, a clear definition of hypotheses 
and meticulous prior sample size determination are imperative. Statisti-
cal tests or confidence intervals can be used to analyze the data, whereby 
measures of accuracy should always be reported together with their cor-
responding confidence intervals.

Sources of bias and study quality
As in an intervention study, there are numerous sources of bias in a diag-
nostic accuracy study that can adversely impact the study‘s validity. Some 
sources of bias are the same as those in intervention studies, while others 
are specific to diagnostic accuracy studies. A list and description of the 
most important sources of bias are provided in the eTable, based on Zhou et 
al. (14, Table 3, 4).

The STARD statement is a suitable instrument to assess the quality of 
a diagnostic accuracy study (e5). It provides a checklist of items relating 
to the various sections of the article, allowing one to gain a good impres-
sion of study quality.

Outlook
The content provided so far can be used to plan, analyze, interpret, and 
 assess the quality of diagnostic accuracy studies. However, since diag-
nostic studies are often more extensive in practice, a description of the 
 associated methods would exceed the scope of this article. Instead, we will 
highlight potential special features, discuss these briefly, and refer the 
reader to the relevant literature.
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Several investigators and factorial designs
The guidelines (11, 12) recommend involving at least two or, even better, 
more examiners for the evaluation of a subjective diagnostic test, for 
example, the interpretation of an X-ray. The investigators’ results are often 
aggregated prior to the analysis, for example, by means of a consensus or 
majority decision. However, this is strongly advised against since this 
 approach can lead to biased results. Instead, the investigator should be 
 included in the analysis as a fixed or random factor, depending on the 
 selection of the investigator. For methods of factorial design analysis, the 
reader is referred to the further literature  (7, 14, e6).

Multiple lesions and cluster data
For some diseases, there is no global diagnosis—instead, one can diagnose 
individual lesions, such as both eyes, different lobes of the liver, or 
multiple metastases. In such cases, the mistake is often made that lesions 
are regarded as independent, thereby leading to an incorrect assessment of 
variance in observations. An appropriate analysis would be possible using 
generalized linear (mixed) models, details of which can be found in the 
works by Pepe (7) and Rabe-Hesketh et al. (e6).

Study phases and randomized test-treatment studies
Much like the development of therapeutic agents, the development of diag-
nostic tests can also be subdivided into phases. After early studies aimed at 
technical evaluation come studies—often artificial case-control studies—to 
make an initial assessment of diagnostic accuracy. These are followed by 
confirmatory diagnostic accuracy studies in a representative setting. Since 
a correct diagnosis alone is of no benefit to a patient, the last step should be 
to compare, in a randomized approach, test strategies in what are referred 
to as test-treatment studies. Example studies include Oosterhuis et al. (e7), 
van den Berk et al. (e8), and Aviv (e9).

Here, for example, the index test is used in one group and the com-
parator in the other. Subsequently, all further decisions are made depend-
ing on the test result, with regard to, for example, further diagnostic 
 investigations or the initiation, continuation, or discontinuation of treat-
ment. Finally, the groups are compared in terms of a patient-relevant 
endpoint, such as mortality. For further information on the classification 
of randomized test-treatment trials into study phases, the reader is 
 referred to the literature  (7, 11, 14, e10–e12).

Adaptive designs
Although adaptive designs have long been established and frequently used 
in intervention studies, this approach has barely found its way into 
 diagnostic studies. Under certain conditions, adaptive designs enable 
 adjustments to be made during the course of the study, for example, early 
termination of the study or a change in the number of cases, without com-
promising the integrity of the study. Individual methodological articles, 
 especially on group sequential procedures as a subgroup of adaptive 
 designs, can be found, but virtually no examples of their application. For an 
overview of this topic, as well as concrete proposals for designs, the reader 
is referred to further studies (e2, e13–e16).

Meta-analyses
 Meta-analyses of diagnostic studies differ from meta-analyses of interven-
tion studies in that, according to the guideline recommendation, there are 
two primary endpoints (sensitivity and specificity) and, therefore, bivariate 
methods are mandatory. Thereby the dependence between sensitivity and 
specificity, induced by the selected cut-off value, must be taken into 
 account.. The standard approaches can be found in the articles by Chu and 
Cole (e17), as well as Rutter and Gatsonis (e18). Information on more 
 complicated analyses, for instance, when different or several cut-off values 
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are used in individual studies, can be found, for example, in Biondi-
 Zoccai’s book dealing with all facets of meta-analyses of diagnostic accu-
racy studies  (e19).

A number of aspects lead to the standard procedures no longer being 
adequate. In such cases, we recommend, in addition to the cited litera-
ture, involving a methodologist (for example, a statistician, biometrician, 
or epidemiologist).
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eTABLE

Table listing and describing the various potential sources of bias, modified from (14)

Bias

Selection bias

Spectrum bias

Imperfect gold standard bias

Work-up bias

Incorporation bias

Verification bias

Differential verification bias

Disease progression bias

Treatment paradox bias

Test review bias

Diagnostic review bias

Reading order bias

Context bias

Localization bias

Description

The study population is not representative of the target population.

The study population does not reflect the entire spectrum of patient and disease characteristics.

The reference or gold standard is not 100% correct.

The results of the index test affect the further procedure required to arrive at the definitive 
diagnosis.

The results of the index test are incorporated (partially or fully) in the reference standard.

The reference standard is performed primarily in individuals with a positive or a negative test result.

A different reference standard is used for individuals with positive and negative test results.

The disease progresses between the time of the index test and the time of the reference standard.

Treatment that alters the disease status is carried out between the time of the index test and the 
time of the reference standard.

The index test is performed without adequate blinding to the result of the reference standard or 
comparator.

The reference standard is performed without adequate blinding to the result of the index test 
and/or comparator.

When interpreting a test result (index or comparator), the investigator is influenced by their 
recollection of the other respective test result.

The study prevalence differs significantly from the population prevalence, causing the investigator 
to arrive at a biased estimate.

A lesion is incorrectly classified as true-positive despite the fact that the investigator incorrectly 
localized the lesion.


