
Differentiating Axillary Lymph Node Metastasis in Invasive 
Breast Cancer Patients: A Comparison of Radiomic Signatures 
From Multiparametric Breast MR Sequences

Ruimei Chai, MD1, He Ma, PhD2, Mingjie Xu, MS2, Dooman Arefan, PhD3, Xiaoyu Cui, PhD2, 
Yi Liu, MD1, Lina Zhang, MD1, Shandong Wu, PhD3,*, Ke Xu, MD1,*

1Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning 
Province, China

2Sino-Dutch Biomedical and Infornation Engineering School, Northeastern University, Shenyang, 
Liaoning Province, China

3Imaging Research Division, Department of Radiology, University of Pittsburgh, Pittsburgh, 
Pennsylvania, USA

Abstract

Background: The axillary lymph node status is critical for breast cancer staging and 

individualized treatment planning.

Purpose: To assess the effect of determining axillary lymph node (ALN) metastasis by breast 

MRI-derived radiomic signatures, and compare the discriminating abilities of different MR 

sequences.

Study Type: Retrospective.

Population: In all, 120 breast cancer patients, 59 with ALN metastasis and 61 without 

metastasis, all confirmed by pathology.

Field Strength/Sequence: 3 .0T scanner with T1-weighted imaging, T2-weighted imaging, 

diffusion-weighted imaging, and dynamic contrast-enhanced (DCE) sequences.

Assessment: Typical morphological and texture features of the segmented tumor were extracted 

from four sequences, ie, T1WI, T2WI, DWI, and the second postcontrast phase (CE2) of the 

dynamic contrast-enhanced sequences. Additional contrast enhancement kinetic features were 

extracted from all DCE sequences (one pre- and seven postcontrast phases). Linear discriminant 

analysis classifiers were built and compared when using features from an individual sequence or 

the combination of the sequences in differentiating the ALN metastasis status.

Statistical Tests: Mann–Whitney U-test, Fisher’s exact test, least absolute shrinkage selection 

operator (LASSO) regression, and receiver operating characteristic analysis were performed.
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Results: The accuracy/AUC of the four sequences was 79%/0.87, 77%/0.85, 74%/0.79, and 

79%/0.85 for the T1WI, CE2, T2WI, and DWI, respectively. When CE2 was augmented by adding 

kinetic features, the model achieved the highest performance (accuracy = 0.86 and AUC = 0.91). 

When all features from the four sequences and the kinetics were combined, it did not lead to a 

further increase in the performance (P = 0.48).

Data Conclusion: Breast tumor’s radiomic signatures from preoperative breast MRI sequences 

are associated with the ALN metastasis status, where CE2 phase and the contrast enhancement 

kinetic features lead to the highest classification effect.

In breast cancer patients, axillary lymph node metastasis is an important prognostic 

factor, and it is also critical for determining whether an adjuvant systemic chemotherapy 

or postoperative radiation is needed.1–3 Axillary lymph node (ALN) metastasis may be 

clinically confirmed by ultrasound-guided fine-needle aspiration (US-FNA) or lymph node 

dissection. For patients with confirmed ALN metastasis, axillary lymph node dissection 

(ALND) is the standard method for axillary lymph node staging. Sentinel lymph node 

dissection (SLND) is recommended to deal with nonpalpable axillary lymph nodes.4 

However, both ALND and SLND are invasive, with potential complications of lymphedema, 

seroma, infection, hematoma, and arm pain.4 It would be beneficial to determine axillary 

lymph node status pre-operatively to reduce unnecessary lymph node dissection1–4 and 

patient distress.

Tumor heterogeneity reflects characteristics on tumor growth and biology and it has 

important clinical implications.5,6 The heterogeneity shown in images may be depicted by 

a set of quantitative radiomic image features.7,8 Quantitative radiomic features extracted 

from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been 

shown to be associated with genetic expression profiles in breast cancer.9,10 Radiomic 

breast MRI features have also been shown to be predictive of the response of neoadjuvant 

chemotherapy, recurrence risk, and recurrence-free survival for breast cancer patients.11–15

Typical breast MRI protocols include multiple different sequences, including T1-weighted 

imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI), 

as well as often DCE. The DCE sequence may reflect angiogenesis of tumor through 

the pattern of enhancement,16 and has been extensively investigated in many radiomic 

studies.9,15,17 The precontrast T1WI is mainly useful to evaluate the morphological 

information. T2W images are often clinically used to detect lesions and to reveal the cystic 

architecture within a lesion16; radiomic signatures derived by T2WI have been shown to be 

predictive of pathological response to neoadjuvant chemotherapy in breast cancer patients.11 

DWI is used less in radiomic studies, possibly due to its low spatial resolution and image 

quality.18,19

Thus, the purpose of this study was to assess the feasibility of differentiating ALN 

metastasis using the radiomic signatures of primary breast cancer in breast MRI, and 

more important, to compare the potential discriminative effects of several multiparametric 

breast MR sequences, including precontrast T1WI, DCE, T2WI, and DWI, separately and 

combined.
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Materials and Methods

Patients

The Institutional Review Board of our university hospital approved this study and the 

requirement of patients’ informed consent was waived. We retrospectively reviewed medical 

records to identify patients with invasive breast cancer confirmed by pathology between 

April 2013 and May 2017. A patient with a breast MRI examination performed within 

10 days of treatment is considered eligible for enrollment. Patients were excluded if they 

had undergone core biopsy, operation, or neoadjuvant chemotherapy before imaging. Each 

enrolled patient was categorized as positive or negative for ALN metastasis status. The 

positive cases were confirmed by either lymph node dissection or US-FNA, and the negative 

cases were all confirmed by lymph node dissection.

Breast MRI Protocol

All patients were scanned in the prone position with breast immobilized using a 3 .0T 

scanner (Magnetom Verio Syngo, Siemens, Erlangen, Germany) and an 8-channel breast­

specific phased-array coil. The imaging protocol consisted of the following sequences 

acquired in order: an axial 3D T1-weighted imaging (repetition time / echo time [TR/TE], 

6.04/2.45 msec, field of view [FOV], 340 × 340 mm, slice thickness, 1.3 mm, flip angle, 20°, 

matrix size, 448 × 336), an axial fat-suppressed spoiled spin-echo T2WI imaging (TR/TE, 

3600/61 msec, FOV, 340 × 340 mm, slice thickness, 4 mm, matrix size = 320 × 256), 

an axial DWI sequence, and axial DCE sequence. The diffusion-weighted images were 

obtained using the single-shot spin-echo echo-planar technique, with TR 9300 msec, TE 76 

msec, 320 × 145 mm FOV, 4-mm slice thickness without gap, matrix of 168 × 168, three b 

values of 50 s/mm2, 400 s/mm2, and 1000 s/mm2, three diffusion directions, and echo planar 

imaging (EPI) factor of 76. The dynamic contrast-enhanced images were obtained using the 

3D volumetric interpolated breath-hold examination (VIBE) technique, with TR 4.67 msec, 

TE 1.66 msec, 360 × 360 mm FOV, 1.2-mm slice thickness without a gap, flip angle of 

10°, and matrix of 384 × 296. The dynamic-enhanced images included one precontrast and 

seven sequential postcontrast phases with a temporal resolution of 60 seconds. Magnevist 

(gadopentetate dimeglumine, Bayer Healthcare, Berlin, Germany) was injected immediately 

at the end of the precontrast phase acquisition, in a 0.2 ml/kg (or 0.1 mmol/kg body weight) 

through the elbow vein at a rate of 3.0 ml/s, followed by a flush of equal volume saline 

solution at the same rate.

Tumor Segmentation and Radiomic Feature Extraction

A single most representative slice was selected by a radiologist (R.C., with 11 years 

experience of breast MRI) for analysis. The tumor was segmented manually and a set of 

radiomic features were computed from the segmented tumor regions. Tumor segmentation 

was performed by the same radiologist who was blinded to the clinical and pathological 

information of the patients and by using the Mazda software (MaZda v. 4.6, Technical 

University of Lodz, Institute of Electronics, Poland). For radiomic feature extraction, we 

used the precontrast T1WI, T2WI, DWI (images of b = 1000 s/mm2), and the second 

postcontrast phase of the DCE sequence (denoted CE2) for comparative analyses. The 

reason for choosing the CE2 sequence here is because it is acquired at about 60–120 
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seconds after the contrast administration, a timepoint when the contrast between tumor 

and background is at its peak.16 The tumor region of interest (ROI) was firstly manually 

delineated on the CE2 image, and then was copied to the other three sequences (ie, T1WI, 

T2WI, and DWI), followed by a manual adjustment of the segmentation contours on these 

sequences as needed.

At preprocessing, all images were rescaled to 6 bits/pixel and gray-level normalization was 

carried out by the MaZda software by rescaling the histogram data to fit within μ ± 3σ (μ 

represents mean of gray-level, σ represents standard deviation of gray-level) to minimize the 

effects of the variations on imaging brightness and contrast.

A set of 475 quantitative radiomic imaging features was extracted from a segmented 

tumor ROI in each of the four MRI sequences (ie, T1WI, T2WI, DWI, and CE2) by 

using the Mazda software. These features included morphological features (eg, size and 

shape), histogram features, texture features (eg, gray-level co-occurrence matrix [GLCM], 

run length matrix [RLM]), and texture features extracted from some filtered images (eg, 

Wavelet transforms). GLCM-based features were calculated on four directions (θ = 0°, 45°, 

90°, and 135°) with interpixel distances of n = 1, 2, 3, 4, and 5, respectively. RLM-based 

features were also calculated in the four directions.

In view of the kinetic features of DCE-MRI can reflect clinically important contrast 

enhancement characteristics of breast tumor, we computed an additional set of 109 kinetic 

features from the DCE sequence (ie, one pre- and seven postcontrast phases) using an 

in-house developed software. These features included those depicting time–intensity curve 

(TIC) (ie, washin slope [WIS], washout slope [WOS], peak enhancement [PE]) and features 

extracted from a time-to-peak (TTP) parametric map. The TTP parametric map is generated 

as follows. We first categorize all the pixels in a segmented tumor in terms of three classes/

groups based on their TTP values (range: 1–7, corresponding to the seven postcontrast 

sequences). The three groups represent quick (Group 1), intermediate (Group 2), and slow 

(Group 3) arrival to the peak enhancement. Let Pi represent the ith pixel in the segmented 

tumor area, we use the following criteria to group the pixels:

Pi ∈  Group 1  if  1 ≤  TTP value of Pi ≤ 2
Pi ∈  Group 2  if  3 ≤  TTP value of Pi ≤ 4
Pi ∈  Group 3  if   TTP value of Pi ≥ 5

(1)

Then a TTP parametric map was created as the pixel’s membership determined by Eq. 1 for 

each pixel in the tumor area. A pixel is labeled as red, green, or blue if it is a member of 

Group 1, Group 2, or Group 3, respectively. Note that while we chose to use three classes 

(for the sake of simplicity) to characterize the pixel’s heterogeneity on the arrival of the peak 

enhancement, one can use different number of classes as well. Next, the morphological and 

texture features were extracted from the TTP parametric map. The features extracted from 

the TTP parametric map may capture additional heterogeneity information of the contrast 

enhancement. Figure 1 shows an example of tumor segmentation in different MR sequences 

and the TTP parametric map.

Chai et al. Page 4

J Magn Reson Imaging. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ALN Metastasis Status Classification Modeling and Statistical Analysis

Considering the large number of extracted radiomic features, we employed the least absolute 

shrinkage and selection operator (LASSO) technique to select/rank the most significant 

features prior to the modeling process for ALN metastasis status classification. After 

LASSO regression, a small set of selected features were used as the input of a linear 

discriminant analysis (LDA) classifier to differentiate the ALN metastasis status. In order 

to take advantage of the imaging data and maintain a robust test, we used 10-fold cross­

validation and repeated 100 times of the training-testing loop to evaluate the model’s 

performance. The receiver operating characteristic (ROC) curve analysis was performed 

and the area under the ROC curve (AUC) and accuracy were used to assess the classification 

performance of the LDA models. The pipeline of feature extraction, LASSO-based feature 

selection, and LDA-based classification was applied separately to each of the four MRI 

sequences (T1WI, CE2, T2WI, and DWI). We also combined all the features extracted from 

the four sequences together as a single set of integrated features to evaluate the collective 

effects of the four sequences. Similarly, the LASSO feature selection and LDA classification 

on this integrated feature set were performed. At the end, we can compare the classification 

performance of the four sequences individually and combined.

Statistical analysis was performed by using the SPSS software (v. 25.0; IBM SPSS 

Statistics for Windows, Armonk, NY). Two-tailed statistical tests were used, and P < 

0.05 was considered statistically significant. Continuous data were tested by a one-sample 

Kolmogorov–Smirnov test, then expressed as the mean ± standard deviation for data with a 

normal distribution, or expressed as median (interquartile range) in nonnormally distributed 

data. Corresponding to the distribution of the data, the Student’s t-test or Mann–Whitney 

U-test was used to compare the continuous data between patients with and without ALN 

metastasis, and the chi-square test or Fisher’s exact test was used to compare the categorical 

data.

Results

Patient Characteristics

A total of 120 breast cancer patients were enrolled in this study. The mean age of the full 

cohort was 45.4 ± 10.3 years old. There were 59 (49.2%) patients who were confirmed as 

ALN metastasis positive and the rest of the cohort (61 patients) as negative. Clinical and 

pathological characteristics of the patients are summarized in Table 1. Patient age, tumor 

size, and histologic grade were not significantly different between the positive and negative 

groups. The ALN metastasis positive group was mainly invasive ductal cancer (98.3%), 

while the negative group included 50 invasive ductal cancer (82.0%), eight invasive lobular 

cancer, two invasive cribriform cancer, and one invasive tubular cancer.

Selected Features

Six different feature sets were selected by LASSO from the T1WI, CE2, T2WI, DWI, CE2 

plus kinetic features, and the integrated features, respectively. The top-ranked five features 

from each feature set are listed in Table 2. As can be seen, for the T1WI, CE2, T2WI, and 

DWI sequences, the top features basically came from the GLCM measures, morphology, and 
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Wavelet transforms, histogram measures, and RLM features. Interestingly, when combining 

the features from the CE2 and additional kinetics features, 14 kinetic features were selected 

and the top five also included kinetic features, indicating the importance of the kinetics 

features.

After we put all the features extracted from the four different sequences as well as the 

kinetics features (we called them the union), 57 features were selected, including two kinetic 

features, 15 from T2WI, 21 from DWI, 9 from T1WI, and 10 from CE2. The top-five 

features included a morphological feature from T2WI, a GLCM feature from DWI, two 

GLCM features from T1WI, and a histogram feature from DWI. Here, no kinetics features 

were among the five top-ranked features.

Classification Performance

The accuracy and ROC analysis results are shown and compared in Table 3 and Fig. 2. 

When comparing the four sequences individually, the highest accuracy (79.15%) comes 

from DWI and the highest AUC (0.8729) comes from T1WI. Overall, the performance 

measures are quite close between DWI and T1WI. It is obvious that the T2WI sequence 

exhibited the lowest overall performance compared with the other three sequences.

However, when the kinetic features were added to the features from CE2, a substantial 

increase of the model performance was observed in terms of both accuracy (86.37%, P < 

0.05) and AUC (0.9132, P < 0.05), obviously superior to the CE2 features alone. When 

all these features were mixed together, it did not lead to a performance improvement in 

comparison with the CE2 + kinetics scenario (AUC = 0.9190 for Union and AU = 0.9132 for 

CE2 + Kinetics; P = 0.48).

Discussion

In this study we showed that radiomic signatures extracted from preoperative breast MRIs 

are associated with the ALN metastasis status. The four MRI sequences: precontrast 

T1WI, CE2, T2WI, and DWI, all have features differential of the metastasis status. While 

the morphological and texture features from the four sequences exhibit a reasonable 

performance both in terms of accuracy and AUC, our results indicate that the kinetic features 

contribute substantially to the classification when combined with the features extracted from 

the CE2 phase, leading to the highest accuracy and AUC for this specific ALN metastasis 

status classification task.

Breast MRI is widely used in the preoperative evaluation of ALN status in breast cancer 

patients, showing superior performance than some other techniques such as ultrasound or 

positron emission tomography / computed tomography (PET-CT).21,22 While breast MRI is 

useful to diagnose ALN status via visual assessment, it suffers from some limitations. In 

most cases of breast MR scanning, the breast surface coil is mainly centered on the breast 

region,23–25 but some of the positive ALNs may locate at the border of the coil and some 

may even be out of the imaging FOV. Moreover, the air–axilla interfaces are often associated 

with magnetic sensitivity artifacts (or susceptible artifacts) that may affect the MRI of 

ALN.26 All these factors can restrict the visual assessment of breast MRI for diagnosing 
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ALN metastasis status. In this study, we focus on the breast tumor itself in breast MRI and 

apply a radiomics-based approach to extract imaging features from the segmented tumor 

region to differentiate metastasis status of ALN. This may help avoid the aforementioned 

limits, and/or augment the direct visual assessment of ALN using breast MRI.

One important aspect of our study is to compare the discriminative abilities of 

multiparametric breast MR sequences. The majority of the features used are morphological 

and texture features and the performance margins are not wide among these sequences. 

It is a bit surprising that the postcontrast sequence CE2 does not outperform T1WI, but 

note that here no kinetic features were included for the CE2 sequence alone. This may 

also explain why the precontrast T1WI and postcontrast CE2 are close to each other, since 

only morphological and texture features were computed. But the additional kinetic features 

from the time–intensity curve and the TTP map are able to show a difference. This informs 

the importance of the heterogeneity of tumor contrast enhancements and the multiphase 

DCE sequences in breast MRI. In fact, the utilities of multiple temporal postcontrast 

sequence and kinetics-related measures have been shown in previous work.27–29 Our study 

on differentiating the ALN metastasis status adds an example showing the value of kinetic 

features extracted from multiple postcontrast sequences.

Interestingly, when we combined all the radiomic features of the four sequences and the 

kinetic features (ie, the union), it did not lead to improved performance than using CE2 

plus the kinetic features. This implies that those other sequences may contribute minimally 

in the ALN metastasis differentiation task, if we have already had the CE2 sequence and 

kinetic features computed from the multiple temporal DCE phase. We do notice that in 

terms of the selected features, the “union” setting identified fewer kinetic features but more 

DWI features. This observation merits further investigation in future work. Considering the 

relatively low spatial resolution of DWI, it may benefit from the complement of other MR 

sequences that are more appropriate to compute morphology and texture features. We plan to 

further look into the comparisons of DWI to other sequences when high-resolution DWI data 

become available in the future.

Our study has several aspects worth pointing out. The dataset for this study was acquired 

from a single MR scanner in a medical center with a consistent scanning protocol, which 

may minimize potential bias and confounding factors in radiomic feature extraction and 

analysis. The segmentation and feature extraction were performed by using free commercial 

software that has been validated in many previous studies.11,30 In addition, we compared 

the effects of different MR sequences for our specific classification task. Such comparative 

studies are valuable to the community because it helps us gain insight and understanding 

of the overall utilities of these different MR sequences in radiomic-based clinical outcome 

differentiation.

Our study has several limitations. This is a retrospective study and our sample size was 

relatively small. Since the entire study cohort came from a single medical center, it lacks 

an evaluation of the generalization and robustness of our results. A larger patient cohort 

collected potentially from multiple institutions is planned for a more rigorous analysis. 

Second, tumor ROIs were drawn manually by radiologists, and thus is time-consuming 
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and prone to error and user variability. An automatic, reliable, and validated breast tumor 

segmentation method is ideal but not available to us at this stage of our study. Third, we 

selected a single representative slice to analyze in this preliminary study. Although this 

is a common approach used in numerous previous studies,11,13,15 we acknowledge that it 

may lose some important spatial information compared with using the whole tumor volume. 

We are planning to explore a 3D segmentation method and then volumetric-based study 

in the next-step research. In addition, when computing the TTP maps we did not perform 

intersequence coregistration that may not be optimal.

In conclusion, this study showed that the radiomic signatures of primary breast cancer 

extracted from preoperative breast MR sequences are associated with the ALN metastasis 

status. The precontrast T1WI, CE2, T2WI, and DWI sequences all showed a level of 

discriminative performance, where the combination of CE2 features and the kinetic features 

from multiple temporal postcontrast sequence performs the best. A larger study is warranted 

to further evaluate our findings.
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FIGURE 1: 
A 45-year-old woman diagnosed with invasive ductal carcinoma. (a) The second 

postcontrast image (ie, CE2). The malignant mass is seen in the left breast, with a size 

of 3.4 cm × 3.3 × 2.8 cm, histologic grade II (intermediate), axillary lymph node metastasis 

positive. (b–e) Segmentation (red masks) of the tumor overlaid on the original images 

in the precontrast T1 image (b), second postcontrast image (c), T2-weighted image (d), 

and diffusion-weighted image (e). (f) Example of a time-to-peak (TTP) parametric map 

(superposed on the second postcontrast image), where the red regions represent pixels that 

have arrived at their peaks in either the first or second postcontrast phase; the green regions 

represent pixels arrived at their peaks in either the third or fourth postcontrast phase; the 

blue regions represent pixels arrived at their peaks in the fifth, sixth, or seventh postcontrast 

phase.
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FIGURE 2: 
The ROC curves of using the different MRI sequences of precontrast T1WI, second 

postcontrast phase (CE2), T2WI, DWI, CE2 plus kinetic features (CE2 + Kinetics), and 

all of the features together (Union) for predicting axillary lymph node metastasis status.
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