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ABSTRACT Rapid and reliable detection of rifampin (RIF) resistance is critical for the
diagnosis and treatment of drug-resistant and multidrug-resistant (MDR) tuberculosis.
Discordant RIF phenotype/genotype susceptibility results remain a challenge due to
the presence of rpoB mutations that do not confer high levels of RIF resistance, as
have been exhibited in strains with mutations such as Ser450Leu. These strains, termed
low-level RIF resistant, exhibit elevated RIF MICs compared to fully susceptible strains
but remain phenotypically susceptible by mycobacterial growth indicator tube (MGIT)
testing and have been associated with poor patient outcomes. Here, we assess RIF re-
sistance prediction by whole-genome sequencing (WGS) among a set of 1,779 prospec-
tively tested strains by both prevalence of rpoB gene mutation and phenotype as part
of routine clinical testing during a 2.5-year period. During this time, 139 strains were
found to have nonsynonymous rpoB mutations, 53 of which were associated with RIF
resistance, including both low-level and high-level resistance. Resistance to RIF (1.0mg/
ml in MGIT) was identified in 43 (81.1%) isolates. The remaining 10 (18.9%) strains were
susceptible by MGIT but were confirmed to be low-level RIF resistant by MIC testing.
Full rpoB gene sequencing overcame the limitations of critical concentration phenotyp-
ing, probe-based genotyping, and partial gene sequencing methods. Universal clinical
WGS with concurrent phenotypic testing provided a more complete understanding of
the prevalence and type of rpoB mutations and their association with RIF resistance in
New York.
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Rifampin (RIF) is a critical component of drug regimens for treating tuberculosis (TB)
infection, and detection of RIF resistance is crucial for the diagnosis and treatment

of drug-resistant and multidrug-resistant (MDR) tuberculosis. RIF resistance is mainly
caused by the presence of specific mutations in the rpoB gene, which encodes the RNA
polymerase b subunit, an observation first described in Escherichia coli (1, 2). In 1993,
Telenti et al. described the molecular basis for RIF resistance in 64 Mycobacterium tu-
berculosis clinical isolates and found resistance polymorphisms to be restricted to a
highly conserved region of rpoB, a key finding that paved the way for the development
of rapid genotypic methods for the determination of resistance (3, 4). This highly con-
served region of rpoB would later be designated the 81-bp RIF resistance-determining
region (RRDR) due to the frequency with which resistance polymorphisms were
detected in this region (5, 6).
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As genotypic methods to detect RIF resistance became widely implemented, rare
variants associated with resistance were described, including several located outside
the RRDR (7, 8). Among these less common variants, a class of mutations emerged that
confer a lower level of RIF resistance than typical variants (9, 10). These mutations,
referred to as low-level resistant mutations in this paper, were found to be susceptible
to rifampin by critical concentration phenotypic susceptibility testing. It was proposed
that these mutations are still clinically relevant (9, 11). This group of mutations has gar-
nered increased attention since being linked to poor clinical outcomes when RIF is
included in the treatment regimen (10, 12–15). Data regarding the prevalence of low-
level RIF resistance in M. tuberculosis are still lacking, particularly in settings with low
incidences of tuberculosis. Current reports suggest that the prevalence of these muta-
tions vary by setting (12, 16, 17). Furthermore, mutations located outside the RRDR and
rare variants within the RRDR can be challenging to detect or interpret, which may
contribute to underreporting of these mutations, especially when some commonly
used methods are used.

RIF resistance is most commonly found in conjunction with isoniazid (INH) resist-
ance, but a minority of strains are resistant to only RIF and not INH or other TB drugs
(RIF monoresistant). Reliable identification of RIF monoresistance is critical, as these
strains have been associated with lower rates of successful treatment outcomes and
may lead to the development of MDR-TB if treated suboptimally (18). The World
Health Organization (WHO) estimated 1.1% of patients worldwide were infected with
RIF monoresistant TB in 2014, but regional reports have suggested that the rate varies
significantly, surpassing 20% in some jurisdictions (19, 20). RIF monoresistance has
been reported at higher rates among HIV-positive patients compared to HIV-negative
patients, while rates of resistance to other drugs, such as INH, have not been found to
vary by HIV status (19, 21).

Studies have suggested that drug resistance in bacteria often results in a fitness
cost, which may impact growth rate, virulence, and/or transmissibility (22, 23). In the
case of rpoB mutations, compensatory mutations have been described in the rpoA and
rpoC genes, which encode the a and b ’ subunits of the RNA polymerase and have
been suggested to compensate for the fitness cost of resistance mutations in rpoB (24).
It has also been proposed that additional mutations in rpoB itself compensate for the
fitness cost of resistance mutations, although these mutations are still not well charac-
terized, likely due to the challenge discerning which mutations play a role in resistance
versus compensation (23, 25). Reports of compensatory mutations are currently lim-
ited, but increased surveillance may further our understanding of how RIF resistance is
acquired and spread.

To address these gaps in our knowledge, between January 2016 and October 2018
we tested one isolate of M. tuberculosis complex (MTBC) from each newly diagnosed
patient in New York, a low-incidence setting (3.8 cases per 100,000) (26). Each isolate
was tested by whole-genome sequencing (WGS), phenotypic susceptibility testing
(Bactec mycobacterial growth indicator tube [MGIT] 960 and agar proportion), and
selective MIC testing (Sensititre MYCOTB MIC plate). This report describes the incidence
of low-level RIF mutations in M. tuberculosis strains in a prospective analysis in a low-
incidence setting. Furthermore, we report on all rpoB gene mutations identified, their
corresponding phenotypic interpretation, compensatory mutations, strain lineage, and
genomic clustering among these strains.

MATERIALS ANDMETHODS
Clinical isolates. A total of 1,779 MTBC strains from unique patients, received as isolates or cultured

in-house from clinical specimens by the Mycobacteriology Laboratory at the Wadsworth Center, New
York State Department of Health (NYSDOH), were included in this study. Prior to leaving the biosafety
level 3 (BSL-3) laboratory for DNA extraction, liquid culture aliquots of clinical isolates were heat inacti-
vated at 80°C for 60min.

Phenotypic DST. Culture-based RIF drug susceptibility testing (DST) was performed using the liquid
culture MGIT 960 system (Bactec MGIT 960 SIRE package insert; Becton, Dickinson) and solid 7H10 agar
proportion method according to the Clinical and Laboratory Standards Institute’s recommendations,
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using a critical concentration of 1.0mg/ml (27). Isolates received in the laboratory were subcultured in
MGIT medium prior to first-line DST being set up. A subset of 67 isolates was selected for MIC testing
based on mutation profile and MGIT DST result. This group contained 53 isolates identified with rpoB
gene mutations and a group of 14 wild-type strains. MIC testing was performed on cultures initially
grown on Middlebrook 7H10 plates using the Sensititre MYCOTB AST plate (Thermo Scientific), including
a RIF concentration range of 0.12 to 16mg/ml. MIC testing was performed in triplicate, with plates being
read by one analyst. Repeat MIC results were within 1 dilution for all isolates tested.

Real-time PCR. An in-house-developed real-time PCR assay (28) was utilized to detect MTBC in all
samples received. Prior to WGS, this assay was repeated as a quality control check on DNA extracts to
assess purity and quantitation of MTBC DNA.

DNA extraction. DNA was extracted from 1ml of heat-inactivated isolates using a modified version
of the InstaGene/FastPrep (IG/FP) method described by Shea et al. (29). Specifically, the 56°C incubation
was reduced from 30min to 10min, and the volume of InstaGene matrix added to the pellets was
altered to be 130 to 200ml, based on the size of the pellet observed. These changes were implemented
to reduce extraction turnaround time and increase DNA yield. DNA yields were measured by Qubit fluor-
ometry and compared to real-time PCR results to confirm purity.

WGS. Paired-end 250-bp DNA sequencing was carried out using the Illumina MiSeq platform follow-
ing Nextera XT library preparation with a 15-cycle PCR indexing step (30). Sequencing runs were com-
posed fully of 15 to 17 MTBC samples or of MTBC with other bacterial, viral, and/or parasitic samples.

Bioinformatic analysis. Sequence analysis was performed using the Wadsworth Center TB WGS
bioinformatics pipeline as previously described (29). Specifically, mutations were determined by a
minimum 10� depth of coverage, and mutations were detected with the GATK package, using the
diploid mode to allow for detection of heteroresistance. Major lineage identification was based on
the presence or absence of lineage-defining single-nucleotide polymorphisms (SNPs; see Table S1 in
the supplemental material), with nomenclature according to Gagneux and Small (31). Genomic clus-
ters were determined by an SNP distance of #5 SNPs to any sequence(s) in our database, independ-
ent of epidemiological data.

Mutation classification. Mutations in rpoB were sorted into three categories of RIF resistance, i.e.,
no resistance, low-level resistance, and high-level resistance, based on culture-based MGIT and MIC
results. Strains with high-level resistance had clearly elevated RIF MIC ($16mg/ml) and were phenotypi-
cally resistant at 1.0mg/ml in MGIT. Strains with low-level resistance had RIF MIC ranging from 0.25 to
1.0mg/ml and tested phenotypically susceptible at 1.0mg/ml in MGIT. Remaining mutations with no evi-
dence of RIF resistance (susceptible at 1.0mg/ml in MGIT and RIF MIC of #0.25mg/ml) were determined
not to be associated with RIF resistance. As the MIC ranges overlap at 0.25mg/ml for low-level resistant
and nonresistant strains, reports of mutations in the literature were used to finalize classification.

Data availability. Sequences analyzed in this article have been provided to the Centers for Disease
Control and Prevention on a monthly basis to contribute to the National TB Genotyping program
(https://www.cdc.gov/tb/programs/genotyping/default.htm) as well as the Relational Sequencing TB
Data Platform (ReSeqTB) (https://platform.reseqtb.org/), which catalogs a vast amount of genotypic,
phenotypic, and related metadata from M. tuberculosis strains to enable the development of clinically
useful, WHO-endorsed in vitro diagnostic assays for rapid drug susceptibility testing.

RESULTS
rpoB mutation identification and classification. Among 1,779 isolates tested, 139

were found to have one or more nonsynonymous mutation(s) in the rpoB gene. A total
of 119 had a single mutation, while the remaining 20 had two or three rpoB mutations
each. Of the 139 strains, 53 (38%) were found to have mutations associated with phe-
notypic RIF resistance (both high- and low-level resistance) based on MGIT DST and
MIC testing. These RIF-resistant isolates contained 17 specific mutations across 11 co-
dons in rpoB (Fig. 1), including 42 (79.2%) MDR, 2 (3.8%) extensively drug-resistant
(XDR), and 9 (17%) RIF monoresistant strains (Table 1). Nearly all RIF-resistant strains
harbored mutations within the RRDR, 49/53 (92.5%), compared to 4/53 (7.5%) strains
with single rpoB mutations outside the RRDR. Among the remaining 86 RIF-susceptible
strains, four other mutations, including one nonsynonymous mutation (Thr427Ala) and
three silent mutations (1 of Thr427Thr and 2 of Arg447Arg), were identified within the
RRDR with no effect on resistance.

MGIT DST, low-level resistance mutations, and RIF monoresistance. Of the 53
strains with rpoB resistance mutations, 43 (81.9%) were resistant to RIF in MGIT at 1mg/
ml. The remaining 10 (18.9%) strains were susceptible in MGIT at 1mg/ml but were
determined to be low-level RIF resistant by MIC testing. Three of the mutations
detected in these strains were located outside the RRDR (Ile59Thr [1], Ile491Phe [2]),
and seven were within the RRDR (Leu430Pro [3], Asp435Tyr [1], Ser441Gln [1],
His445Gln [1], Leu452Pro [1]). Two other strains were found to have mutations associ-
ated with low-level resistance, but each contained an additional resistance-associated
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mutation in rpoB, and both were phenotypically resistant to RIF in MGIT (Table 1). RIF
monoresistance was more prevalent among low-level resistant strains (7/10, 70%) than
high-level resistant strains (2/43, 4.6%). The 7 patients with low-level RIF monoresistant
strains were HIV negative, while one of the two patients infected with high-level RIF
monoresistant strains was HIV positive. HIV status for the remaining patient with high-
level RIF monoresistant TB was unavailable.

MIC ranges.MIC results were performed for a total of 67 strains, including 53 with
rpoB mutations and 14 wild-type strains. The results were grouped by rpoB mutation
type: rpoB wild-type strains and rpoB mutations not associated with resistance were
combined with a MIC range of ,0.12 to 0.5mg/ml (n= 40), rpoB mutation associated
with low-level RIF resistance with a MIC range of 0.25 to 1.0mg/ml (n= 9), and rpoB
mutation associated with high-level RIF resistance with a MIC of .16mg/ml (n= 18)
(Fig. 2). Strains with high-level RIF resistance mutations had distinct MIC results com-
pared to all other strains. The MIC ranges of rpoB wild-type and low-level rpoB
mutated strains overlapped at 0.25mg/ml and 0.5mg/ml; one strain with rpoB
His445Gln had a MIC of 0.25mg/ml, while two rpoB wild-type strains had a MIC of
0.5mg/ml.

Compensatory mutations. Resistant strains were screened for the presence of
potential compensatory mutations in the rpoA, rpoC, and rpoB genes. Thirty-two of 53
(60.4%) RIF-resistant strains harbored one of these mutations, 22 in rpoC, 8 in rpoB, and
2 in rpoA. Both rpoA mutations and 16/22 (73%) of the rpoC mutations were reported
previously in RIF-resistant clinical isolates (Fig. 1). Mutations in compensatory genes
were associated mainly with high-level RIF resistance; 30/43 (70%) of high-level RIF-re-
sistant strains had a compensatory mutation compared to just 2/10 (20%) of low-level
RIF-resistant strains. To our knowledge, we are the first to report rpoC mutations
Glu513Gln, Val731Met, Asp735Asn, Thr845Pro, and Gly986Cys. We also considered all
nonresistance SNPs in rpoB as potential compensatory mutations and found eight
such mutations, not previously reported, in seven unique isolates with rpoB

FIG 1 Schematic representations of mutations in rpoB, rpoA, and rpoC genes. (A) rpoB. Cell color indicates corresponding phenotypic MGIT result. (B) rpoA
and rpoC. Compensatory mutations among strains with rpoB gene resistance mutations. Cell color indicates previous literature reports. Lineage-specific
mutations are not shown.
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resistance mutations: Asp265Gly, Val534Ala, Arg552His, Glu563Ala, Asp574Glu,
His674Arg, and Lys258Thr plus Ser1039Ala.

RIF resistance and mutation prevalence by major lineage. All four major tuber-
culosis lineages (lineages 1 to 4) were represented in our collection (14.6%, 21.6%,

TABLE 1 Compensatory mutations, susceptibility, and major lineage of strains with rpoB resistance mutationse

Mutation Description
No.
resistant

No.
sensitive MIC

Resistance
type

No. in major
lineage:

1 2 3 4
rpoB RRDR nonresistance SNPs rpoB compensatory rpoA rpoC
Thr427Thra 0 1 NA Pan-susceptible 1
Thr427Ala 0 1 #0.12 Pan-susceptible 1
Arg447Arga 0 2 NA Pan-susceptible 2

rpoB low-level resistance mutations rpoB compensatory rpoA rpoC
Ile59Thrd 0 1 0.5 Mono 1
Leu430Pro 0 3 0.5–1 1 MDR, 2 mono 1 1 1
Asp435Tyr 0 1 0.5 MDR 1
Ser441Gln 0 1 NA MDR 1
His445Gln 0 1 0.25 Mono 1
Leu452Pro 0 1 1–2 Mono 1
Ile491Phed Thr845Pro 0 2 1–2 Mono 2

rpoB high-level resistance mutations rpoB compensatory rpoA rpoC
Val170Phed Val183Gly 1 0 N/Ab MDR 1
Gln432Pro Gly31Ser 1 0 .16 MDR 1
Asp435Val 1 0 NAb MDR 1
His445Cys 1 0 .16 MDR 1
His445Gly His674Arg 1 0 .16 MDR 1
His445Tyr Val731Metc 1 0 .16 MDR 1
His445Tyr Glu513Gln 1 0 MDR 1
His445Tyr Glu563Ala 2 0 MDR 2
Ser450Trp 1 0 .16 MDR 1
Ser450Leu Gly332Ser 1 0 .16 MDR 1
Ser450Leu Gly433Ser 2 0 MDR 2
Ser450Leu Phe452Ser 1 0 MDR 1
Ser450Leu Val483Ala 1 0 MDR 1
Ser450Leu Val483Gly 3 0 MDR 1 2
Ser450Leu Asp485Tyr 1 0 MDR 1
Ser450Leu Ile491Ser 1 0 MDR 1
Ser450Leu Asn698Lys 1 0 MDR 1
Ser450Leu Asn698Ser 2 0 MDR 1 1
Ser450Leu Asp735Asn 1 0 MDR 1
Ser450Leu Gly945Val 1 0 MDR 1
Ser450Leu Gly986Cys 1 0 MDR 1
Ser450Leu Pro1040Ser 1 0 MDR 1
Ser450Leu Pro1040Arg 1 0 MDR 1
Ser450Leu 9 0 7 MDR, 2 Mono 6 1 2
Ser450Leu Arg552His 1 0 MDR 1
Ser450Leu Asp574Glu 1 0 MDR 1
Ser450Leu Val534Ala 1 0 XDR 1
Ser450Leu Lys258Thr,

Ser1039Ala
1 0 MDR 1

Double rpoBmutations rpoB compensatory rpoA rpoC
Arg167Cys,
Asp435Tyr

1 0 .16 XDR 1

Asp435Ala,
Leu452Pro

Asp265Gly 1 0 .16 MDR 1

aSilent mutation.
bSample exhausted; no MIC result.
cHeterozygous mutation.
dMutation located outside RRDR.
eTB numbering system used for rpoB gene. NA, not applicable.
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7.5%, and 51.7% of strains, respectively). Eighty-one strains were determined to be
non-M. tuberculosis species in the MTBC (32 M. bovis BCG, 26 M. bovis, 18 M. africanum,
4 M. orygis, and 1 M. caprae), but none of these strains exhibited any RIF resistance.
The distribution of strains with resistance-conferring rpoB mutations across the four
major lineages of M. tuberculosis varied drastically, ranging from 5.7% in lineage 1 to
50.9% in lineage 2. In particular, resistance mutations in rpoB were overrepresented in
lineage 2 strains, given the prevalence of these strains in our population (Table 2).
Compensatory mutations in strains with rpoB resistance mutations were found at simi-
lar rates across each major lineage.

Strain clustering. In our study population, a SNP distance of #5 SNPs across the
entire genome is suggestive of recent transmission based on follow-up epidemiologi-
cal investigations (data not shown). WGS analysis identified three clusters among
strains with rpoB resistance mutations. Cluster 1 was comprised of two strains with
rpoB Ser450Leu and were genetically identical (0 SNPs). Clusters 2 and 3 included
strains with rpoB Ile491Phe and His445Tyr, respectively. Each pair of strains in clusters
2 and 3 was separated by 3 SNPs. The remaining strains with rpoB resistance mutations
did not belong to any genomic clusters. SNP-based estimates of recent transmission
for strains with rpoB resistance mutations (5.7%) were lower than those for strains with-
out rpoB resistance mutations (14.3%).

DISCUSSION

Since implementation in January 2016, routine, universal WGS in our laboratory has
improved surveillance and detection of RIF resistance while providing insights into the
background and characteristics of RIF-resistant strains in New York. In this study, we
analyzed a prospective set of 1,779 MTBC isolates from unique patients over a 2.5-year

TABLE 2Major lineage and RIF resistance type summary

Lineage
No. (%) of
strains

No. (%) of strains
with RIF resistancea No. MDR/DR

No. RIF
monoresistant

No. (%) of RIF-resistant strains
with compensatory mutations

Lineage 1 (Indo-Oceanic) 260 (14.6) 3 (5.7) 3 0 2 (67)
Lineage 2 (Beijing) 384 (21.6) 27 (50.9) 23 4 16 (59)
Lineage 3 (Central Asian) 134 (7.5) 4 (7.6) 4 0 3 (75)
Lineage 4 (Euro-American) 920 (51.7) 19 (35.8) 14 5 11 (58)
Other lineagesb 81 (4.6) NA NA 0 NA
Total 1,779 53 44 9 32
aIncludes low-level and high-level RIF resistance.
bIncludesM. africanum,M. bovis,M. bovis BCG,M. orygis, andM. caprae.

FIG 2 Rifampin MIC by rpoB gene mutation type: 67 strains, including 40 with no resistance
mutations, 9 with low-level RIF resistance mutations, and 18 with high-level RIF resistance mutations.
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period to determine the frequency and type of rpoB resistance mutations and their
association with phenotypic resistance, including MIC testing. Additional data were
collected to assess the relationship of compensatory mutations and strain lineage with
RIF resistance.

Resistance mutations detected in rpoB mutations were diverse, located both within
and outside the RRDR, and had various impacts on the level of RIF resistance. Among
mutations not associated with RIF resistance, four were notable for being located
within the RRDR (Thr427Ala [1], Thr427Thr [1], and Arg447Arg [2]). These SNPs, which
may result in false-positive predictions of resistance when tested by probe-based
methods, such as Hain LPA or GeneXpert MTB/RIF, were detected at an exceedingly
low rate (4/1,779 [0.22%]) in our strain population. There have been reports of silent
RRDR mutations in the past, typically identified at rates below 1% in each setting for
which data are available (10, 32–35).

Resistance-conferring rpoB mutations were detected most commonly in MDR and
XDR strains; however, a significant portion (9/53 [17%]) of RIF-resistant strains were
found to be RIF monoresistant. The incidence of RIF monoresistance varies consider-
ably by setting, ranging from 0% in some settings to as high as 21.4% in South Africa
(19, 36–39). Reported incidences of RIF monoresistance may be underestimated if low-
level resistant strains are undetected or were excluded from analysis as a result of
using critical-concentration MGIT DST. It is noteworthy that other DST systems, such as
the Löwenstein-Jensen (LJ) proportion method, reportedly have fewer discrepancies
when it comes to these mutations (40). In the present study, 70% of low-level RIF-re-
sistant strains were also RIF monoresistant. Detecting and counting these strains may
drastically affect reported rates of RIF resistance, particularly RIF monoresistance. A
clear link between HIV positivity and RIF monoresistance is not supported by our data,
although this may be a result of the relatively high rates of low-level RIF monoresist-
ance in this study. Previous reports linking HIV infection with RIF monoresistance
almost exclusively describe high-level RIF resistance (21). It is notable that the single
patient with high-level RIF monoresistance for which HIV status was available was HIV
positive. The conclusions we can draw from these data are limited by our small sample
size. Although rpoB mutation has been used as a presumptive positive identification of
MDR-TB in some settings, our findings suggest that this approach overestimates the
rates of additional/multidrug resistance. Therefore, it may be prudent, at least in low-
incidence settings, to be cautious of using rpoB mutation as a proxy for MDR-TB.
Resistance to isoniazid and to other first-line drugs should be confirmed before switch-
ing to a regimen with more serious side effects and potential drug toxicity (41, 42).

WGS identified several rpoB mutations outside the RRDR, most of which were deter-
mined to be low-level RIF resistant by follow-up DST. Three strains, none of which
were found to exhibit resistance to any other drugs, contained this type of mutation
(Ile59Thr [1] and Ile491Phe [2]), and in each case WGS was the first and only indication
that a standard therapy was not appropriate. Strains harboring such mutations are at
particular risk for treatment failure, as they may go undetected by both conventional
targeted genotypic and phenotypic DST (7, 9, 10). In the absence of WGS or MIC test-
ing, these may have gone completely undetected, potentially leading to treatment fail-
ure and the acquisition of further resistance. The remaining low-level resistance muta-
tions detected were located within the RRDR and were found in strains with no other
resistance (n=4) and INH-resistant strains (n=3). Resistance in strains with mutations
within the RRDR may be detected more readily than in cases with mutations located
outside the RRDR, yet RIF resistance still will be detected only if a sequencing method
that evaluates a large portion of the rpoB gene or MIC testing is performed.

MIC testing was performed on a subset of the test strains, including rpoB wild-type
strains and strains with rpoB resistance mutations (associated with both low- and high-
level RIF resistance). MICs for strains with high-level resistance and double mutations
were .16mg/ml for all isolates tested. The mutations found in double rpoB mutated
strains often have low RIF MICs when found alone, but studies utilizing the Bactec
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MGIT 960 culture system and the agar proportion method have independently
reported finding higher levels of RIF resistance when more than one of these muta-
tions is detected (42–47). Low-level resistance mutations were found to have a much
lower range of MICs, 0.25 to 1.0mg/ml, while the MIC range of rpoB wild-type strains
was #0.12 to 0.5mg/ml. The MIC range for high-level RIF-resistant strains was clearly
distinct compared to the ranges of low-level resistant and susceptible strains; whether
using MIC or genotyping, RIF resistance would be readily identified in all strains with
high-level resistance.

In our data set, a MIC cutoff for RIF resistance of 0.5mg/ml provides better perform-
ance, 96.2% sensitivity and 95% specificity, than rpoB resistance mutation detection.
Using this cutoff, three strains would be misclassified: one strain with rpoB His445Gln
would be considered susceptible, and two rpoB wild-type strains would be considered
resistant. Previous reports have described the His445Gln mutation, although it has
always been reported in strains with a secondary rpoB mutation (43, 44, 48–51). Based
on the present study, the increase in MIC with this mutation alone appears to be quite
small, but acquisition of a secondary rpoB mutation may result in a substantial increase
in MIC. The two strains with MICs of 0.5mg/ml and wild-type rpoB sequence would not
be classified as resistant by genotype, but they exhibit a MIC that is higher than those
of all other rpoB wild-type strains and overlaps the MICs of some low-level RIF-resistant
strains. The absence of mutation in rpoB does not rule out the possibility of RIF resist-
ance by another mechanism, but no other loci involved with RIF resistance have been
well characterized thus far. These results may also represent the limitations of MIC test-
ing, as interpreting MICs can be subjective and no cutoff perfectly delineates low-level
RIF-resistant strains from RIF-susceptible strains.

Low-level resistance mutations in rpoB underscore the value of genotypic methods
for diagnosing RIF resistance, particularly methods that interrogate the full-length rpoB
gene. Testing algorithms may benefit from the inclusion of a genotypic method or a
phenotypic method that detects resistance below the critical concentration of 1mg/ml
to detect all clinically relevant RIF resistance.

In addition to rpoB, whole-genome sequencing provided the ability to screen any
other genes of interest for mutations possibly related to RIF resistance, including com-
pensatory mutations in rpoA and rpoC. Excluding phylogenetic SNPs found in both re-
sistant and susceptible isolates, we identified potential compensatory mutations in
rpoA, rpoB, and rpoC in strains with rpoB resistance mutations. None of these putative
compensatory mutations were detected in RIF-susceptible strains.

Each rpoA mutation detected in RIF-resistant strains has been previously reported
to be associated with RIF resistance (52–56). Compensatory mutations in rpoC were
found most frequently in strains with rpoB Ser450Leu. This link between compensatory
mutations and strains with rpoB Ser450Leu has been well established (23, 25, 54,
57–60). A majority of rpoC mutations identified in our study have been described in
previous reports (54, 57–66). Many of these mutations are located between codons
431 and 527, a particular region identified as harboring mutations that may compen-
sate for the fitness cost of rpoB resistance mutations (53).

Major lineages were considered when analyzing the type and prevalence of resist-
ance and compensatory mutations. While all four major lineages are represented in
the strains isolated from New York State and New York City TB patients, the respective
rates of these lineages vary. Moreover, the rates of RIF resistance among these lineages
vary, significantly in some cases. RIF resistance was most prevalent among lineage 2
strains and especially low in lineage 1 strains. The association between lineage 2 and
higher rates of drug resistance compared to other lineages found in this study has
been previously documented (66–68). Other studies, however, have challenged this
finding, which suggests that factors other than genetic background play a more critical
role in the acquisition of resistance (69, 70).

RIF-resistant strains, and MDR strains in particular, are reportedly less transmissible
than susceptible strains in studies done in both low- and high-incidence settings
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(71–74). In our population, RIF-resistant strains were less likely than susceptible strains
to be assigned to a genomic cluster, using a five-SNP threshold. While notable, this
finding is limited by the relatively small number of RIF-resistant cases in New York
State. Three strains with RIF resistance each matched one previous strain in our data-
base, with zero, three, and three SNPs (clusters 1, 2, and 3). All of these strains had
compensatory mutations in rpoB or rpoC, but a direct link between compensatory
mutation and increased transmissibility has been rejected in previous studies with
larger sample sizes (55, 65, 74). Investigations into clusters 1 and 2 revealed epidemio-
logical links between the patients, further supporting recent transmission. No direct
links between the patients in cluster 3 were established, but both of these patients
were linked to an MDR outbreak in New York City. The strain implicated in this out-
break, referred to as strain W, was documented to exhibit high rates of transmission
during the 1990s (75). These patients may have been independently infected with this
strain during this time of high transmission and subsequently became sick after a pe-
riod of latency.

In conclusion, routine whole-genome sequencing in a clinical setting is a powerful
tool for understanding the prevalence and types of RIF resistance in a population while
offering insights into strain background, compensation, and strain relatedness.
Diagnosing all types of RIF resistance can be challenging, particularly when genotypic
and phenotypic results are discordant. MIC testing is a useful tool for determining the
significance of rare or novel rpoB mutations, supplementing routine phenotypic test-
ing. Low-level RIF resistance, which causes diagnostic and treatment challenges, is sig-
nificant in our population and may be underreported, particularly in strains with no
other drug resistance. The present study begins to fill in the gaps of our knowledge
regarding the prevalence and spread of RIF-resistant TB in New York.
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