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Abstract
The development of venous intimal hyperplasia (IH) has been historically associated with failure of
arteriovenous fistulas (AVFs) used for hemodialysis. This long-standing assumption, made on the basis of
histologic observations, has been recently challenged by clinical studies indicating that the size of the intimaby
itself is not enough to explain stenosis or AVF maturation failure. Irrespective of this lack of association, IH is
present inmost native veins and fistulas, is prominent inmanypatients, and suggests a role in the vein thatmay
not be reflected by its dimensions. Therefore, the contribution of IH to AVF dysfunction remains controversial.
Using only clinical data and avoiding extrapolations from animal models, we critically discuss the biologic
significance of IH in vein remodeling, vascular access function, and the response of the venous wall to repeated
trauma inpatients receivinghemodialysis.Weaddressquestionsandposenewones suchas the following:What
are the factors that contribute to IH inpreaccess veins andAVFs?Do cellular phenotypes and composition of the
intima influence AVF function? Are there protective roles of the venous intima? This review explores these
possibilities,withhopesof rekindlinga criticaldiscussionaboutvenous IH that goesbeyond thickness andAVF
outcomes.
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Introduction
Intimal hyperplasia (IH) is a buildup of myofibroblast-
like cells (neointimal cells) and extracellular matrix
(ECM) within the tunica intima, the innermost layer
of the vein (1). In preaccess veins of patients with
CKD, IH manifests as an idiopathic and benign histo-
logic feature that does not compromise blood flow
(2–6).After arteriovenousfistula (AVF) creation, expan-
sion of the intima may remain innocuous or aggravate
inward remodeling, leading to stenosis and access fail-
ure (3). The actual contribution of IH in relation to other
transformation processes in the wall after AVF creation
remains uncertain (7). Importantly, once stenosis
becomes a pathology, it is not easily treatable, with fre-
quent recurrences after endovascular procedures
(8–14). The lack of more effective therapies against
stenosis reflects our simplistic view of the processes of
intimal expansion and wall remodeling, and our
unawareness of the characteristics that distinguish
between benign and occlusive IH.

This review critically discusses what we know about
IH in human veins andAVFs,whatwe aremissing, and
how this knowledge may influence IH-targeted thera-
pies to improve AVF outcomes. We discuss the histori-
cal assumption that IH alone causes stenosis and AVF
failure and extend our debate beyond IH size, the focus
of published research in this area. Finally, we highlight
the necessity for innovation, state-of-the-art omics, and

single-cell technology to clarify the actual role of IH in
venous remodeling.

Preexisting IH
IH in the Preaccess Vein: More Common than
Previously Thought
The cephalic and basilic veins are the preferred

choices for AVF creation (15). These are medium-
sized veins with the three vascular layers well defined
(tunica intima, tunica media, and tunica externa or
adventitia) and diameters between 1 and 5mm(Figures
1 and 2) (16,17). The intima is the innermost layer of the
vessel and is demarcated by a thin or discontinuous
internal elastic lamina on the medial side, and a contin-
uous endothelial line that separates it from the lumen.
Thin folds of collagen-rich connective tissue, covered
by endothelium, extend from the intima and form the
valves at regular intervals along the vein.
The size of the intima layer in preaccess veins ranges

from almost inexistent to thick and rich in intimal cells
and ECM, with this latter scenario being the norm
rather than the exception (2–6,18–24). Almost 20 years
ago, Wali et al. (25,26) observed generalized IH in
cephalic veins from 20 patients with renal failure. In
more recent and larger patient cohorts (N557–129),
maximal intimal thickness (the longest distance
between the media and the lumen) ranged from 1 to
660 mm in forearm and upper-arm preaccess veins
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(Table 1), with higher values in the latter (2,4,6). The Hemo-
dialysis FistulaMaturation (HFM) Study confirmed the high
prevalence of IH in 365 preaccess veins and quantified it as
the percentage of luminal occlusion (Table 1) (5). Of the
patients, 22% presented moderate IH (21%–40% luminal
occlusion), whereas 35% portrayed severe IH (.41% occlu-
sion). In agreement with Allon et al. (4), the percentage of
luminal occlusion was lower in cephalic veins (mean 31%)
than in upper-arm vessels (mean 40%). Martinez et al. (3)
expressed IH as intima/media area ratio (I/M ratio) in 110
upper-arm veins to account for morphometric changes in
the media, such as atrophy or hypertrophy (18,20,25,26).
Themedian I/Mratio in this cohortwas 0.32, in linewithpre-
vious reports of cephalic and other preaccess veins (Table 1)
(18,19,24).
Despite its common occurrence in preaccess veins,

whether IH development is influenced by CKD remains
unknown because experimental animal models do not
develop spontaneous IH. Various studies support an
increase in IH in the setting of CKD (6,21,25–27), but the
number of non-CKD upper-extremity veins is low (three to
15 individuals), which makes it difficult to draw a definite
conclusion on this issue. The I/M ratio of the great saphe-
nous vein was also found to be significantly higher in
patients with CKD compared with controls, and in those
with ESKD versus CKD stages 1 and 2 (27), but it is not clear
whether these groups were matched with respect to age and
baseline characteristics. It is tempting to speculate that IH
increases during the course of renal dysfunction secondary
to volume/flow overload (anemia, sodium, andwater reten-
tion) and other poorly defined clinical factors. However, fre-
quent IH was observed in cephalic and saphenous veins
from elderly patients with normal renal function (28),

suggesting uremia is not the only vascular insult causing inti-
mal thickening. Synergistic insults may include endothelial
dysfunction in CKDand vascular injury related to venipunc-
ture or catheterization. On the other hand, the presence of a
thick intima in basilic veins (2,3), as in the superficial cephalic
vein (4–6,19), suggests that mechanisms other than
venipuncture-related trauma promote IH. Single-cell
sequencing and spatial proteomics may help identify differ-
ences in cell and ECMcomposition (if any) between the CKD
and non-CKD preaccess intima. This may, in turn, uncover
common and disease-relevant origins of IH.

Composition of the Preaccess Intima: Identifying
Knowledge Gaps
Three types of cells predominate in the intima of preaccess

veins: endothelial cells (ECs), smooth muscle cells (SMCs),
and myofibroblasts/fibroblasts (1,2,5,18–20,29). ECs line
the luminal side of the intima, whereas SMCs andmyofibro-
blasts, embedded in ECM, populate the core of the layer. ECs
play an essential role inpreventing thrombosis, but their con-
tribution to controlling IH has not been fully elucidated.
Although there is wide support for the inhibitory effect of
EC-derived nitric oxide in intimal cell proliferation and
migration (30), there is also evidence for other endothelial
paracrine factor(s) that stimulate venous IH (31). The overall
effect of the endothelium on IH is likely dependent on flow
and pathophysiologic conditions. Along these lines, pro-
found changes in EC and SMC morphology (25,26,32) and
function (33–39) have been detected in patients with CKD.
Using a combination of contractile (smoothmusclemyosin

heavy chain [SM-MHC], desmin, h-caldesmon, calponin),
synthetic (vimentin), and pan SMCmarkers (a-smoothmus-
cle actin [aSMA]), various groups have observed a mixture

Figure 1. | Minimal to moderate intimal hyperplasia in trauma donors with normal renal function. (A–D) Cross-sections of the (A and B) cephalic
and (C and D) basilic veins from a Hispanic 56-year-old male without history of hypertension, diabetes, or coronary artery disease. (E and F)
Cephalic and (G and H) basilic veins from a Hispanic 55-year-old male with history of controlled hypertension (,5 years). Sections were stained
with Movat pentachrome stain, with cells showing in brown/red, collagen in yellow, and elastin in black. Boxed areas in (A), (C), (E), and (G) are
magnified in (B), (D), (F), and (H), respectively. Arrows in (B) and (H) identify the internal elastic lamina. A, adventitia; I, intima; M, media.
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of SMC and/or myofibroblast phenotypes in the intima of
preaccess veins (2,18–20,29,40,41), whose functions remain
uncertain. Contractile SMCs are typically associated with
low proliferation and migration rates, and low secretion of
ECM (42). The opposite behavior is characteristic of
“synthetic” or “myofibroblastic” SMCs that have lost expres-
sion of contractile markers. Serum from patients with dialy-
sis favors the synthetic transformation of cultured human
SMCs by promoting epigenetic downregulation of contrac-
tile gene expression (27). Interestingly, despite the high num-
ber of synthetic SMCs in preaccess veins, they showminimal
staining of the proliferation andmetabolicmarkersKi-67 and
phosphoglucomutase 1, respectively, suggesting that intimal
cells are relatively quiescent before access creation (5,18). The
HFM Study also reported rare apoptotic cells by cleaved cas-
pase 3 expression in ,10% of analyzed intimas (four of 48)
(5). How expression of contractile markers in CKD veins
relates to venoconstriction or dilation is unclear. A thick
intima likely serves as a barrier for the diffusion of both cir-
culatory vasoactive factors and EC-derived molecules that
regulate medial SMC contraction or dilation. This may be
an advantageous adaptation to reduce vasoconstrictive

responses. On the other hand, studies in saphenous veins
proposed that intimal thickness .120 mm is associated with
impaired endothelium-dependent vasodilation (43). If there
is a signaling cascade of soluble factors from ECs or the
lumen that is amplified by intimal myofibroblasts or SMCs
remains to be discovered.

In contrast with the abundance of inflammatory cells in
the arterial intimawith disease, the number of immune cells
in preaccess veins is minimal. Approximately 50% of ana-
lyzed veins in the HFM Study (25 of 48) showed only one
CD68-expressing macrophage in the intima, with approxi-
mately 7.7 cells in the whole section (5). Martinez et al.
(44) also reported low numbers of CD681 macrophages
(about 40 cells per cross-section) in 45 basilic veins, mostly
located at the edge between the media and the adventitia.
In terms of T cells, Lee et al. (18) observed minimal CD31

staining in the intima. Despite the low levels of immune
infiltration in preaccess veins, a transcriptomic analysis
uncovered expression of myeloid-related inflammatory
genes in intimal andmedial SMCs andmyofibroblasts, sug-
gesting a key role of resident cells in vascular inflammation
(44). Five genes (CSF3R, FPR1, S100A8, S100A9, andVNN2)

Figure 2. | Variability in intimal hyperplasia in preaccess basilic veins from patients with ESKD. (A–C) Cross-sections of basilic veins col-
lected during first-stage surgery of a two-stage brachiobasilic arteriovenous fistula (AVF). Patient in (A) is a 42-year-old Black female with his-
tory of hypertension; patient in (B) is a 68-year-old Black female with hypertension and diabetes; and patient in (C) is a 65-year-old Hispanic
female positive for hypertension, diabetes, and coronary artery disease. All three veins matured successfully after AVF creation. Sections were
stained with Movat pentachrome stain, with cells showing in brown/red, collagen in yellow, and elastin in black. Boxed areas in (A) to (C) are
magnified in (D) to (F), respectively. Arrows in (E) and (F) identify the internal elastic lamina. A, adventitia; I, intima; M, media.
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Table 1. Intimal morphometry and associations with arteriovenous fistula outcomes in the hemodialysis population

Study Na Vein Parameter(s) Measurementsb Association(s)

Preexisting intimal hyperplasia

Feinfeld et al. (23) 15 Brachial (n515) Ave. I thickness 6.060.9 mm N/A
Lee et al. (18) 12 Cephalic (n56), axillary (n53),

antecubital (n51), basilic (n51),
brachial (n51)

Ave. IM thickness 0.3460.12 mm Significant association with
maturation failure (P50.03, n57)

Max. IM thickness 1.1660.30 mm N/A
I/M area ratio 0.2460.07 N/A

% Luminal occlusion 47%69% Lack of association with
maturation failure (P50.09, n57)

Wasse et al. (24) 10 Cephalic, basilic Ave. I thickness 0.06660.019 mm N/A
Max. I thickness 0.16660.042 mm N/A

Mean I/M thickness ratio 0.2660.07 N/A
Max. I/M thickness ratio 0.6960.19 N/A

Intimal area 0.2760.08 mm2 N/A
I/M area ratio 0.2460.06 N/A

Allon et al. (4) 113 Upper arm (65%), forearm (35%) Max. I thickness 0.022 (0.013–0.045) mm Lack of association with
postoperative stenosis (P50.49)

Lee et al. (21) 29 N/A Mean I/M thickness ratio 0.4360.07 N/A
Max. I/M thickness ratio 0.8660.07 N/A

Lazich et al. (19) 18 Cephalic (n518) Max. I thickness 0.052–0.81 mm N/A
Intimal area 0.16–7.70 mm2 N/A

I/M area ratio 0.07–1.80 N/A
Mean I/M thickness ratio 0.07–1.99 N/A
Max. I/M thickness ratio 0.14–2.44 N/A

% Luminal stenosis 45%–96% N/A
Tabbara et al. (2) 57 Basilic (n554), brachial (n53) Max. I thickness 0.18 (0.10–0.20) mm Lack of association with primary

unassisted patency (P50.2, n552)
I/M area ratio N/A Lack of association with primary

unassisted patency (P50.2, n552)
HFM Study (5,52)c 365 Cephalic (69%), basilic (29%),

brachial (2%)
% Luminal occlusion 28%627% (cephalic), 40%630%

(basilic), 21%623% (brachial)
Lack of association with

postoperative stenosis at 1 day
(P50.49), 2 weeks (P50.91), or 6

weeks (P50.07); lack of association
with unassisted (P50.07) or overall

maturation failure (P50.11)
Martinez et al. (3) 110 Basilic (n5104), brachial (n54),

cephalic (n52)
I/M area ratio 0.32 (0.22–0.52) Lack of association with

maturation failure (P50.7)
Allon et al. (6) 129 Upper arm (65%), forearm (35%) Max. I thickness 0.03760.040 mm N/A
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Table 1. (Continued)

Study Na Vein Parameter(s) Measurementsb Association(s)

Postoperative intimal hyperplasia

Roy-Chaudhury et al. (41) 4 Cephalic (n54), all early failures Mean I/M thickness ratio 3.1260.43 N/A
Max. I/M thickness ratio 7.7761.49 N/A

I/M area ratio 1.6760.10 N/A
% Luminal stenosis 86%63% N/A

Lee et al. (21) 20 Cephalic (n515), basilic (n55); all
stenotic segments

Mean I/M thickness ratio 3.8460.55 N/A
Max. I/M thickness ratio 7.7860.88 N/A

Tabbara et al. (2) 79 Basilic (n574), brachial (n55) Max. I thickness 0.62 (0.38–0.86) mm Lack of association with
maturation failure (P50.3); lack of

association with primary
unassisted patency (P50.6)

I/M area ratio N/A Lack of association with
maturation failure (P50.4); lack of

association with primary
unassisted patency (P50.8)

Duque et al. (71)d 14 Basilic (n512), brachial (n52); all
AVFs had stenotic and nonstenotic

segments

I area 3.33 (1.94–4.86) mm2 in nonstenotic,
3.33 (2.29–5.16) mm2 in stenotic

Lack of association with focal
stenosis (P50.26)

Min. I thickness 0.09 (0.05–0.31) mm in nonstenotic,
0.11 (0.05–0.43) mm in stenotic

Lack of association with focal
stenosis (P50.18)

Max. I thickness 0.75 (0.54–1.08) mm in nonstenotic,
0.98 (0.78–1.20) mm in stenotic

Lack of association with focal
stenosis (P50.22)

Min. IM thickness 0.37 (0.17–0.70) mm in nonstenotic,
0.30 (0.23–0.88) mm in stenotic

Lack of association with focal
stenosis (P50.22)

Max. IM thickness 1.14 (0.84–1.38) mm in nonstenotic,
1.38 (1.30–1.57) mm in stenotic

Lack of association with focal
stenosis (P50.13)

I/M area ratio 0.97 (0.63–1.18) in nonstenotic, 1.00
(0.70–1.20) in stenotic

Lack of association with focal
stenosis (P50.73)

Martinez et al. (3) 115 Basilic (n597), brachial (n514),
cephalic (n54)

I/M area ratio 0.77 (0.48–1.30) Lack of association with
maturation failure by itself

(P50.09, n5115), but significant
association in AVFs with high
medial fibrosis (P50.04, n558)

Ave., average; I, intima; N/A, not reported or studied; IM, intima plus media; max., maximum; I/M, intima/media; HFM, Hemodialysis Fistula Maturation; AVF, arteriovenous fistula; min.,
minimum.
aNumber of veins analyzed after study exclusions.
bValues presented as mean6SEM (SD in the HFM Study [5,52] and Allon et al. [6]), median (interquartile range), or range in Lazich et al. (19).
cData obtained from Alpers et al. (5) and Cheung et al. (52).
dPairwise comparison of stenotic and adjacent nonstenotic segments in upper-arm AVFs.
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were associated with AVF maturation failure, and expres-
sion of S100A8 and S100A9 had a weak correlation with
postoperative IH (44). Wasse et al. (24) also found expres-
sion of TNF-a, TGF-b, and IL-6 in the intima of preaccess
veins. Immunohistochemistry analyses demonstrate that
not all cells in the intima and media are positive for these
proteins (24,44), demonstrating again a heterogeneity of
SMC andmyofibroblast phenotypes with potential implica-
tions for the inflammatory status of the vessel.
The ECM composition of the intima is an important aspect

of remodeling, and perhaps themost neglected characteristic
of this layer. The HFM Study observed significant interpa-
tient variability by histology in the amount and distribution
of collagen and proteoglycans in the intima (5). Intimal
expansion in earlier reports of 20 cephalic veins was also
characterized by marked deposition of fragmented collagen
fibers and dispersed elastin (25,26). Intimal calcification was
observed in 2% of the patients in the HFM Study and 15% in
Wali et al. (5,25). It is important to note that the proportion
and configuration of the ECMand the types of ECMproteins
in the intima may play a role in cell proliferation and migra-
tion (45–48), vein stiffness (49,50), and/or compressibility of
this layer under high flow conditions (51). Accumulation of
collagen is associated with fibrosis, whereas high proteogly-
can contentmay confer resistance to compression and act as a
reservoir of cytokines and growth factors that influence
cell survival andproliferation (49,51). Futureproteomic stud-
ies are needed for amore accurate characterization of the inti-
mal ECM.

Does Preexisting IH Increase the Risk of AVF Failure?
The initial idea that preexisting IHpotentially led to steno-

sis and poor AVF outcomes has been recently challenged in
several independent studies (2–4,52). Allon et al. (4) studied
the association between maximal intimal thickness in the
preaccess vein and postoperative AVF stenosis. Of the 113
patients included in the analysis, 50% developed a hemody-
namically significant stenosis.However, therewas no associ-
ation between IH and the presence of postoperative stenosis
(Table 1). This lack of association remained true when ana-
lyzed by type of AVF and location of the stenosis (4). The
results of this study were confirmed by the HFM Study in
365 individuals (52). The development of stenosiswas evalu-
ated by ultrasound at 1 day, 2 weeks, and 6 weeks after AVF
creation. Preexisting IH (percentage of luminal occlusion)
was not associated with AVF stenosis at any of these time
points, nor with the internal diameter of the vessel (52).
The relationship between preexisting IH and maturation

failure was analyzed by the HFM Study and Martinez et al.
(3,52). The HFM Study found a significant association
between the preexisting percentage of luminal occlusion
and venous blood flow rate at 6 weeks after access creation
(Table 1). However, the association with unassisted or over-
all maturation failure did not reach statistical significance
(52). Preexisting I/M ratio also failed to predict nonmatura-
tion in 110 patients in the study byMartinez et al. (3). Lastly,
Tabbara et al. (2) analyzed the association between preexist-
ing IH and primary unassisted patency in 52 upper-arm fis-
tulas. Neither maximal intimal thickness nor I/M area ratio
predicted loss of primary patency. Although there seems to
be no association between preexisting intimal morphometry

and AVF failure, additional studies are needed to assess the
effects of intimal cell andECMcomposition on postoperative
outcomes.

Postoperative IH
IH after AVF Creation: Selective Activation of
Preexisting Cells?
The transformation of the vein after AVF creation remains

one of the least understood processes in vascular biology.
Current knowledge emphasizes the role of ECs in sensing
arterial shear stress to release vasodilators that potentially
lead to maturation (53,54). However, the endothelium is
almost certainly severely damaged by surgical trauma, sec-
ondary to the common use of dilators and saline flushing
to expand venous size before anastomosis. This suggests
that intimal and medial cells likely play a protagonist’s role
as mechanosensors of hemodynamic changes and vascular
trauma. The best evidence we have about postoperative
remodeling of the intima is from two-stage AVFs, which
allow us to collect a biopsy of the remodeled vein (now a fis-
tula) during transposition surgery.
Inupper-armfistulas,maximal intimal thickness increased

approximately four-fold with respect to the preaccess vein,
with values ranging from 0.1 to 2.0 mm in 79 patients who
underwent two-stage AVF creation (Table 1) (2). This
increase was not associated with the waiting time between
AVF creation and transposition surgeries, or with the thick-
ness of the intima in the preaccess vessel. The lack of relation-
ship between preexisting and postoperative IH agreeswith a
selective activationof cells in thewall anddifferent responses
to surgical or hemodynamic injury between patients. More-
over, the absence of correlation between IH and the time
between AVF creation and transposition surgeries suggests
that most intimal expansion occurs early duringmaturation.
Medial atrophy is frequently seen in AVFs (Figure 3), possi-
bly as a result of cell death or migration of SMCs into the
intima. This SMC loss is either replaced by ECM (fibrosis)
or results in thinning of the media. A median I/M area ratio
of 0.77 was reported in 115 two-stage AVF cross-sections,
significantly higher than in native veins (Table 1) (3). In
agreement with maximal intimal thickness, I/M ratio also
demonstrated a lack of correlation between preexisting and
postoperative values in pairwise analyses.
In contrast to native veins (5), IH inmost upper-armAVFs

is eccentric (Figure 3). Unequal hemodynamic forces along
the length of the vein are thought to explain this morphom-
etry. This has been recently imaged in mice (55), although
confirmatory studies in large animal models and humans
are needed. It has been proposed that low wall shear stress,
pulsatile stretch, and flow turbulence causes injury and elic-
its proliferation of intimal cells (56–60). However, it is possi-
ble that such eccentric appearance may be explained by
pockets of increased cell proliferation, migration, and/or
ECM deposition; and that these pockets are determined, in
turn, by the phenotypes of the preexisting intimal cells.
At the cellular level, the postoperative remodeling process

seems to favor the intimal expansion and/or survival of
myofibroblasts and synthetic SMCs in theAVFwall. Tabbara
et al. (2) observed that the intima of upper-arm AVFs col-
lected at the time of transposition was mostly made up of
synthetic SMCs (positive for aSMA, negative for SM-
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MHC). Other studies also reported a majority of myofibro-
blasts (aSMA1, vimentin1, desmin2) (40,41,61) and reduced
expression of SM-MHCand calponin (29) in the intimaof ste-
notic samples collected at the time of AVF revision. In all
studies, medial SMCs retained contractile protein expression
(2,29,40,41). The proportions and phenotypes of AVF intimal
cells that are actively proliferating remain unknown. High
intimal levels of the proliferation marker proliferating cell
nuclear antigen (PCNA) were observed in stenotic areas of
resected AVFs (41,62), but were contradicted by the more
accurate marker Ki-67 (63). High PCNA and cyclin depen-
dent kinase 2 (CDK2) levels in the study by de Graaf et al.
(62) were also accompanied by significantly lower expres-
sion of the cell cycle regulator p21Waf1. Future single-cell trac-
ing experimentswill help definewhether the increase in syn-
thetic SMCs and myofibroblasts in the AVF intima is due to
the postoperative dedifferentiation and expansion of con-
tractile SMCs in thewall, or proliferationof apreexisting syn-
thetic population. This information will be instrumental for
the design of targeted therapies.
The role of immune cell infiltration in postoperative IH

and AVF dysfunction is not clear at the moment. Increased
macrophage and T-cell infiltration was seen in 15 stenotic
AVF sections compared with preaccess veins (64). In con-
trast, a comparison of 13 nonthrombosed stenotic samples
and 23 thrombosed specimens revealed that immune cell
infiltration was in fact characteristic of the latter (65). Similar

to the localization of proinflammatory proteins in intimal
SMCs and myofibroblasts in preaccess veins (44), various
studies have also demonstrated elevated inflammatory and
oxidative markers in resident intimal cells of resected AVF
specimens (64,66). It is important to note that most of the
information about immune cell infiltration after AVF crea-
tion comes from extrapolation from animal models (67–70),
where it is possible to obtain AVF samples early after sur-
gery.Whether inflammation from infiltrated or resident cells
plays a role in human AVF maturation or dysfunction will
require the analysis of early human AVF samples (within 2
weeks of surgery), including nonstenotic segments. This
may be possible through a multicenter collection of veins
from steal syndrome and stenotic accesses that require early
surgical revision.

As in preaccess veins, the ECM composition of the AVF
intima has been barely studied.Martinez et al. (3) observed
various levels and patterns of ECM deposition in the
intima of two-stage transposition fistulas, although a com-
parative analysis of the samples was not presented. These
patterns included intimas that weremostly cellular (low in
ECM), with widespread ECM distribution, or with sepa-
rate areas for cells and ECM deposition. Such interpatient
variability in composition is likely relevant to the occlu-
sive character of the intima, the response of the vein to can-
nulation injury, and the efficacy of endovascular
treatments.

Figure 3. | Heterogeneity of venous remodeling in AVFs from patients with ESKD. (A–C) Cross-sections of juxta-anastomotic AVF segments
from two-stage brachiobasilic fistulas collected during second-stage surgery (77–91 days after AVF creation). Patient in (A) is a 38-year-old
Hispanic male with history of hypertension, patient in (B) is an 80-year-old Black female with hypertension and diabetes, and patient in
(C) is a 40-year-old Black male positive for hypertension and coronary artery disease. All three AVFs failed to mature and underwent a salvage
procedure or creation of a new fistula. Sections were stained with Movat pentachrome stain, with cells showing in brown/red, collagen in
yellow, proteoglycans in blue, and elastin in black. Boxed areas in (A) to (C) are magnified in (D) to (F), respectively. Arrows in (D) and (F)
identify the internal elastic lamina. A, adventitia; I, intima; M, media.
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Postoperative IH and AVF Outcomes: Let Us Update
the Theory
The most important question about IH is whether growth

of this layer after AVF creation underlies access failure. Var-
ious case reports of AVFs that failed observed the presence of
moderate to severe IH, but lacked a comparative group of
functional fistulas (21,29,41,61). Despite this limitation, these
observations reinforced the assumption that a thicker intima
was responsible for AVF failure. The analysis of postopera-
tive samples from two-stage upper-arm AVFs has chal-
lenged this idea (2,3,71).
Tabbara et al. (2) founda lackof associationbetweenpostop-

erative IH (measured as maximal intimal thickness and I/M
ratio) and maturation failure in a cohort of 79 individuals
(Table 1). These analyses were not adjusted for any other
clinical characteristics. Martinez et al. (3) also failed to find
an association between I/M ratio and maturation failure in
115 individuals after adjusting for sex effects. Interestingly,
the same study demonstrated that postoperativemedialfibro-
sis was significantly associated with failure. Furthermore, IH
was associated with failure only in those AVFs with medial
fibrosis over the median value, and not in the other half of
the accesses (Table 1) (3). Given that high medial fibrosis can
adversely influence the biomechanical properties and disten-
sibility of AVFs, this study proposed that, under highly
fibrotic wall conditions, high IH is occlusive, but not when
the vessel is able to compensate through other biomechanical
mechanisms. This underscores the importance of understand-
ing AVF remodeling as a whole and the mechanistic relation-
ships between IH and other wall remodeling processes.
Pairwise comparisons of adjacent stenotic and nonstenotic

segments from 14 two-stage upper-arm AVFs further con-
firmed that IH does not define the true luminal area of the
access (71). In this report, there were no significant differ-
ences in intima size between both segments (Table 1). Lastly,
no significant association has been found between maximal
intimal thickness or I/M ratio and primary unassisted
patency (2). The abovepostoperative data onmaturation fail-
ure, focal stenosis, andprimary patency are limited to upper-
armAVFs due to practical limitations. It is possible that post-
operative IH has a larger effect on the outcomes of forearm
fistulas.

Research Models, Current Challenges, and
Pending Questions
Role of Animal Models in the Study of IH
Animals are essential to address basic science questions

such as the origin and differentiation of intimal cells, tempo-
ral remodeling of the wall, and the effects of local and circu-
latory stimuli or treatments (29,67,68,72–79). Research mice
and rats have the added advantage of allowing genetic
manipulation (gene knockins and knockouts, cell labeling,
etc.) and inclusion of high numbers of animals. Swine and
sheep are often used as translational models to test pharma-
cologic and endovascular interventions, primarily in arterio-
venous grafts (80–83). Arguably, the best animal model for
AVF functional studies is the one in sheep, due to the super-
ficial location of peripheral veins, which allows for not only
AVF creation but also for potential cannulation (73).
Most animal models develop a certain form of venous IH

within 2–6 weeks after AVF creation (29,67,68,72,74–79).

However, they have important limitations for the study of
the occlusive role of IH in AVF remodeling and failure.
In the case of small animals, there are profound differences
in preexisting vein morphology (very thin walls and suben-
dothelial space) and hemodynamic characteristics (low
blood flow) with respect to humans (29,67,68, 76,78,79). In
addition, most models lack an underlying long-term CKD
component and a human-equivalent definition of failure.
These limitations underscore the necessity of expanding tis-
sue biobanks of human AVFs to all possible forms to pro-
mote retro-translational studies, where human findings
could be further dissected at the mechanistic level in animal
models. Excellent reviews of AVF and CKD animal models
have been included in the References (84–87).

Current Challenges in Treating AVF Stenosis: A Call for
Mechanism-based Approaches
The idea that IH was the main cause of stenosis in AVFs

motivated the use of therapies that treat restenosis in coro-
nary circulation to salvage dysfunctional accesses. As a
result, percutaneous transluminal angioplasty (PTA) became
the first-line treatment for postoperative stenoses (15).
Angioplastymechanically stretches the vein and compresses
the intima, but may cause significant injury to the vessel.
Although efficacious in the short term, PTA frequently
requires reintervention within 1 or 2 years after the first
angioplasty procedure, either due to regrowing of occlusive
IH and/or fibrotic scarring of the AVF wall (8–14). Stent
placement is the last line of treatment for recurrent and
high recoil stenoses due to concerns of vein depletion, stent
migrationor fracture, and intrastent thrombosis (88,89). Stent
grafts are favored for in-stent restenosis (15,89), but areprone
to “edge stenosis,” which occurs close to both ends of the
stent and migrates toward the center (90,91).
In an attempt to improve postprocedure patency, antipro-

liferative drugs (mainly paclitaxel) are delivered to the AVF
wall bymeans of drug-eluting balloons (DEB) or stents.Mul-
tiple individual studies have shown patency and/or reinter-
vention benefits of DEB versus conventional angioplasty
(12–14,92–95). However, meta-analysis studies have yielded
variable conclusions, and patency rates.6 months still have
much room for improvement (96–99). The observed variabil-
ity in efficacy with antiproliferative agents and failure to sig-
nificantly extend long-termpatencymay indicate insufficient
delivery or retention of the drug (100–102), low sensitivity of
cells to treatment (103), or amismatch between the therapeu-
tic effects of the drug andmechanisms of restenosis in AVFs.
In vitrodata suggest that paclitaxel targets all three presumed
processes of restenosis (proliferation, migration, and ECM
production) (104,105). However, it is not clear which of these
cellular mechanisms are actually targeted inAVFs in vivo. Of
note, the effect of paclitaxel in SMCs is cytostatic and not
cytotoxic (106,107). Therefore, any stenotic mechanisms
that remain unaffected may continue happening or possibly
worsen after DEB treatment.
Antistenotic treatment modalities to improve venous

remodeling duringmaturation include perivascular delivery
of sirolimus (108), allogeneic ECs (109,110), or pancreatic
elastase (111,112), and devices (VasQ,Optiflow) that support
the ideal angle of arteriovenous anastomosis (113–117). The
latest results on the sirolimus implants are pending (108).
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VasQ resulted in highmaturation rates in single-armand ret-
rospective studies (117–119), but mixed results in short-term
primary or secondary patency compared with the control
arm (114,118,119). The rest are currently not recommended
by the Kidney Disease Outcomes Quality Initiative guide-
lines due to lack of phase 3 studies (Optiflow) or significant
benefits in AVF outcomes (ECs, elastase) (15). Far infrared
radiation and external pneumatic compression (Fist Assist)
have shown promising results in AVF maturation parame-
ters (120–123) and secondary patency after PTA in specific
patient demographics (124), but require further validation
in a broader hemodialysis population. These clinical trials
illustrate the desire to innovate in the search for preventive
and postoperative AVF treatments. However, until we
understand how human AVF cells respond to flow distur-
bances, repeated cannulations, and endovascular trauma at
the molecular level, it is likely that any successes will come
after significant trial and error.

What to Look at Beyond Intimal Thickness
Why have we failed to find an association between intima

size measurements and AVF outcomes? The answer may be
methodologic and/or biologic in nature. From the methodo-
logic point of view, there are many limitations to the waywe
measure intima size. Two-dimensional and static histologic
assessment of IH misses the actual size of the lumen under
circulation. In addition, none of the measurements considers
the potential compressibility of the intima or distensibility of
the vessel. At least one clinical study has reported a lack of
association between maximal intimal thickness by histology
and internal diameter of the vein (4), illustrating the limita-
tions of two-dimensional morphometry measurements in
determining luminal area.
From the biologic point of view, intima size only repre-

sents a partial measurement of inward remodeling. Looking
for associations between intima size and AVF outcomes
ignores other macro processes of the wall, such as inward
remodeling of the media, outward remodeling of the wall,
and changes in the ECM. Importantly, we still do not under-
stand what drives any of these processes. Is it cell death,
changes on SMC phenotypes, or SMC- or immune cell-
derived inflammation?Are IHandmedialfibrosismechanis-
tically related? From the biomechanical point of view, how
compressible is the intima? What characteristics make it
more or less compressible? Does vein distensibility change
after AVF creation? A better understanding of the role of
SMCs and myofibroblasts in intimal expansion and wall
remodeling, and where in the range of their phenotypic
transformation they become problematic, will require
detailed phenotypic analyses and single-cell omics techni-
ques in clinically relevant human samples.
Lastly, the complexity of AVF remodeling lies in identify-

ing an optimal level of IH and fibrosis that maintains vein
integrity under extreme hemodynamic conditions and fre-
quent cannulations, but without causing stenosis. Thus, can
we envision protective roles for the intima? Does it prevent
excessive immune cell infiltration? Does it protect medial
SMCs from the oxidative stress of high oxygen pressures?
Do synthetic cells confer regenerative capacity for wall heal-
ing after cannulation? We must consider all of these

possibilities ifwe trulywant to optimizematuration andpre-
vent restenosis after endovascular treatments.
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