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Abstract

Model explainability is essential for the creation of trustworthy Machine Learning models in

healthcare. An ideal explanation resembles the decision-making process of a domain expert and is

expressed using concepts or terminology that is meaningful to the clinicians. To provide such

explanation, we first associate the hidden units of the classifier to clinically relevant concepts. We

take advantage of radiology reports accompanying the chest X-ray images to define concepts. We

discover sparse associations between concepts and hidden units using a linear sparse logistic

regression. To ensure that the identified units truly influence the classifier’s outcome, we adopt

tools from Causal Inference literature and, more specifically, mediation analysis through

counterfactual interventions. Finally, we construct a low-depth decision tree to translate all the

discovered concepts into a straightforward decision rule, expressed to the radiologist. We

evaluated our approach on a large chest x-ray dataset, where our model produces a global

explanation consistent with clinical knowledge.

1 Introduction

Machine Learning, specifically, Deep Learning (DL) methods are increasingly adopted in

healthcare applications. Model explainability is essential to build trust in the AI system [5]

and to receive clinicians’ feedback. Standard explanation methods for image classification

delineates regions in the input image that significantly contribute to the model’s outcome

[13,17,19]. However, it is challenging to explain how and why variations in identified

regions are relevant to the model’s decision. Ideally, an explanation should resemble the

decision-making process of a domain expert. This paper aims to map a DL model’s neuron

activation patterns to the radiographic features and constructs a simple rule-based model that

partially explains the Black-box.

Methods based on feature attribution have been commonly used for explaining DL models

for medical imaging [1]. However, an alignment between feature attribution and radiology

concepts is difficult to achieve, especially when a single region may correspond to several

radiographic concepts. Recently, researchers have focused on providing explanations in the

form of human-defined concepts [2,12,23]. In medical imaging, such methods have been

adopted to derive an explanation for breast mammograms [22], breast histopathology [6] and

cardiac MRIs [4]. A major drawback of the current approach is their dependence on explicit
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concept-annotations, either in the form of a representative set of images [12] or semantic

segmentation [2], to learn explanations. Such annotations are expensive to acquire,

especially in the medical domain. We use weak annotations from radiology reports to derive

concept annotations. Furthermore, these methods measure correlations between concept

perturbations and classification predictions to quantify the concept’s relevance. However, the

neural network may not use the discovered concepts to arrive at its decision. We borrow

tools from causal analysis literature to address that drawback [21].

In this work, we used radiographic features mentioned in radiology reports to define

concepts. Using a National Language Processing (NLP) pipeline, we extract weak

annotations from text and classify them based on their positive or negative mention [9].

Next, we use sparse logistic regression to identify sets of hidden-units correlated with the

presence of a concept. To quantify the causal influence of the discovered concept-units on

the model’s outcome, we view concept-units as a mediator in the treatment-mediator-

outcome framework [8]. Using measures from mediation analysis, we provide an effective

ranking of the concepts based on their causal relevance to the model’s outcome. Finally, we

construct a low-depth decision tree to express discovered concepts in simple decision rules,

providing the global explanation for the model. The rule-based nature of the decision tree

resembles many decision-making procedures by clinicians.

2 Method

We consider a pre-trained black-box classifier f : x → y that takes an image x as input and

process it using a sequence of hidden layers to produce a final output y ∈ ℝD. Without loss

of generality, we decompose function f as Φ2 ∘ Φ1 x , where Φ1 x ∈ ℝL is the output of the

initial few layers of the network and Φ2 denotes the rest of the network. We assume access

to a dataset 𝒳 = xn, yn, cn
N, where xn is input image, yn is a d-dimensional one-hot

encoding of the class labels and cn ∈ ℝK is a k-dimensional concept-label vector. We define

concepts as the radiographic observations mentioned in radiology reports to describe and

provide reasoning for a diagnosis. We used a NLP pipeline [9] to extract concept

annotations. The NLP pipeline follows a rule-based approach to extract and classify

observations from the free-text radiology report. The extracted kth concept-label cn[k] is

either 0 (negative-mention), 1(positive-mention) or −1 (uncertain or missing-mention). An

overview of our method is shown in Fig. 1. Our method consists of three sequential steps:

1. Concept associations: We seek to discover sparse associations between concepts

and the hidden-units of f(·). We express kth concept as a sparse vector βk ∈ ℝL

that represents a linear direction in the intermediate space Φ1(·).

2. Causal concept ranking: Using tools from causal inference, we find an effective

ranking of the concepts based on their relevance to the classification decision.

Specifically, we consider each concept as a mediator in the causal path between

the input and the outcome. We measure concept relevance as the effect of a

counterfactual intervention on the outcome that passes indirectly through the

concept-mediator.
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3. Surrogate explanation function: We learn an easy-to-interpret function g(·) that

mimics function f(·) in its decision. Using g(·), we seek to learn a global

explanation for f(·) in terms of the concepts.

2.1 Concept associations

We discover concept associations with intermediate representation Φ1(·) by learning a binary

classifier that maps Φ1(x) to the concept-labels [12]. We treat each concept as a separate

binary classification problem and extract a representative set of images 𝒳k, in which concept

cn[k] is present and a random negative set. We define concept vector (βk) as the solution to

the logistic regression model cn k = σ βk
T vec Φ1 xn + ϵ, where σ(·) is the sigmoid

function. For a convolutional neural network, Φ1 x ∈ ℝw × h × l is the output activation of a

convolutional layer with width w, height h and number of channels l. We experimented with

two vectorization for Φ1. In first, we flatten Φ1(x) to be a whl-dimensional vector. In second,

we applied a spatial aggregation by max-pooling along the width and height to obtain l-
dimensional vector. Unlike TCAV [12] that uses linear regression, we used lasso regression

to enable sparse feature selection and minimize the following loss function,

min
βk

∑
xn ∈ 𝒳k

ℓ hβk
x , cn k + λ βk 1 (1)

where ℓ(·,·) is the cross entropy loss, hβk
x = σ βk

T vec Φ1 xn  and λ is the regularization

parameter. We performed 10-fold nested-cross validation to find λ with least error. The non-

zero elements in the concept vector βk forms the set of hidden units 𝒱k  that are most

relevant to the kth concept.

2.2 Causal concept ranking

Concept associations identified hidden units that are strongly correlated with a concept.

However, the neural network may or may not use the discovered concepts to arrive at its

decision. We use tools from causal inference, to quantify what fraction of the outcome is

mediated through the discovered concepts.

To enable causal inference, we first define counterfactual x׳ as a perturbation of the input

image x such that the decision of the classifier is flipped. Following the approach proposed

in [20], we used a conditional generative adversarial network (cGAN) to learn the

counterfactual perturbation. We conditioned on the output of the classifier, to ensure that

cGAN learns a classifier-specific perturbation for the given image x. Next, we used theory

from causal mediation analysis to causally relate a concept with the classification outcome.

Specifically, we consider concept as a mediator in the causal pathway from the input x to the

outcome y. We specify following effects to quantify the causal effect of the counterfactual

perturbation and the role of a mediator in transferring such effect,

1. Average treatment effect (ATE): ATE is the total change in the classification

outcome y as a result of the counterfactual perturbation.
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2. Direct effect (DE): DE is the effect of the counterfactual perturbation that

comprises of any causal mechanism that do not pass through a given mediator. It

captures how the perturbation of input image changes classification decision

directly, without considering a given concept.

3. Indirect effect (IE): IE is the effect of the counterfactual perturbation which is

mediated by a set of mediators. It captures how the perturbation of input image

changes classification decision indirectly through a given concept.

Following the potential outcome framework from [18,21], we define the ATE as the

proportional difference between the factual and the counterfactual classification outcome,

ATE = ℰ[ f x′
f x − 1] . (2)

To enable causal inference through a mediator, we borrow Pearl’s definitions of natural

direct and indirect effects [16] (ref Fig. 2). We consider set of concept-units 𝒱k as a

mediator, representing the kth concept. We decompose the latent representation Φ1(x) as

concatenation of response of concept-units 𝒱k x  and rest of the hidden units 𝒱̄k x  i.e.,

Φ1 x = 𝒱k x , 𝒱̄k x . We can re-write classification outcome as

f x = Φ2 Φ1 x = Φ2 𝒱k x , 𝒱̄k x . To disentangle the direct effect from the indirect

effect, we use the concept of do-operation on the unit level of the learnt network.

Specifically, we use do 𝒱k x  to denote that we set the value of the concept-units to the

value obtained by using the original image as input. By intervening on the network and

setting the value of the concept units, we can compute the direct effect as the proportional

difference between the factual and the counterfactual classification outcome, while holding

mediator i.e., 𝒱k fixed to its value before the perturbation,

DE = ℰ[
Φ2 do 𝒱k x , 𝒱̄k x′

Φ2 𝒱k x , 𝒱̄k x − 1] . (3)

We compute indirect effect as the expected change in the outcome, if we change the

mediator from its original value to its value using counterfactual, while holding everything

else fixed to its original value,

IE = ℰ[
Φ2 do 𝒱k x′ , 𝒱̄k x

Φ2 𝒱k x , 𝒱̄k x − 1] . (4)

If the perturbation has no effect on the mediator, then the causal indirect effect will be zero.

Finally, we use the indirect effect associated with a concept, as a measure of its relevance to

the classification decision.
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2.3 Surrogate explanation function

We aim to learn a surrogate function g(·), such that it reproduces the outcome of the function

f(·) using an interpretable and straightforward function. We formulated g(·) as a decision tree

as many clinical decision-making procedures follow a rule-based pattern. We summarize the

internal state of the function f(·) using output of k concept regression functions hβk
⋅  as

follows,

wn = , logit hβ1
xn , logit hβ2

xn , ⋯ . (5)

Next, we fit a decision tree function, g(·), to mimic the outcome of the function f(·) as,

g∗ = argmin
g

∑
n

ℒ g wn , f xn , (6)

where ℒ is the splitting criterion based on minimizing entropy for highest information gain

from every split.

3 Experiments

We first evaluated the concept classification performance and visualized concept-units to

demonstrate their effectiveness in localizing a concept. Next, we summarized the indirect

effects associated with different concepts across different layers of the classifier. We

evaluated a proposing ranking of the concepts based on their causal contribution to the

classification decision. Finally, we used the top-ranked concepts to learn a surrogate

explanation function in the form of a decision tree. Data preprocessing: We perform

experiments on the MIMIC-CXR [10] dataset, which is a multi-modal dataset consisting of

473K chest X-ray images and 206K reports. The dataset is labeled for 14 radiographic

observations, including 12 pathologies. We used state-of-the-art DenseNet-121 [7]

architecture for our classification function [9]. DenseNet-121 architecture is composed of

four dense blocks. We experimented with three versions of Φ1(·) to represent the network

until the second, third, and fourth dense block. For concept annotations, we considered

radiographic features that are frequently mentioned in radiology reports in the context of

labeled pathologies. Next, we used Stanford CheXpert [9] to extract and classify these

observations from free-text radiology reports.

3.1 Evaluation of concept classifiers

The intermediate representations from third dense-block consistently outperformed other

layers in concept classification. In Fig. 3, we show the testing-ROC-AUC and recall metric

for different concept classifiers. All the concept classifiers achieved high recall,

demonstrating a low false-negative (type-2) error.

In Fig. 4, we visualize the activation map of hidden units associated with the concept vector

𝒱k. For each concept, we visualize hidden units that have large logistic regression-

coefficient (βk). To highlight the most activated region for a unit, we threshold activation
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map by the top 1% quantile of the distribution of the selected units’ activations [2].

Consistent with prior work [3], we observed that several hidden units have emerged as

concept detectors, even though concept labels were not used while training f. For cardiac-
silhouette, different hidden units highlight different regions of the heart and its boundary

with the lung. For localized concept such as blunt costophrenic angle, multiple relevant units

were identified that all focused on the lower-lobe regions. Same hidden unit can be relevant

for multiple concepts. The top label in Fig. 4. shows the top two important concepts for each

hidden unit.

3.2 Evaluating causal concepts using explanation function

We evaluate the success of the counterfactual intervention by measuring ATE. High values

for ATE confirms that counterfactual image generated by [20] successfully flips the

classification decision. We achieved an ATE of 0.97 for cardiomegaly, 0.89 for pleural

effusion and 0.96 for edema. In Fig. 1 (heat-map), we show the distribution of the indirect

effect associated with concepts, across different layers. The middle layer demonstrates a

large indirect effect across all concepts. This shows that the hidden units in dense-block 3

played a significant role in mediating the effect of counterfactual intervention.

In Fig. 5 (bar-graph), we rank the concepts based on their indirect effect. The top-ranked

concepts recovered by our ranking are consistent with the radiographic features that

clinicians associates with the examined three diagnoses [11,14,15]. Further, we used the

concept sensitivity score from TCAV [12] to rank concepts for each diagnosis. The top-10

concepts identified by our indirect effect and TCAV are the same, while their order is

different. The top-3 concepts are also the same, with minor differences in ranking. Both the

methods have low importance score for random concept. This confirms that the trend in

importance score is unlikely to be caused by chance. For our approach, random concept

represents an ablation of the concept-association step. Here, rather than performing lasso

regression to identify relevant units, we randomly select units.

To quantitatively demonstrate the effectiveness of our ranking, we iteratively consider x% of

top-ranked concepts and retrain the explanation function g(w). In Fig. 5 (bottom-plot), we

observe the change in recall metric for the classifier g(·) as we consider more concepts. In

the beginning, as we add relevant concepts, the true positive rate increases resulting in a high

recall. However, as less relevant concepts are considered, the noise in input features

increased, resulting in a lower recall. Fig. 6 visualize the decision tree learned for the best

performing model.

4 Conclusion

We proposed a novel framework to derive global explanation for a black-box model. Our

explanation is grounded in terms of clinically relevant concepts that are causally influencing

the model’s decision. As a future direction, we plan to extend our definition of concepts to

include a broader set of clinical metrics.
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Fig.1.
Method overview: We provide explanation for the black-box function f(x) interms of

concepts, that are radiographic observations mentioned in radiology reports. 1) The

intermediate representation Φ1(x) is used to learn a sparse logistic regression hβk
⋅  to

classify kth concept. 2) The non-zero coefficients of βk represents a set of concept units 𝒱k

that serves as a mediator in the causal path connecting input x and outcome y. 3) A decision

tree function is learned to map concepts to class labels.
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Fig.2.
Illustration of direct and indirect effects in causal mediation analysis.
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Fig.3.
AUC-ROC and recall metric for different concept classifiers.
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Fig.4.
A qualitative demonstration of the activation maps of the hidden units that act as visual

concept detectors. Each column represents one hidden unit identified as part of concept

vector 𝒱k. Top two rows show k = cardiac-silhouette and bottom rows have k =blunt

costophrenic angle.
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Fig.5.
Indirect effects of the concepts, calculated over different layers of the DenseNet-121

architecture (heat-map). The derived ranking of the concepts based on their causal relevance

to the diagnosis (bar-graph). A comparative ranking based on concept sensitivity score from

TCAV [12]. The trend of recall metric for the decision tree function g(·), while training using

top x% of top-ranked concepts (trend-plot).
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Fig.6.
The decision tree for the three diagnosis with best performance on recall metric.
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