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Abstract

Super-armed glycosyl donors, whose substituents are predominantly held in pseudoaxial 

positions, exhibit strongly increased reactivity in glycosylation through significant stabilization of 

oxocarbenium-like transition states. Examination of X-ray crystal structures reveals that the GH47 

family of glycoside hydrolases have evolved so as to distort their substrates away from the ground 

state conformation in such a manner as to present multiple C-O bonds in pseudoaxial positions 

and so benefit from conformational super-arming of their substrates, thereby enhancing catalysis. 

Through analysis of literature mutagenic studies, we show that a suitably placed aromatic residue 

in GHs 6 and 47 sterically enforces super-armed conformations on their substrates. GH families 

45, 81, and 134 on the other hand impose conformational super-arming on their substrates, 

by maintaining the more active ring conformation through hydrogen bonding rather than steric 

interactions. The recognition of substrate super-arming by select GH families provides a further 

parallel with synthetic carbohydrate chemistry and nature and opens further avenues for the design 

of improved glycosidase inhibitors.
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Introduction

Glycoside hydrolases (GHs) are carbohydrate processing enzymes that catalyze the cleavage 

of glycosidic bonds from either the terminal (exo-GHs) or internal (endo-GHs) positions 

of saccharides and oligosaccharides. They are found in all kingdoms of life and their 

absence or malfunction is associated with multiple human disease states, resulting in an 

immense interest in their mechanisms of action1–5 and in the design of inhibitors, ideally 

with selectivity for one class over another so as to limit toxicity.6–8 Multiple families (~170) 

of GH exist that, with certain exceptions (GH families 4, 88, 105, and 109),9–17 proceed 

by cleavage of the exocyclic glycosidic bond through what are considered to be exploded 

transition states that involve substantial oxocarbenium ion character, with either inversion or 

retention (double inversion) of configuration (Figure 1a–c) and the potential for substantial 

variation in the degree of synchronicity. The mechanisms of chemical glycosidic bond 

formation and hydrolysis resemble those of GH glycosidic bond hydrolysis in that they also 

typically proceed with substantial oxocarbenium ion character at the transition state,18–20 

and as such it is not surprising that GHs and glycosyltransferases (GTs) have provided the 

inspiration for the development of new glycosylation reactions.21, 22

In chemical glycosylation it has been established that of the three staggered conformations 

of the side chain (the exocyclic C5-C6 bond in the hexopyranoses and the C6-C7-bond 

in the ulosonic and neuraminic acids), the trans,gauche (tg) conformation destabilizes 

oxocarbenium-like transition states and so retards reactions, whereas the gauche,gauche 
(gg) conformation stabilizes oxocarbenium-like transition states and correspondingly 

accelerates reactions: the gauche,trans (gt) conformation displays intermediate behavior.23 

This influence of exocyclic bond conformation on reactivity at the anomeric center arises 

from the relationship of the C-O bond in the side chain with the nascent positive charge 

at the transition state, either providing electrostatic stabilization (gg, and gt) or causing 

destabilization because of its electron-withdrawing nature (tg) (Figure 2 a–c).24–30 In 

keeping with the well-established principles of reactivity and the mechanistic parallels 

between chemical and enzymatic cleavage and formation of C-O bonds at the anomeric 

center, we recently demonstrated by analysis of available crystallographic data that GHs 

also employ restriction of side chain conformation to assist catalysis. Thus, an exhaustive 

search of the PDB with the aid of the Carbohydrate-Active Enzymes Database (CAZy, 

http://www.cazy.org)31 revealed that 84% of β-glucosidases, 75% of β-glucosaminidases, 

99% of α-glucosidases, and 100% of α-glucosaminidases and β-mannosidases bind their 

substrates, substrate analogs, or transition state analog inhibitors1 with their side chains 

in the reactivity-enhancing gg conformation.32 These strikingly high populations of the gg 
conformation in molecules bound at the active site (−1 site)33 very significantly exceed 

those found in free solution (Figure 2a) and in complexes with lectin carbohydrate binding 

domains. In contrast, galactosidases bind their substrates with a class dependent preference 

for the gt or tg conformations, no doubt because of the relatively higher energy of the 

gg conformation in galactosides as reflected in the typical solution phase population 

distribution (Figure 2b).

The α-mannosidases (found in GHs 31, 38, 47, 63, 76, 92, 99, and 125),31 however, 

were found to constitute a broad exception to the very high preference for binding of 
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the gg conformation exhibited by the α- and β-glucosidases and the β-mannosidases.32 

Thus, of the 54 complexes located in the PDB meeting the criteria of ≤ 2.00 Å resolution 

and conformational integrity as judged by Privateer,34 25 had the side chain restricted by 

hydrogen-bonding to the gg and 28 to the gt conformations (with the remaining structure 

taking up an eclipsed conformation), at first sight suggesting that the α-mannosidases 

do not control side chain conformation to facilitate hydrolysis. Closer examination 

however revealed that, in point of fact, the 28 structures with the gt conformation were 

limited to only two GH families: 18 from GH38 and 10 from GH47, with all other 

α-mannosidases following the more typical behavior. Further, among all 170 GH families, 

only α-mannosidases from these two families together with those from GH92 (where the 

side chain is bound in the gg conformation) employ an essential divalent metal cation 

that chelates O2 and O3 of the ligand. We sought to understand these family specific 

exceptions to the broad general rule and present here our findings that Nature has again 

preempted chemists in the discovery and application of a principle of chemical reactivity, 

the conformational super-arming principle6, 35–42 for the stabilization of positive charge in 

glycosyl oxocarbenium-like transition states, and its application to the catalysis of glycosidic 

bond cleavage.

Results and Discussion

We first address the GH class 38 and 92 α-mannosidases for which Scheme 1a shows the 

conformational itinerary through the course of the hydrolysis reaction.43–47 The former use a 

retaining mechanism, with an active site aspartate as nucleophile, whereas the latter employ 

an inverting mechanism with water as a nucleophile. In each, the substrate binds in a OS2 

twist boat conformation, passes through an approximate B2,5 boat-like transition state, and 

ends in a 1S5 twist boat as either a covalent glycosyl enzyme intermediate (GH38) or as the 

hydrolyzed product (GH92).48

GH38 mannosidases only bind Zn2+ in their active sites. Chelation of O2 and O3 by 

the metal facilitates twisting of the starting material from the ground state 4C1 chair to 

a skew boat closer in character to the B2,5 boat-like transition state, as suggested by the 

Rose and Bols groups in their analysis of binding of the inhibitor noeuromycin.45 Further, 

acidification of hydroxyl groups via coordination by Zn2+ is well established,49 with an 

observed reduction of the pKa of coordinated water to 9 in free solution and to 6 in 

carboxypeptidase active sites.50 Such acidification of O2 and O3 through chelation to Zn2+ 

affords significant transition state stabilization, as these groups are rendered less electron

withdrawing. In the GH38 mannosidases Zn2+ also coordinates to the aspartate nucleophile 

(Figure 3a)45 presumably orienting it for nucleophilic attack. Apparently, TS stabilization 

arising from chelation to Zn2+ in GH38s is such that no significant benefit is derived from 

enforcement of the gg side chain conformation.

In contrast, chelation to Ca2+ is significantly less activating as is apparent from the 

smaller reduction in the pKa of coordinated water to only 12.6.51, 52 While this does not 

preclude orientation of catalytic aspartate or glutamate residues, as observed with GH97 

glucosidases53 and with B. thetaiotaomicron GH92 mannosidases (Figure 3b),54 Ca2+ does 

not significantly acidify O2 and O3 of the substrate. Rather, the Ca2+ serves principally to 
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bind the ligand, as it is known to do in multiple lectins,55 and to orient the nucleophilic 

water.44 Consistent with the minimal activation provided by chelation to Ca2+, the Ca2+

dependent GH92 series of mannosidases impose the gg conformation of the side chain on 

their ligands so as to provide additional stabilization to the TS. In contrast to the GH92s, the 

Ca2+ dependent GH47 mannosidases benefit neither from metal-mediated activation of the 

catalytic aspartate (Figure 3c)56 nor from enforcement of the gg conformation.

The key to the high reactivity of the GH47 mannosidases is revealed by Davies’ study 

of the conformational itinerary followed by their substrates during hydrolysis (Scheme 

2a).57 The substrate binds in a distorted 3S1 twist boat conformation, where, in contrast 

with GHs 38 and 92, the substituents at C3, C4, and C5 are all pseudoaxial, as observed 

with a non-hydrolyzable thioglycoside bound to Caulobacter sp. K31 (Scheme 2b). The 

pseudoaxial orientation of these C-O bonds is maintained over the course of the reaction as 

the substrate passes through a 3H4 half chair-like transition state, as seen with the complex 

of a mannoimidazole bound to the same enzyme (Scheme 2c), to the hydrolyzed product 

that is held as an “inverted” 1C4 chair conformation as exhibited by the Caulobacter sp. K31 

complex with noeuromycin (Scheme 2d).

Further analysis of crystal structures of GH47 mannosidases reveals that a suitably placed 

aromatic residue (Figure 4)58 abuts the C4-C5-C6 plane of the bound pyranoside. As 

previously noted for arenes in the −1 site of the majority of GHs,59 this arene doubtless 

stabilizes the Michaelis complex through CH-π interactions,60 which are accentuated for 

H5 at the TS due to its proximity to the partial positive charge. We suggest, however, 

that a major function of this aryl group in proximity to C5 is to enforce distortion of the 

pyranoside ring at the −1 site away from the 4C1 chair so as to avoid a steric clash with 

the hydroxymethyl side chain. This is illustrated by mutagenic studies carried out by the 

Moremen group,58 where the F659A mutation in human ER α-mannosidase results in a 

140-fold drop in kcat/KM indicating that removal of the steric bulk offered by F659 allows 

the substrate to take a more relaxed 4C1 or analogous conformation in the −1 site. Likewise, 

the F659A mutation results in a 60-fold drop in binding affinity for kifunensine, an inhibitor, 

whose ground state conformation is an inverted 1C4 chair, that binds near-irreversibly to the 

wild type enzyme.

Importantly, the enforcement of the 3H4 conformation of the substrate at the TS by F659 

not only provides a measure of TS stabilization by apposite CH-π interactions but also 

positions the C3-O3 and C4-O4 bonds of the ligand so as to further stabilize the partial 

positive charge at the TS through space electrostatically: in the language of preparative 

carbohydrate chemistry the substrate is super-armed. It has been broadly demonstrated that 

the greater chemical reactivity of galactopyranosides with respect to their gluco-isomers 

is mainly due to the through space stabilization of partial positive charge at the TS 

by the axial C4-O4 bond (Figure 5),18, 29, 61–65 as most apparent in Bols’ linear free 

energy relationships correlating rates of glycoside hydrolysis with pKa’s of analogously 

substituted polyhydroxypiperidines.29, 66, 67 This is directly analogous to the stabilization 

provided to the TS by side chains in the gg conformation (Figure 2). Extrapolating from 

this phenomenon, Bols and coworkers revealed dramatic rate increases in glycosidic bond 

hydrolysis when all C-O bonds are locked in pseudoaxial positions as illustrated by the 
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~450-fold rate increase seen with methyl 3,6-anhydro-β-D-glucopyranoside as compared 

to methyl α-D-glucopyransoide (Figure 5b).35 In preparative chemistry, Bols and others 

made use of this super-arming effect through the design and application of a series 

of conformationally distorted donors, with multiple pseudoaxial C-O bonds, that can be 

preferentially activated in the presence of related donors in the more usual 4C1 conformation 

(Figure 5c), albeit the situation is obscured in this case by the change in nature of the 

protecting groups.37 It appears that the GH47 mannosidases have evolved to distort their 

substrates away from the ground state conformation so as to position their C3-O3 and C4-O4 

bonds in such a manner as to take advantage of super-arming and achieve higher levels of 

activity.

Enhancement of reactivity through conformational super-arming is not restricted to the 

GH47 α-mannosidases. In GH6 cellulases, a proximal tyrosine residue whose phenolic OH 

sterically prevents the substrate from taking up a 4C1 chair conformation forces the sugar 

into a 2E half chair or a 2SO skew boat with pseudoaxial substituents at C4 and C5 (Figure 

6a), to which it also provides the more typical CH-π and/or hydrophobic stabilization.59 

While the tenfold decrease in activity found by Larsson and coworkers with a Y73F mutant 

of T. fusca Cel6A can potentially by attributed to reduced stabilization of nascent positive 

charge at the anomeric center by the less electron rich arene, a Y73S mutant lacking the 

steric bulk of an aromatic ring results in a much larger 500-fold decrease in activity.68, 69 

Crystal structures of the Y73S mutant bound to cellotetraose reveal that the pyranoside 

ring in the −1 site is held in the relaxed 4C1 conformation (Figure 6b), indicating that the 

tyrosine residue in the wild type enzyme increases reactivity by conformational arming of 

the substrate in the −1 site in addition to any stabilization it provides directly to the positive 

charge at the transition state. Interestingly, despite the significant destabilization afforded 

by placing the side chain above the pyranoside ring, GH6 endoglucanases hold the side 

chains of the ring undergoing hydrolysis in the gg conformation, thereby further maximizing 

reactivity.

In some cases, such as the GH81 and GH45 endoglucanases and the GH134 β-mannanases, 

enforcement of super-arming seems to be consistent throughout the family, with most or 

all available crystal structures binding the ligand in the more reactive conformation. Unlike 

the GH6 and 47 glycosidases, enforcement of the higher energy super-arming conformation 

by GHs 45, 81, and 134 is driven predominantly by H-bonding with the enzyme rather 

than by steric destabilization of the ground state conformation (Figure 7a–c).70–72 As with 

GH6, GHs 45 and 134 restrict their side chains to the most reactive gg conformation 

despite the destabilization afforded by placing the side chain directly above the ring. GH81 

endoglucanases, on the other hand, avoid this steric penalty and hold their side chains in 

the gt conformation, constituting one of the exceptions discussed in our earlier analysis of 

enforced side chain conformations.32 In other families, only one of the crystal structures 

shows binding of the substrate in the super-armed conformation. For example, while most 

GH22 lysozymes bind their substrates in the more relaxed 4C1 conformation, one crystal 

structure of M. lusoria GH22 lysozyme reveals a tetrasaccharide-based unsaturated lactone

type inhibitor bound in a 5E conformation with pseudoaxial bonds at C4 and C5 distinct 

from the free solution E5 conformation73 of such lactones, indicating super-arming of the 

natural substrate (Figure 7d). Likewise, one crystal structure of a GH48 glucosidase holds 
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a cellobio-derived isofagomine in the inverted 1C4 chair with the side chain in the gt 
conformation (Figure 7e).

Finally, it is appropriate to compare the rate enhancement provided by super-arming 

with that achieved by GHs over the uncatalyzed hydrolysis in water. Thus, super-arming 

provides an ~400-fold enhancement in the rate of hydrolysis of methyl glucosides (Figure 

5) corresponding to a reduction in activation energy of ~1.9 kcal.mol−1, whereas GHs are 

known to accelerate hydrolysis by a factor of 1015–1021 over the uncatalyzed reaction in 

water (19–29 kcal.mol−1).74 Accordingly, we estimate that conformational super-arming can 

provide as much as 10% of the rate enhancement in hydrolysis achieved by the GHs that 

employ it.

Conclusion

We show that GH47 mannosidases and several other GH families impose a super-armed 

conformation on their substrates to enhance catalysis. Some families, such as GHs 47 and 

6, enforce this conformation through steric interactions that favor substrate conformations 

with pseudoaxial C-O bonds at the 3- and 4-positions as well as a pseudoaxial side chain, 

whereas other families such as GHs 81, 134, and 45 employ H-bonding as the primary 

conformation driving factor. As with our previous analyses of side chain conformation 

preferences, this work illustrates that Nature is yet again one step ahead, having evolved to 

take advantage of a phenomenon that chemists have only recently discovered and began to 

exploit.
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Figure 1. 
(a) Mechanism of inverting glycoside hydrolases (b) Mechanism of retaining glycoside 

hydrolases (c) Concerted oxocarbenium-like transition state for an inverting glycosidase
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Figure 2. 
The three staggered side chain conformations and their approximate populations in free 

solution for (a) gluco- and mannopyranoses, and (b) for galactopyranoses. (c) Spatial 

relationships of side chain hydroxyl groups with the putative oxocarbenium π* orbital

Quirke and Crich Page 12

ACS Catal. Author manuscript; available in PMC 2022 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Coordination spheres of the divalent cation of (a) D. melanogaster GH38 golgi α

mannosidase II in complex with a mannoimidazole (Zn2+, PDB ID 2ALW), (b) B. 
thetaiotaomicron GH92 α-1,2-mannosidase in complex with a mannoimidazole (Ca2+, PDB 

ID 6F92), and (c) human GH47 α-1,2-mannosidase in complex with 1-deoxynojirimycin 

(Ca2+, PDB ID 1FO2). Blue dashed lines designate hydrogen bonds and purple dashed lines 

designate coordinative bonds to the metal.
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Figure 4. 
Partial crystal structure of human GH47 α-1,2-mannosidase bound to thiomannobiose, with 

F659 abutting the C4-C5-C6 plane (PDB ID 1X9D). Blue dashed lines designate hydrogen 

bonds and purple dashed lines designate coordinative bonds to the metal.
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Figure 5. 
(a) Impacts of C4 configuration on putative oxocarbenium stability (b) Relative rates of 

acidic hydrolysis of methyl glycosides with increasing axial character (c) Relative rates of 

activation of disarmed, armed, and super-armed glycosyl donors38
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Figure 6. 
Partial crystal structures of (a) wild type T. fusca GH6 endoglucanase in complex with a 

thioglycoside (PDB ID 2BOD) and (b) Y73A T. fusca GH6 endoglucanase in complex with 

cellotetraose (PDB ID 2BOF) showing the pyranoside ring in the −1 site. Blue dashed lines 

designate hydrogen bonds.
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Figure 7. 
Partial crystal structures of (a) P. chryosporum GH45 endoglucanase bound to cellopentaose 

(PDB ID 3X2M), (b) B. halodurans GH81 glucosidase bound to laminarin (PDB ID 5T4G), 

(c) Streptomyces sp. GH134 β-mannanase bound to mannotriose (PDB ID 5JU9), (d) M. 
lusoria GH22 lysozyme bound to a tetrasaccharide-based unsaturated lactone (PDB ID 

3AYQ), and (e) B. pumilus GH48 endoglucanase cellobiose-derived isofagomine (PDB ID 

5VMA). Blue dashed lines designate hydrogen bonds.
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Scheme 1. 
(a) Conformational itinerary of pyranosides at the −1 site of GH38 and GH92 mannosidases 

with partial crystal structures of (b) D. melanogaster GH38 Golgi α-1,2-mannosidase bound 

to a mannoimidazole TS analog inhibitor (PDB ID 3D4Y), (c) D. melanogaster GH38 Golgi 

α-1,2-mannosidase bound to noeuromycin (PDB ID 2ALW), (d) B. thetaiotaomicron 3990 

GH92 α-mannosidase bound to a mannoimidazole TS analog inhibitor (PDB ID 2WZS), 

and (e) B. thetaiotaomicron 3990 GH92 α-mannosidase bound to kifunensine (PDB ID 

2WVZ). Blue dashed lines designate hydrogen bonds and purple dashed lines designate 

coordinative bonds to the metal.
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Scheme 2. 
(a) Conformational itinerary of pyranosides at the −1 site of GH47 mannosidases, illustrated 

with partial crystal structures of Caulobacter sp. K31 in complex with (b) a thioglycoside 

(PDB ID 4AYP), (c) a mannoimidazole (PDB ID 4AYQ) 5KK7, and (d) noeuromycin (PDB 

ID 4AYR). Blue dashed lines designate hydrogen bonds and purple dashed lines designate 

coordinative bonds to the metal.
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