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Health disparities correspond to differences in disease burden and mortality among socially defined
population groups. Such disparities may emerge according to race/ethnicity, socioeconomic status and
a variety of other social contexts, and are documented for a wide range of diseases. Here, we provide a
transdisciplinary perspective on the contribution of epigenetics to the understanding of health disparities,
with a special emphasis on disparities across socially defined racial/ethnic groups. Scientists in the fields of
biological anthropology, bioinformatics and molecular epidemiology provide a summary of theoretical,
statistical and practical considerations for conducting epigenetic health disparities research, and provide
examples of successful applications from cancer research using this approach.
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The goal of this manuscript is to provide a transdisciplinary perspective on the contribution of epigenetics to
the understanding of health disparities among socially defined racial/ethnic groups, drawing on expertise from
scientists in the fields of biological anthropology, bioinformatics and molecular epidemiology. Herein, we summarize
theoretical, statistical and practical elements of investigating racial/ethnic health disparities using epigenetics and
provide examples of successful applications from cancer research using this approach. This work will aid in shaping
how researchers understand and therefore approach problems of health disparities when incorporating epigenetic
data.

What is epigenetics?
Epigenetics is the study of heritable phenotypic variations that do not involve changes in the DNA sequence,
often involving control for gene activity and expression [1,2]. Examples that produce such changes are histone
and chromatin modification, and DNA methylation. DNA methylation is the best-studied type of epigenetic
modification in humans, playing a critical role in the regulation of gene expression. This primarily occurs by
reducing the transcription of genes at the promoter and enhancer regions, although more complex regulatory
mechanisms have been described in other gene contexts [109 3,4]. DNA methylation is one of the key players in
cellular differentiation, providing cell identity [5]. Genetic variation and environmental factors can affect the cell
subpopulation selection through epigenetic adaptation, and under extreme pressures, can alter cell differentiation
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and lead to abnormal phenotypes, including cancer cells [6–8]. This plasticity makes epigenetic processes lie at the
interface of the environment and transcriptional control.

Using epigenetics to understand the development of health disparities
Health disparities are differences in disease risk between populations groups, and oftentimes, are accompanied by
a higher than expected mortality burden. Health disparities are common across a variety of social contexts and are
documented for a wide range of morbidities that occur across the life course. Such disparities may emerge according
to race. Race is defined here as the social construct of human variability based on perceptions of biological differences
(e.g., skin color or other aspects of physical appearance). While race categories do not reflect genetically distinct
groups, experiences of racism and structural violence can adversely impact the biology and health of racialized
minorities. Similarly, health disparities may also emerge according to ethnicity. Ethnicity, according to Mersha
et al., refers to a ‘multidimensional construct reflecting biological factors, geographical origins, historical influences,
as well as shared customs, beliefs, and traditions among populations that may or may not have a common genetic
origin’ [9]. As such, each ‘race’ or ‘ethnicity’ may include multiple subgroups (e.g., Hispanic/Latinx are comprised
of Cubans, Panamanians, Ecuadorians, Argentinians, etc.).

Given that racial/ethnic groups are social categories that do not necessarily align with underlying patterns of
genetic variation [10], genetic factors alone are insufficient to explain how racial/ethnic health disparities emerge.
It is therefore critical to evaluate how differences in experience and environment shape health outcomes. In fact, it
is now becoming clear that environmental differences are important in shaping more complex phenotypes that are
of interest in public health regarding racial/ethnic inequalities, such as low birth weight, preterm birth, asthma,
cancer and cardiovascular disease. Epigenetic studies may help to understand how differences in environmental
experience translate into differences in phenotype. Although a limited number of studies have directly connected
DNA methylation to health disparities, a few studies have reported intriguing results. Socioeconomic status [11],
as well as factors that vary according to socioeconomic statuses such as psychosocial stress exposure [12,13] and
diet [14,15], have been associated with variation in DNA methylation.

Early life experiences may be particularly important for shaping health disparities. The Developmental Origins
of Health and Disease hypothesis suggests that a mother’s experience during her life and her pregnancy may
shape the epigenome and future health trajectory of her infant [16,17]. Moreover, different environmental exposures
during pregnancy (maternal lifestyles, diseases and exposures to environmental toxicants) have been associated with
alterations in DNA methylation in the placenta or the umbilical cord blood of the newborn [18–21]. However,
there has been criticism of the overemphasis on maternal effects relative to paternal effects in predicting health
outcomes via epigenetic mechanisms [22]. While it has been less frequently investigated, growing evidence suggests
that paternal environmental experience can also affect offspring through epigenetic processes. For example, paternal
obesity in the peripartum period is associated with significant differences in offspring methylation at imprinted
genes important for regulating growth and development [23]. These findings suggest that socially patterned exposure
to stressors in both parents could potentially affect offspring health via changes in the offspring epigenome.

Among historically marginalized communities, the ancestral experience of trauma (i.e., historical trauma) shapes
disparities in later health generations [24–26]. In addition to being related to the intergenerational effects described
above, the health impacts of historical trauma likely also reflects within-generation epigenetic impacts of environ-
mental conditions shaped by ancestral experience [27,28]. For example, forced displacement of ancestors increases
the likelihood that members of the contemporary generation experience poverty and therefore associated health
sequelae. Likewise, the parental experience of trauma could shape both the intrauterine environment and patterns
of parental care, both of which affect the developing epigenome of offspring [27,29]. Therefore, historical trauma
should be considered as an additional conceptual model for explaining observed health disparities.

Statistical methodology for studying the epigenetic basis of health disparities
Studies investigating the DNA methylation basis of health disparities have generally employed global DNA
methylation, targeted gene methylation, single variant methylation or network-based analysis [30–32]. With the
rapid development of high-throughput technologies in recent years, population-based epigenome-wide association
studies at a single-nucleotide resolution became a popular approach utilized in epigenetic studies. The common
supervised selection strategy is to select CpG sites affecting phenotypic differences, noted as differentially methylated
cytosines [33]. Differentially methylated cytosines can be selected based on the absolute difference in mean beta
values or test statistics from a t-test, Wilcoxon test or multivariable regression model. Another selection approach is
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to consider differential variance in methylation between two traits, noted as differentially variable cytosines, using,
for instance, the Bartlett test or the Levene’s test [34,35]. In genomics, variance-based selection of SNPs approaches
could be used to prioritize those SNPs for subsequent gene–gene and gene–environment testing [36]. Although some
tools have been developed for this goal [37], epigenome-wide approaches for epigenome–environment and genome–
epigenome interactions are infrequently studied beyond locus-specific interactions due to computational burden and
concerns over model assumptions when using untargeted approaches. On the other hand, the unsupervised selection
procedure is to rank and filter CpG sites by variance, aiming for the selection of the most variably methylated
cytosines [38]. The most variably methylated cytosines generally represent various levels of DNA methylation and
may contain those driven by SNPs or cell heterogeneity (e.g., different immune cell populations in blood/saliva
or immune-cell infiltration in solid tissues). Studies have also employed the most variably methylated cytosines
approach to filter CpGs before single variant methylation tests to reduce the burden of multiple hypothesis testing.

Differences at any individual site may be small; however, if these differences are persistent across a region or
a certain group of genes, statistical power to detect them may be greater. Several methods have been developed
to identify sets of neighboring CpGs sites that are correlated with each other, known as differentially methylated
regions, and link them with traits of interest, including DMRcate [39], bump hunting [40] and the A-clustering
method [41]. Other methods aiming to build gene co-methylation networks have also been proposed. For example,
weighted gene co-methylation network analysis aims to describe the correlation patterns among genes across
microarray samples, find clusters of highly correlated genes, and relate such clusters to a phenotype of interest via
enrichment analysis or network eigengenes (the top principal component of genes in the cluster) [42].

Challenges & opportunities in statistical methodology
Although advances in epigenetic studies are expected to help understand racial/ethnic health disparities, there are
notable challenges and limitations to consider. Epigenetic studies are potentially impacted by a range of confounding
factors, including but not limited to population genetic patterns, cell-type, environmental confounders related to
ethnicity and sample processing batch [43]. Population stratification is another critical source of confounding for
studies including heterogeneous populations. DNA methylation signatures of target tissue (e.g., saliva, whole
blood, placenta, adipose and tumors) are an average of cell type-specific methylation levels. Hence, the cell-type
proportion is generally related to the measured DNA methylation levels, and in many cases, is also associated with
race/ethnicity [44] and traits of interest [45]. Various statistical methods have been proposed to adjust for this potential
bias. Statistical models for cell-type deconvolution are classified into three categories called reference-based [46],
reference-free [47] and semi-reference-free [48–51], the last of which alleviates some of the problems of both reference-
based and reference-free methods. The choice of the appropriate method for cell-type deconvolution mainly
depends on the availability of a proper reference database for DNA methylation of the cell types involved [52–54].
Some other methods developed specifically for methylation data, or for general purposes, can be used to control for
all unmeasured confounding, including; surrogate variable analysis (SVA) [55], independent SVA [56], smartSVA [57],
remove unwanted variation [58,59] and principal component analysis [60]. Several of these methods have been
used to adapt reference-free approaches and semi-reference-free approaches and have been reviewed and compared
elsewhere [2,61]. However, residual confounding may still be possible after adjustment. In statistical genetics, genomic
inflation represents the excess of false positives in genomic analyses. In epigenome-wide association studies, the
genomic inflation factor calculation and the quantile-quantile plots have been used to quantify the excess inflation
in statistics, however, in most of these analyses, genomic inflation is not corrected. The application of genomic
control correction has shown to be ineffective due to the small differences detected in epigenome-wide association
studies, with only a few methods that have been adapted specifically for DNA methylation analyses but are still
not widely used in the field [62]. Finally, several biomarkers derived from DNA methylation information have been
developed which could offer global measures of epigenetic drift related to various phenotypic variations of interest.
Among those, we have age acceleration using the DNA methylation age measures [63,64], fetal cell of origin [65],
inference of multiple retrotransposons using epigenome-wide information [66] or global methylation changes [67].
The selection of specific methods should be adapted to the specific hypothesis being tested.

Insights & applications from cancer research
Locus specific changes and differentially methylated cytosines related to race/ethnicity have been identified among
cancer biologists interested in health disparities and have been extensively reviewed in the past [30,68–70]. Beyond
the locus-specific promoter changes, epigenome-wide association studies have continuously reported variation in
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DNA methylation patterns between different populations such as Europeans, Hispanics, Africans and Asians [71].
Determining how these race/ethnicity variations are associated with disease outcomes will further help to understand
health disparities. Another approach is to describe demographic and environmental factor-associated and disease-
associated differentially methylated cytosines in different race/ethnicity groups.

Cancer health disparities research in the USA is largely focused on race/ethnicity, where cancer incidence is
highest among African–Americans or Blacks, followed by non-Hispanic Whites, Hispanics and Asian/Pacific Is-
landers [72]. Generally, African–Americans also have the highest mortality rates and worse survival outcomes in
comparison with all other race/ethnicity groups. The disparity gap between whites and African–Americans for
cancer incidence and mortality has narrowed over time, but there is still a notable 14% difference in the mortality
rate [72]. While African–Americans are disproportionately affected overall, other race/ethnicity groups (e.g., His-
panics, Asian/Pacific Islanders) have a greater cancer burden or worse survival for certain cancers. For example,
Hispanics have a higher incidence of infection-associated cancers (e.g., liver, stomach and cervical cancer) [73].
Cancer is also more prevalent among socially, economically or environmentally disadvantaged populations. Higher
cancer incidence and mortality rates, as well as lower survival, are experienced by cancer patients with low edu-
cational attainment or residents of impoverished neighborhoods compared with more educated individuals and
residents of affluent areas [74]. As the socioeconomic status and race/ethnicity are inextricably linked to one another,
it is often difficult to disentangle their independent effects on cancer disparities.

The underlying causes of cancer health disparities are complex and multifactorial. While a portion of the disease
burden is due to the marginalization of minority populations, disease susceptibility is a combination of population
isolation, genetic burden and selection of specific phenotypes that are advantageous for certain environments [75].
One example is the trends in cancer subtype susceptibility for certain race/ethnicity groups. Skin cancer distributions
differ across race/ethnicity as the risk of squamous cell carcinoma is higher in Eurasian descendants and anecdotally
in African populations with albinism [76]. Triple-negative breast cancer and aggressive prostate cancer are much
more frequent in African–Americans compared with other racial/ethnic groups in the USA. Even after accounting
for healthcare access and other social factors, African–Americans with these subtypes have a worse prognosis
compared with white–Americans. Interestingly, Hispanic cancer patients have better outcomes than African–
Americans despite similar sociodemographic characteristics, also known as the ‘Hispanic paradox’ [77], while at the
same time, this group is still adversely affected by other health outcomes, such as infectious diseases, disabilities and
diabetes compared with non-Hispanic whites. As neighborhood socioeconomic status has been shown to contribute
to survival disparities in Black and Hispanic cancer patients, but not Asian/Pacific Islanders [78], neighborhood
socioeconomic status does not represent the only source of variability contributing to health disparities for these
groups.

Considerable strides have been made in cancer research to investigate the link between DNA methylation
and cancer health disparities, primarily for the most common cancers. In breast cancer, several studies have
identified differentially methylated loci when comparing tumors from African–American and European–American
women [79–84], with the most differences observed in women with estrogen receptor (ER) negative tumors and
younger women. Another study uncovered seven genes hypermethylated in Korean versus European women,
which again, was particularly seen among ER and progesterone receptor (PR) negative tumors and women aged
≤50 years [85]. Similarly, work in prostate cancer found several CpG sites that are differentially methylated among
tumors from Black versus white men [86–90], with studies consistently implicating CD44 and GSTP1 [86,87,90].
Besides breast and prostate cancer, the literature investigating the epigenetic basis of race/ethnicity disparities in
other cancer types is fairly sparse [91–97], especially for rare cancers where challenges arise due to the limited number
of cases in existing studies, particularly within minority or underserved populations. Many additional studies in
the literature investigate DNA methylation of cancer patients within a specific race/ethnicity but do not compare
with other race/ethnicity groups. While these studies uncover the unique epigenetic alterations within different
populations, they do not provide a comparison group to elucidate a potential racial/ethnic disparity and are not
discussed herein.

Challenges in epigenetic health disparities research
Race/ethnicity is the most common disparity investigated in cancer epigenetics as well as other disease disparities,
with the majority of studies comparing African–American/Black and European–American/White populations.
Little emphasis has been placed on other race/ethnicity groups (e.g., Hispanics, Asian/Pacific Islanders, American–
Indians/Alaskan Natives), although these under-represented groups have notable disparities for many chronic and
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acute diseases and are a growing proportion of the U.S. population. Moreover, any racial/ethnic categorization
encompasses very heterogeneous populations. For instance, Hispanics and Asian/Pacific Islanders represent a variety
of ethnic subgroups (e.g., Cuban, Mexican, Filipino and Chinese) that have different experiences and risk profiles.
These racial/ethnic groups are often understudied due to inadequate sample sizes or the under-representation of
these populations within any one study. Adding to this challenge, there is typically a lack of studies with available
biospecimens to conduct epigenetic disparities research.

Promoter methylation of candidate genes or a preselected panel of genes has been the approach used most often to
measure DNA methylation. The array-based methodology offers an agnostic approach to move beyond a single gene
or gene promoter. However, the majority of studies using arrays to quantify DNA methylation levels have used the
Illumina 27 or 450K array. Both are now obsolete after the introduction of the MethylationEPIC (or 850K) array,
which provides comprehensive genome-wide coverage and captures additional enhancer and intergenic regions of
the genome that were not included on the older versions of the array. As genome-wide association studies note the
importance of noncoding regions of the genome in disease susceptibility, the EPIC array will be able to shed light
on whether this is also true for epigenetic alterations. DNA methylation sequencing (e.g., reduced representation
bisulphite sequencing or whole genome bisulphite sequencing) has been used in a few health disparities studies [98],
however, this technology cost is higher than the microarrays and depending on the biospecimen, the genome
coverage may not be consistent.

Conclusion
Epigenetic markers have shown several interesting associations that could be driving health disparities from a
biological perspective. When investigating the association between racially/ethnically different epigenetic variations
and disease outcomes in cross-sectional settings, determining causality is challenging [99]. Prospective follow-
up studies among racially/ethnically heterogeneous populations would allow researchers to identify methylation
changes involved in different pathways preceding disease onset. Using a Mendelian randomization approach to
integrate genotype and epigenetic data may also prove useful in determining causality [100]. However, there are
several limitations of this approach including but not limited to low statistical power, population stratification
generating spurious genetic variants, re-introduced confounding through pleiotropy and linkage disequilibrium
with multiple causal genetic variants of the epigenetic variation [100].

The use of machine learning is of great interest in disease prediction and classification. For example, the elastic
net, a penalized regression model, has been applied in predicting human age with DNA methylation data in the
USA [63], Chinese and multiracial/multiethnic populations [101,102]. Integrating the epigenome with other types of
-omics data such as the genome, transcriptome, proteome, metabolome and the microbiome has the potential to
unlock the ‘black box’ in health disparities. Although current technologies are still facing challenges, researchers
have found intriguing results [103,104]. Future enhanced bioinformatics and analytical tools [105] will enable a more
comprehensive analysis of human observational and interventional studies in a systematic way.

Future perspective
Some studies have devised an integrative approach including a comprehensive analysis of the social and environ-
mental exposures of specific race/ethnicity associated epigenetic changes [32,106]. Newer longitudinal cohorts are
trying to recruit more diverse populations representing minorities that were not included in traditional cohort
studies [107]. Transdisciplinary approaches to understand the roots of health disparities are required to improve
the outcomes of minorities and marginalized populations. From the genetic point of view, researchers are moving
beyond self-reported race/ethnicity to the use of ancestry informative genetic markers. In highly admixed popu-
lations, such as Latin–Americans or African–American populations, ancestry informative genetic markers reveal
a different layer of information about population migration and in some cases, clusters of disease susceptibility
that may not be associated when using only self-reported race/ethnicity [9]. Ancestry information will provide
broad geographically relevant population information (population migration and inbreeding); however, so far, the
utility of genetic markers has been limited for interventions [108]. Epigenetics, on the other hand, provide a unique
opportunity to fully integrate the genetic, social and environmental contributors to health disparities, while offering
a potential for intervention.
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Executive summary

Using epigenetics to understand the development of health disparities
• Health disparities reflect differences in morbidity and mortality among socially defined categories, including

racial/ethnic groups.
• Experiences of racism and structural violence can adversely impact the biology and health of racialized minorities.
• Early life trauma and historical trauma are disproportionately experienced by socially disadvantaged groups and

could contribute to health disparities via epigenetic changes.
Statistical methodology for studying the epigenetic basis of health disparities
• Studies investigating the DNA methylation basis of health disparities have generally employed methods at

different resolutions. Population-based epigenome-wide association studies analyzing single-nucleotides became
a popular approach.

• Other techniques employing differential variability or differentially methylated regions are being more widely
used.

• Epigenetic studies are potentially impacted by a range of confounding factors, including but not limited to
population genetic patterns, cell-type, environmental confounders related to ethnicity, and sample processing
batch.

Insights & applications from cancer research
• Considerable strides have been made in cancer research to investigate the link between DNA methylation and

cancer health disparities, primarily for the most common cancers (breast and prostate cancer) in US
African–American populations.

• There is still limited information available for other race/ethnic groups in the US, with very heterogeneous
populations.

• Determining causality in cross-sectional settings is challenging. Prospective follow-up studies among
racially/ethnically heterogeneous populations and techniques as mendelian randomization will identify
methylation changes involved in different pathways preceding disease onset.
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61. Brägelmann J, Lorenzo Bermejo J. A comparative analysis of cell-type adjustment methods for epigenome-wide association studies based
on simulated and real data sets. Brief. Bioinform. 20(6), 2055–2065 (2019).

62. van Iterson M, van Zwet EW, BIOS Consortium, Heijmans BT. Controlling bias and inflation in epigenome- and transcriptome-wide
association studies using the empirical null distribution. Genome Biol. 18(1), 19 (2017).

63. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 14(10), R115 (2013).

64. Gibson J, Russ TC, Clarke T-K et al. A meta-analysis of genome-wide association studies of epigenetic age acceleration. PLoS Genet.
15(11), e1008104 (2019).

65. Salas LA, Wiencke JK, Koestler DC, Zhang Z, Christensen BC, Kelsey KT. Tracing human stem cell lineage during development using
DNA methylation. Genome Res. 28(9), 1285–1295 (2018).

66. Zheng Y, Joyce BT, Liu L et al. Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res. 45(15),
8697–8711 (2017).

67. Salas LA, Johnson KC, Koestler DC, O’Sullivan DE, Christensen BC. Integrative epigenetic and genetic pan-cancer somatic alteration
portraits. Epigenetics 12(7), 561–574 (2017).

68. Vick AD, Burris HH. Epigenetics and health disparities. Curr. Epidemiol. Rep. 4(1), 31–37 (2017).

69. Ahmad A, Azim S, Zubair H et al. Epigenetic basis of cancer health disparities: looking beyond genetic differences. Biochim. Biophys.
Acta Rev. Cancer 1868(1), 16–28 (2017).

70. Saini G, Ogden A, McCullough LE, Torres M, Rida P, Aneja R. Disadvantaged neighborhoods and racial disparity in breast cancer
outcomes: the biological link. Cancer Causes Control 30(7), 677–686 (2019).

71. Kader F, Ghai M. DNA methylation-based variation between human populations. Mol. Genet. Genomics 292(1), 5–35 (2017).

72. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019).

73. Miller KD, Goding Sauer A, Ortiz AP et al. Cancer statistics for Hispanics/Latinos, 2018. CA Cancer J. Clin. 68(6), 425–445 (2018).

74. Singh GK, Jemal A. Socioeconomic and racial/ethnic disparities in cancer mortality, incidence, and survival in the United States,
1950–2014: over six decades of changing patterns and widening inequalities. J. Environ. Public Health 2017, 2819372 (2017).

•• A large comprehensive analysis that not only investigates cancer disparities in terms of race/ethnicity but also socioeconomic
disadvantage, showing that Blacks and residents of deprived neighborhoods have the worst survival.
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