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Abstract

Background: The causal nature of the observed associations between serum lipids and

apolipoproteins and kidney function are unclear.

Methods: Using two-sample and multivariable Mendelian randomization (MR), we

examined the causal effects of serum lipids and apolipoproteins on kidney function,

indicated by the glomerular-filtration rate estimated using creatinine (eGFRcrea) or

cystatin C (eGFRcys) and the urinary albumin-to-creatinine ratio (UACR). We obtained
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lipid- and apolipoprotein-associated genetic variants from the Global Lipids Genetics

Consortium (n¼331 368) and UK Biobank (n¼441 016), respectively, and kidney-function

markers from the Trøndelag Health Study (HUNT; n¼ 69 736) and UK Biobank

(n¼464 207). The reverse causal direction was examined using variants associated with

kidney-function markers selected from recent genome-wide association studies.

Results: There were no strong associations between genetically predicted lipid and apolipo-

protein levels with kidney-function markers. Some, but inconsistent, evidence suggested a

weak association of higher genetically predicted atherogenic lipid levels [indicated by low-

density lipoprotein cholesterol (LDL-C), triglycerides and apolipoprotein B] with increased

eGFR and UACR. For high-density lipoprotein cholesterol (HDL-C), results differed between

eGFRcrea and eGFRcys, but neither analysis suggested substantial effects. We found no

clear evidence of a reverse causal effect of eGFR on lipid or apolipoprotein traits, but higher

UACR was associated with higher LDL-C, triglyceride and apolipoprotein B levels.

Conclusion: Our MR estimates suggest that serum lipid and apolipoprotein levels do

not cause substantial changes in kidney function. A possible weak effect of higher

atherogenic lipids on increased eGFR and UACR warrants further investigation.

Processes leading to higher UACR may lead to more atherogenic lipid levels.
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Introduction

The increasing prevalence of chronic kidney disease (CKD)

has become an important public-health concern.1

CKD causes 5–10 million deaths annually,2 including

excess deaths from cardiovascular disease (CVD).3 The

glomerular-filtration rate (GFR) estimated using serum cre-

atinine (eGFRcrea) and albuminuria classified using the

urinary albumin-to-creatinine ratio (UACR) are the most

commonly used CKD-classifying quantitative traits.4,5 The

GFR estimated using cystatin C (eGFRcys) may be an even

better marker of kidney function than eGFRcrea, but is

used less often clinically.6

Quantitative markers of kidney function are associated

with dyslipidemia in which elevated triglyceride (TG) levels,

decreased high-density lipoprotein cholesterol (HDL-C) and

an increased TG-to-HDL-C ratio have been associated with

lower eGFRcrea.7,8 Increased low-density lipoprotein choles-

terol (LDL-C) and increased ratios of LDL-C to HDL-C and

apolipoprotein B (Apo B) to A-I (Apo A-I) are associated

with a decline in GFRcrea.9,10 It has been suggested that

eGFRcys may be even more strongly correlated with

unfavourable lipids than eGFRcrea.11 Further, elevated TG,

Apo B and non-HDL-C levels have been associated with

increased UACR in Asian cohorts.12–14 The causal role of

these lipid and apolipoprotein traits in influencing kidney

function (or vice versa) is unclear.

Mendelian randomization (MR) is an approach that

can be used to estimate the causal associations between

Key Messages

• Our Mendelian-randomization (MR) analyses indicate that serum lipids and apolipoproteins do not have a substantial

impact on kidney function and urinary albumin excretion.

• There was some, but inconsistent, evidence that higher atherogenic lipid levels may weakly increase both the

glomerular-filtration rate and urinary albumin-to-creatinine ratio (UACR); these findings need further replication.

• MR analyses provided no consistent evidence that the estimated glomerular-filtration rate influences serum lipid or

apolipoprotein levels, but processes leading to higher UACR may increase the levels of atherogenic lipids including

serum low-density lipoprotein cholesterol, triglycerides and apolipoprotein B.

• Our study was performed using data from general-population cohorts in which most participants had normal kidney

function, so our results reflect associations within the healthy range of kidney function.
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serum lipids and kidney-function markers, whilst minimiz-

ing the impact of reverse causality and confounding.15

Application of this approach in a recent study using 183

lipid-associated variants from the Global Lipids Genetics

Consortium (GLGC)16 and associations of these same

variants with eGFRcrea and UACR from a trans-ancestry

meta-analysis genome-wide association study (GWAS)17

estimated that each 1-standard-deviation (SD) genetically

predicted higher serum HDL-C caused 0.8% higher

eGFRcrea and 4.4% lower UACR, with relatively similar

causal estimates for LDL-C (0.5% and 3.8%) and TG

(0.5% and 4.7%).18 Subsequently to this study, new

genetic instruments for lipids have been discovered

(444 genetic instruments based on 331 368 samples19).

The lack of any beneficial effect of the HDL-C-raising

drug niacin on kidney function in a recent clinical trial20

challenges the previously reported causal association of

HDL-C. Further, there is a lack of MR studies examining

whether apolipoproteins may influence kidney function

or whether variation in kidney function influences

lipid and apolipoprotein levels. To obtain a clearer causal

understanding of the relationship between serum lipids

and apolipoproteins and kidney-function markers, we

performed univariable, multivariable and bidirectional

MR in population-based cohorts from the Trøndelag

Health Study (HUNT) in Norway and the UK

Biobank (UKBB).

Methods

Study populations

We included participants of European ancestry with

available genotype and phenotype data from the HUNT

and UKBB studies (Supplementary Figure 1, available

as Supplementary data at IJE online). HUNT is a series of

general health surveys of the adult population of Trøndelag

county, Norway.21 This study includes participants from the

HUNT2 (1995–1997) and HUNT3 (2006–2008) surveys.

Phenotypes available in HUNT included eGFRcrea, HDL-C,

TG and LDL-C (details in Supplementary Methods,

available as Supplementary data at IJE online). In UKBB, a

broader set of phenotypes was available, including

eGFRcrea, eGFRcys, UACR, HDL-C, TG, LDL-C, Apo A-I

and Apo B (details in Supplementary Methods, available as

Supplementary data at IJE online).

Instrument selection

Out of 444 genetic variants (Supplementary Table 1, avail-

able as Supplementary data at IJE online) that have shown

association with at least one of the lipid traits (HDL-C,

LDL-C and TG) at a GWAS significance level in analyses

of 331 368 participants in the GLGC,19 390 single-

nucleotide polymorphisms (SNPs) were available in

HUNT. Among the missing 54 SNPs, 11 were removed

during the harmonization and 43 have not been genotyped

or imputed into HUNT (Supplementary Table 2A, avail-

able as Supplementary data at IJE online) and we either

could not find any proxy SNP (as it was a rare variant) or

the effect sizes for possible proxy (in close-linkage disequi-

librium; LD) SNPs were not included in the reference

GWAS. Similarly, 390 variants were available in UKBB

and the remaining 54 variants were either missing or were

removed during harmonization (Supplementary Table 2B,

available as Supplementary data at IJE online). Out of 390

variants, as individual instruments for each lipid trait, we

selected 168 SNPs associated with LDL-C, 193 SNPs asso-

ciated with HDL-C and 172 SNPs associated with TG

(Supplementary Table 3, available as Supplementary data

at IJE online) at a GWAS significance level (P-value

<5�10–8). This lipid GWAS used an LD threshold of

r2< 0.2, which is considered quite liberal for selecting in-

dependent variants. Thus, to further confirm our findings,

we conducted sensitivity analyses applying a threshold of

r2< 0.001. The genetic variants associated with Apo A-I

(n¼ 440) and Apo B (n¼ 255) were identified

(Supplementary Table 4, available as Supplementary data

at IJE online) using a recent GWAS of these apolipopro-

teins from UKBB22 and all these variants were independent

based on r2< 0.001 using a reference panel of Europeans

from the 1000 genomes project. Respectively, 416 and 234

variants were available in the HUNT data set to examine

the causal associations of these apolipoproteins with

eGFRcrea.

To examine the causal effect of kidney-function

markers (eGFRcrea, eGFRcys and UACR) on serum lipids,

we obtained the marker-specific genome-wide significant

and independent genetic variants from recently published

GWASs. An instrument of 308 eGFRcrea-associated var-

iants (Supplementary Table 5, available as Supplementary

data at IJE online) was obtained from a recent CKD

trans-ancestry GWAS analysis of 1 046 070 individuals.17

Out of these, 307 and 303 were available in the HUNT

and UKBB, respectively. For eGFRcys, the 5 independent

variants (Supplementary Table 5, available as

Supplementary data at IJE online) were selected from the

CKD genetic consortium GWAS of 32 834 individuals

of European ancestry23 and 61 variants associated

with UACR (Supplementary Table 5, available as

Supplementary data at IJE online) were obtained using a

GWAS of 547 361 individuals of European ancestry

(including UKBB).24 All these variants were available in

HUNT and UKBB.
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Mendelian Randomization

For univariable MR (Figure 1A), the causal effects of lipid

fractions (using genetic variants associated with the lipid

trait under study as instruments) on eGFRcrea, eGFRcys

and UACR were estimated using inverse variance weighted

(IVW) MR implemented in the TwoSampleMR R pack-

age.25 Multivariable MR (Figure 1B) is an MR extension

analogous to assessing the effect of several treatments

independently in one randomized control trial.26 For this

method, the genetic instrument does not need to be exclu-

sively associated with a single risk factor, but with a set of

measured risk factors, although it must still satisfy equiva-

lent instrumental-variable assumptions.27 Thus, the

method can be applied for multiple genetic variants (not

necessarily related to every exposure in the model) and

several causally dependent or independent26 exposures in

an instrumental-variable analysis to disentangle the direct

causal effect of each risk factor included in the model. We

applied this method using all lipid-associated variants

(Figure 1B1; n¼ 390 for HUNT and UKBB) as instruments

to estimate the independent effects of LDL-C, HDL-C and

TG on kidney function, and all lipid- and apolipoprotein-

associated variants (n¼ 788) as instruments to additionally

estimate the independent effect of Apo A-I and Apo B

(Figure 1B2, although the latter analysis carries the risk of

bias due to sample overlap, as detailed below). Similarly,

multivariable MR was used to disentangle the independent

effect of each lipid exposure while controlling for genetic

predisposition to body mass index (BMI), hypertension

and type 2 diabetes in the model (instrument in

Supplementary Table 6, available as Supplementary data

at IJE online). The Apo A-I and Apo B instruments were

tested against eGFRcrea in HUNT participants and for all

three kidney markers in UKBB, although the latter analysis

could be biased due to complete sample overlap (analysis

summary outlined in Supplementary Table 7, available as

Supplementary data at IJE online) between exposure and

outcome data.28,29 Reverse-MR analysis (Figure 1C) was

performed to investigate whether renal function, as repre-

sented by eGFRcrea, eGFRcys and kidney damage as repre-

sented by UACR may influence lipid or apolipoprotein

traits (Supplementary Table 7, available as Supplementary

data at IJE online). In an additional analysis, multivariable

MR analysis (using 358 variants) was also used to assess

the causal effect of individual kidney markers on lipid

or apolipoprotein traits while controlling for the genetic pre-

disposition to the other kidney markers (Figure 1D, details

in Supplementary Methods and Supplementary Results,

available as Supplementary data at IJE online). As explained

in the Supplementary Methods, available as Supplementary

data at IJE online, we put less emphasis on that analysis, as

two of the kidney-function markers (eGFRcrea and

eGFRcys) are not independent risk factors, but rather two

ways of estimating the same underlying physiological trait,

GFR. Details of other sensitivity analyses including MR-

Egger, weighted median MR and MR with Steiger-filtering

are provided in the Supplementary Methods section, avail-

able as Supplementary data at IJE online. All causal esti-

mates represent the SD-unit change [with 95% confidence

interval (CI)] in the outcome per 1-SD increase in the expo-

sure, except for univariable MR estimates of causal effects

of eGFR, which are reported per 1-unit increase in log-

transformed eGFR. Random-effects meta-analysis was ap-

plied to calculate the combined MR estimates from HUNT

and UKBB. Heterogeneity of summary estimates was esti-

mated using Cochran’s Q test.

Results

Characteristics of the HUNT and UKBB study populations

are provided in Supplementary Table 8A and the strength

of the selected genetic instruments is provided in

Supplementary Table 8B and the Supplementary Results,

all available as Supplementary data at IJE online. The ob-

servational associations and phenotypic and genotypic cor-

relation of serum lipids and apolipoproteins with kidney-

function markers in HUNT and UKBB are presented in

Supplementary Figures 2 and 3, available as

Supplementary data at IJE online, respectively.

Associations of genetically predicted lipid
and apolipoprotein levels with kidney
function

Univariable MR

Genetically predicted higher LDL-C was not convincingly

associated with eGFR; eGFRcrea was 0.04 SD (95% CI: –

0.02, 0.10; P¼ 0.18) higher and eGFRcys was 0.03 SD

(95% CI: –0.02, 0.07; P¼ 0.22) higher per 1-SD higher ge-

netically predicted LDL-C (Figure 2 and Supplementary

Table 9A, available as Supplementary data at IJE online).

However, estimates for eGFRcrea differed between HUNT

and UKBB, with a stronger effect estimate of 0.07 SD

(95% CI: 0.04, 0.10; P¼ 1.3� 10–6) observed in UKBB.

There was a weak UACR increase of 0.03 SD (95% CI:

0.01, 0.05; P¼ 0.001) per 1-SD higher genetically pre-

dicted LDL-C.

Genetically predicted higher HDL-C was not strongly

associated with eGFR; a weak association of –0.04 SD

(95% CI: –0.06, –0.01; P¼0.02) eGFRcys per 1-SD higher

HDL-C was not supported by analysis of eGFRcrea
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Figure 1 Schematic presentation of (A) univariable; (B) multivariable (with three lipid traits as B1 and five lipid and apolipoprotein traits as B2); (C) re-

verse univariable; and (D) reverse multivariable Mendelian randomization. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein

cholesterol; TG, triglycerides; Apo A-I, apolipoprotein A-I; Apo B, apolipoprotein B; eGFRcrea, estimated glomerular-filtration rate based on creatinine

measurements; eGFRcys, estimated glomerular-filtration rate based on cystatin C measurements; UACR, urinary albumin-to-creatinine ratio; SNP,

single-nucleotide polymorphism; assoc., associated.
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Figure 2 Estimated causal effects of lipids and apolipoproteins on kidney-function markers using univariable and multivariable MR, presented as the

SD-unit change in kidney marker per genetically predicted 1-SD change in serum lipid and apolipoprotein levels. HDL-C, high-density lipoprotein

cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; Apo A-I, apolipoprotein A-I; Apo B, apolipoprotein B; eGFRcrea, estimated

glomerular-filtration rate based on creatinine measurements; eGFRcys, estimated glomerular-filtration rate based on cystatin C measurements;

UACR, urinary albumin-to-creatinine ratio; IVW, inverse variance-weighted Mendelian randomization; MVMR, multivariable MR; HUNT, Trøndelag

Health Study; UKBB, the UK Biobank.
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(–0.01 SD; 95% CI: –0.04, 0.02; P¼ 0.60) or UACR

(–0.01 SD; 95% CI: –0.02, 0.001; P¼ 0.08).

There was some evidence of a modest causal effect of

TG on eGFR; each 1-SD higher genetically predicted TG

increased eGFRcrea by 0.05 SD (95% CI: –0.02, 0.11;

P¼ 0.16) and eGFRcys by 0.07 SD (95% CI: 0.04, 0.10;

P¼ 1.8� 10–5). The estimate for eGFRcrea was stronger in

UKBB (0.08 SD; 95% CI: 0.05, 0.11; P¼ 7.2�10–9). Each

1-SD higher genetically predicted TG was also associated

with 0.04 SD (95% CI: 0.02, 0.06; P¼1.4� 10–5)

higher UACR.

Genetically predicted higher Apo A-I was associated

with increased eGFRcys (0.07 SD; 95% CI: 0.03, 0.11;

P¼ 0.0002), but not eGFRcrea and UACR. Genetically

predicted higher Apo B was weakly associated with higher

eGFRcrea (0.05 SD; 95% CI: –0.02, 0.11; P¼ 0.15), with

a stronger estimate in UKBB (0.08 SD; 95% CI: 0.05, 0.11;

P¼ 6.2� 10–8), where genetically predicted higher ApoB

was also associated with slightly higher eGFRcys (0.06 SD;

95% CI: 0.02, 0.10; P¼ 0.002) and UACR (0.03 SD; 95%

CI: 0.01, 0.05; P¼ 0.002).

Multivariable MR

The associations of genetically predicted LDL-C and TG

with kidney-function markers were similar in multivariable

as in univariable MR (Figure 2). In contrast to the

univariable MR analysis, multivariable MR showed a

weak positive association between genetically predicted

HDL-C and eGFRcrea (0.02 SD; 95% CI: 0.005, 0.03;

P¼ 0.005), without corresponding associations with

eGFRcys or UACR. Multivariable MR yielded little evi-

dence of associations between genetically predicted Apo A-

I and kidney-function markers. For genetically predicted

Apo B, the positive association with eGFR observed using

univariable MR was not seen in multivariable MR analy-

sis, except for a positive association with eGFRcrea in

HUNT (0.12 SD; 95% CI: 0.05, 0.19; P¼ 0.001) that we

did not observe in UKBB. The association between geneti-

cally predicted Apo B and UACR was similar in multivari-

able as in univariable MR.

Sensitivity analyses

Sensitivity analyses generally yielded similar estimates to

the main analysis, with little evidence of directional pleiot-

ropy (Supplementary Table 9A, available as

Supplementary data at IJE online). Sensitivity analyses us-

ing more independent SNPs (pruning for r2¼0.001) were

consistent with the main results (Supplementary Table 9B,

available as Supplementary data at IJE online). Although

the TG-increasing genetic risk score (GRS) (details in

Supplementary Methods, available as Supplementary data

at IJE online) was associated with BMI (Supplementary

Figure 4C_HUNT, available as Supplementary data at IJE

online), the associations of genetically predicted TG with

kidney-function markers were not attenuated after adjust-

ment for the genetic predisposition to higher BMI, hyper-

tension and type 2 diabetes (Supplementary Table 10,

available as Supplementary data at IJE online).

Associations of genetically predicted levels
of kidney-function markers with lipid and
apolipoprotein levels

Univariable MR analysis provided little evidence of effects

of kidney function measured by eGFRcrea or eGFRcys on

serum lipids or apolipoproteins (Figure 3). For example,

changes in lipids per 1-unit higher genetically predicted

log(eGFRcrea) were 0.09 SD (95% CI: –0.09, 0.27;

P¼ 0.34) for LDL-C, 0.03 SD (95% CI: –0.16, 0.22;

P¼ 0.73) for HDL-C, –0.12 SD (95% CI: –0.39, 0.15;

P¼ 0.38) for TG, 0.19 SD (95% CI: –0.06, 0.45; P¼ 0.14)

for Apo A-1 and 0.27 SD (95% CI: –0.03, 0.57; P¼ 0.08)

for Apo B (Figure 3). In general, sensitivity analyses yielded

similar results and there was little sign of directional pleiot-

ropy. However, there was some evidence of a causal role

of genetically raised eGFRcrea in reducing TG levels after

Steiger-filtering in sensitivity analysis (Supplementary

Table 11, available as Supplementary data at IJE online).

Genetically predicted higher UACR was associated with

increased LDL-C (0.16 SD; 95% CI: 0.06, 0.27;

P¼ 0.002), TG (0.22 SD; 95% CI: 0.03, 0.41; P¼ 0.02)

and Apo B (0.24 SD; 95% CI: 0.04, 0.44; P¼ 0.02), but

not HDL-C (–0.004 SD; 95% CI: –0.10, 0.09; P¼ 0.94)

and Apo A-I (0.10 SD; 95% CI: –0.03, 0.22; P¼ 0.13).

Findings from all sensitivity approaches were consistent in

direction and there was little sign of directional pleiotropy

(Supplementary Table 11, available as Supplementary data

at IJE online).

Discussion

In this MR study, we examined whether the previously

observed associations of serum lipid and apolipoprotein

levels with kidney-function markers may be causal.

Our meta-analysis of HUNT and UKBB yielded causal

estimates that are not compatible with serum lipids or

apolipoproteins having strong causal effects on kidney func-

tion, as indicated by eGFRcrea and eGFRcys. However,

there was some, but inconsistent, evidence that higher levels

of atherogenic lipids indicated by LDL-C, TG and Apo B

may weakly increase both eGFR (suggesting better kidney

function) and UACR (suggesting kidney stress or damage).
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Our reverse-MR analysis provided no clear evidence that

eGFR may influence lipid or apolipoprotein traits, but

processes leading to higher UACR may lead to more

atherogenic lipids including higher LDL-C, TG and Apo B.

A recent MR study by Lanktree et al.18 (with no sample

overlap with UKBB and HUNT) using 183 lipid instru-

ments explaining 8.9% variation in HDL-C concluded a

positive causal association of HDL-C with eGFRcrea in

both univariable and multivariable MR analyses, and a

negative association with UACR. However, another previ-

ous MR analysis with 68 ‘lead’ HDL-C-associated variants

(explaining 6.6% variation in HDL-C)30 along with our

findings using an improved lipid instrument (explaining

14.6% variation for HDL-C) does not provide convincing

support for a causal role of HDL-C on these kidney

markers. Our results for HDL-C differed between

eGFRcrea and eGFRcys, and between univariable and mul-

tivariable MR, but neither analysis suggested substantial

effects. Concordantly, results of a recent clinical trial of ni-

acin for improving eGFR20 also challenge the suggested ef-

fect of HDL-C on eGFR.

We obtained some evidence supporting weak causal

effects of higher LDL-C, TG and ApoB on higher eGFR.

These observations are compatible with the findings

reported by Lanktree et al.18 In line with our findings for

UACR, a recent Chinese study showed that each 1-mmol/

L increase in the genetically predicted TG increased the

risk of CKD by 5%.31 It seems unexpected that higher

levels of atherogenic lipids should both increase UACR

(which may indicate kidney stress or damage) and in-

crease glomerular filtration (which may be considered as

a sign of better kidney function). However, it is possible

that higher eGFR associated with atherogenic lipids

indicates glomerular hyperfiltration that may occur in

people with cardiometabolic conditions.32 Collectively,

these findings suggest a complex causal role of athero-

genic lipids in kidney function and disease that requires

further investigation.

Our reverse-MR analyses indicated no substantial

causal effects of eGFR on HDL-C and LDL-C. The main

analysis also did not indicate a causal effect of eGFR on

TG; however, there was some evidence for a causal role of

genetically raised eGFRcrea in reducing TG levels in both

HUNT and UKBB in the Steiger-filtered sensitivity analy-

sis. This finding is consistent with observational studies of

the association between eGFRcrea and TG.33–36 Consistently

with observational studies,13,14,37,38 we observed substantial

evidence for a causal effect of processes leading to higher

UACR in increasing levels of atherogenic lipids. Studies of

dyslipidemia in nephrotic syndrome, in which urinary albu-

min excretion is strongly increased,39 may be relevant for un-

derstanding these findings. Patients with nephrotic syndrome

have higher circulating levels of cholesterol, TG and Apo

B-containing lipoproteins, whereas the concentrations of

HDL-C and Apo A-containing lipoproteins are comparable

to those in healthy individuals.40,41 Impaired urinary clear-

ance, dysfunction of hepatic LDL receptors and hepatic lipase

may contribute to the dyslipidemia seen in this syndrome.42

The strengths of our study include the use of two large

data sets (UKBB and HUNT), updated genetic instruments

for lipid and apolipoprotein traits, inclusion of eGFRcys as

a superior alternative to eGFRcrea not influenced by

muscle mass,43 reverse MR for kidney-function markers vs

lipid and apolipoprotein traits, and a range of sensitivity-

analysis approaches including multivariable MR-Egger

and Steiger-filtered MR to increase the reliability of the

causal estimates. One limitation is that, when studying the

effects of multiple correlated exposures using multivariable

MR, use of SNPs that are associated with multiple

exposures can lead to exposures that are strongly predicted

individually but only weakly predicted by those SNPs

conditional upon the other exposures included and thus

leading to weak instrument bias.44 Another limitation of

multivariable MR is that the method can deal with ‘mea-

sured’ pleiotropic associations only and is unable to deal

with unmeasured or unknown counterparts. Multivariable

MR-Egger45 can address the pleiotropy, but the orientation

of the effect sizes is still a methodological challenge for this

approach. The non-fasting state of the lipid measurements

in both HUNT and UKBB may have influenced the TG

levels, but is unlikely to have substantially influenced our

estimates.46 Notably, the analysis was performed using

data sets representative of the general population (with

>90% of the subjects having normal kidney markers), so

the changes in lipids associated with advanced stages of

CKD cannot be answered by our study. We acknowledge

that HUNT is one of the study cohorts in the lipid GWAS

used here but it makes up 1.6% of the total sample and

thus cannot introduce substantial bias due to participant

overlap.28 For the UACR instrument, as UKBB contributes

a major share (79.7%) of the GWAS,24 the reverse-MR

results for UKBB may suffer from bias due to sample over-

lap,28,29 although comparable effect estimates from

HUNT (as an independent cohort) improve the reliability

of causal estimates from meta-analysis. Bias due to sample

overlap could also influence the Apo A-I and Apo B results

using both exposure and outcome information from

UKBB. The discrepancy between UKBB and HUNT esti-

mates for the associations of genetically predicted LDL-C

and TG with eGFRcrea was unexpected, but collider bias

due to low participation could have influenced the UKBB

results.47

Collectively, our MR estimates supported that serum

lipid and apolipoproteins levels do not cause substantial
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Figure 3 The inverse variance-weighted (IVW) estimated causal effects of kidney-function markers on lipid and apolipoprotein traits, indicated as the

SD-unit change in lipid and apolipoprotein traits per genetically predicted 1-SD change in UACR and per 1-unit change in log(eGFRcrea) or

log(eGFRcys). HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; Apo A-I, apolipoprotein A-I;

Apo B, apolipoprotein B; eGFRcrea, estimated glomerular-filtration rate based on creatinine measurements; eGFRcys, estimated glomerular-filtration

rate based on cystatin C measurements; UACR, urinary albumin-to-creatinine ratio; HUNT, Trøndelag Health Study; UKBB, the UK Biobank.
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changes in kidney function. The possible weak causal

effects of atherogenic lipids on higher eGFR and UACR

need further replication and understanding. For the reverse

causal direction, there was no consistent evidence that

eGFR may influence serum lipid or apolipoprotein levels,

but processes leading to higher UACR may cause an

increase in atherogenic lipids indicated by higher LDL-C,

TG and Apo B levels.

Supplementary data

Supplementary data are available at IJE online.
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