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Abstract

The study of complex systems has emerged as an important field with many discoveries still to 

be made. Computer simulation and visualization provide important tools for studying complex 

dynamics including chaos, solitons, and fractals, but available computing power has been a 

limiting factor. In this work, we describe a novel and highly efficient computing and visualization 

paradigm using a Web Graphics Library (WebGL 2.0) methodology along with our newly 

developed library (Abubu.js). Our approach harnesses the power of widely available and highly 

parallel graphics cards while maintaining ease of use by simplifying programming through hiding 

implementation details, running in a web browser without the need for compilation, and avoiding 

the use of plugins. At the same time, it allows for interactivity, such as changing parameter values 

on the fly, and its computing is so fast that zooming in on a region of a fractal like the Mandelbrot 

set can incur no delay despite having to recalculate values for the entire plane. We demonstrate 

our approach using a wide range of complex systems that display dynamics from fractals to 

standing and propagating waves in 1, 2 and 3 dimensions. We also include some models with 

instabilities that can lead to chaotic dynamics. For all the examples shown here we provide links to 

the codes for anyone to use, modify and further develop with other models. Overall, the enhanced 

visualization and computation capabilities provided by WebGL together with Abubu.js have great 

potential to facilitate new discoveries about complex systems.

1 Introduction

In the 1975 seminal book Fractals: From, Chance and Dimension [1], Benoit Mandelbrot, 

a Polish-born mathematician, initiated what would become a new geometry by defining 

objects with a non-integral dimension as fractals. Using this geometry, he was able to 

explain and describe mathematical objects that for a long time could not be described 

with “normal” Euclidean geometry, including lines with infinite kinks and other so-called 

pathological (monster) curves, such as Koch snowflakes [2]. While studying these objects, 

Mandelbrot was able to describe the geometry of nature and generated new scientific ways 
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to think about the formation of complex nonlinear structures that appear at many scales 

in biology, physiology, geology, physics, chemistry and astronomy, among many other 

fields. Fractal geometry, then, provides some of the essential tools to create and explain 

the generation of many complex objects and processes in nature [3, 4], from the formation 

of shells [5], ferns [6], corals [7] and other biological branching structures such as leaves, 

feathers, leaf venation, lung airways and vasculogenesis [8], to rivers and flow phenomena 

in rocks [9] as well as ice crystals [10], electrical discharges [11] and galaxies [12].

Mandelbrot’s study of fractals began at IBM’s T.J. Watson Research Center, where he 

received a single summer research offer in 1958 that eventually extended to a 35-year 

job. During the early 1960s, Mandelbrot worked on several computer applications, but 

particularly on stock market prices and long-term trends in economic data. In time, he 

found repeating patterns and power laws characterizing many features of society and nature 

that, while appearing complex, often could be generated by the repeated application of 

seemingly simple rules. One of the first applications of fractals was modeling the earth’s 

rough surfaces in video games. Instead of creating landscapes by hand, fractal landscapes 

could be generated relatively simply using stochastic algorithms such as fractional Brownian 

motion developed by Mandelbrot and Ness [13]. This algorithm also was the basis for 

developing “alien” landscapes that were first used in a movie (Star Trek II) in 1982. As 

fractals can be formed by iterations of mathematical operations, such as iterative nonlinear 

functions or maps [1], they also became prominent in the study of chaos [14].

Chaotic systems, first discovered by Edward Lorenz [15], are defined as nonlinear systems 

that can have well defined equations of motion, yet their long-term prediction is not possible 

due to their high sensitivity to initial conditions. So, although such systems in principle 

are deterministic, their behavior cannot be predicted [15]. These systems often display 

underlying patterns, periodic orbits, self-organization, and self-similarities reminiscent of 

fractals. Thus, while chaotic systems are described by differential equations such as 

reaction-diffusion systems [16], some of their dynamics can be approximated by iterative 

maps like the logistic map [17], which can lead to a period-doubling bifurcation and chaos.

Several fractals, such as the 1D Koch curve and the 2D Koch snowflake, Sierpinski triangle 

and square [14, 18], as well as chaotic maps such as the Henan, tent, Gaussian and many 

others [19], are relatively simple to iterate and calculate on a computer. However, there are 

other fractal and chaotic systems in 1D, 2D and 3D, especially those that describe complex 

patterns and interesting emerging behaviors, that can require many complex equations and 

a large number of iterations in time and space. So they are traditionally studied using 

supercomputers, which prevents broader access to these systems.

In this work, we demonstrate how to model and simulate interactively and in real time 

fractals, solitons and chaos using a library (Abubu.js) that we have developed [20] to solve 

large complex numerical problems in parallel. The library uses a Web Graphics Library 

(WebGL 2.0) methodology that accesses the computer’s graphics processing units (GPUs) 

via a web browser. GPUs have offered an alternative to CPU computing in recent years 

[21, 22]. In contrast to modern CPUs, which can have up to tens of computational cores, 

modern consumer GPUs can have a few thousand computational cores. This means that they 
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have up to a few hundred times more computational power packed into a small package. 

They are also significantly cheaper, typically costing only a very small fraction of the price 

of a supercomputer. The major problem with graphic cards so far has been the fact that 

their programming, including the main languages used to program them, is different from 

traditional CPUs. Also, developers have to spend a great deal of time programming and 

compiling their codes for various operating systems and for different GPUs within each of 

those operating systems. So, although programs run faster, development and code updates 

become difficult, making it hard to keep up with new hardware introduced into the market.

OpenGL was the first open-source language used to program GPUs [23, 24]. It was 

developed in 1992 by Silicon Graphics based on its proprietary library IRIS GL (Integrated 

Raster Imaging System Graphics Library), and while applications to the Mandelbrot and 

Julia sets were some of the first examples of scientific computing, it has been widely used 

for other more complex systems. OpenGL has continued to evolve with Vulkan released 

in 2016 considered as its next generation [25], but other platforms have been developed to 

access and program GPUs as well, such as OpenACC (a library to simplify parallelization 

on GPUs), OpenCL (a framework to write programs across heterogeneous platforms such as 

CPUs, GPUs, digital signal processors, and field-programmable gate arrays) and NVIDIA 

CUDA (a platform to write codes in Fortran or C++ for GPUs). Coding in GPUs has 

allowed the study of reaction-diffusion problems even on an Xbox 360 [26]; however the 

programming is not easy. The complexity of developing codes for the different languages 

and comparisons of their performances have been quantified for various complex systems 

including cardiac dynamics [27–29].

In 2011, WebGL, a cross-platform, royalty-free web standard for a low-level 3D graphics 

application programming interface (API) was released. It can render interactive 2D and 3D 

graphics that will run under any compatible web browser without the use of plugins. The 

browser is in charge of compiling and running the WebGL program at run-time for the 

particular operating system and graphic card used. Thus, if a developer writes a code, it can 

run on any current operating system and graphics card, limited only by the memory of the 

device. Furthermore, since the codes use HTML and JavaScript, WebGL codes can be highly 

interactive. This means that the users can see the effects of changing particular parameters 

in real-time without any required expertise in supercomputing. All the codes are distributed 

over the web, but they will run on the users’ computers. This is extremely useful, as users 

can upgrade their systems on their own to achieve better performance based on their budget 

and availability of new GPUs. WebGL has become a programming language to create very 

friendly programs that can run over the web for intensive 3D computing from molecular 

dynamics [30] and drug design [31] to other medical and clinical [32, 33] applications. 

However, the WebGL programming API has been geared towards expert developers who 

have computer graphics design interest at heart. Therefore, developing WebGL codes is a 

challenging task, requiring a very steep learning curve, for average scientific computing 

programmers. To overcome this challenge, we have developed a JavaScript library called 

Abubu.js [20] to significantly facilitate programming WebGL applications for programmers 

who are not experts in GPU computing. In this work, we present the simple steps necessary 

to develop the WebGL applications (with their respective links) that can be used by 

researchers, students and the general public to, interactively and in real time, investigate 
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the dynamics of several fractals, solitons and chaotic dynamical systems. For these systems, 

we illustrate some examples as a function of parameters that can give an idea of the richness 

of their dynamics.

2 Fractals

Mandelbrot’s term fractal is based on the Latin word fractus, meaning broken or fractured; 

he used it to create the concept of fractional dimensions and applied it to geometric 

patterns, particularly in nature. A fractal is mathematically defined as an object whose 

Hausdorff-Besicovitch dimension (a mathematical measure of roughness) exceeds its 

Lebesgue covering dimension (the topological dimension of a topological space) [34]. A 

simpler definition, however, is an object whose whole is made of parts that are similar 

in some way to the whole and are not finite geometric figures. Therefore, fractals exhibit 

unfolded symmetry, that is, similar patterns at increasingly small scales. Those fractals 

whose replication is exactly the same at all scales are called self-similar, such as the Koch 

snowflake in 2D and the Sierpinski pyramid and cube in 3D. However, fractals with various 

degrees of self-similarity provide additional interesting opportunities for study. Here, we 

present the programming procedure of developing WebGL applications for the Mandelbrot, 

Julia [35] and biomorphs [36] fractals using Abubu.js library.

2.1 Mandelbrot Set

The Mandelbrot set is defined using an iterative complex quadratic map:

zm + 1 = zm2 + c, (1)

where z and c are complex numbers and m is an integer indicating the iteration number. 

The number c is chosen as the coordinate of the points on the complex plane. Subsequently, 

z0 is chosen to be equal to c to initiate the iterative map. The points on the complex plane 

are said to be a member of the set if and only if the modulus of each member zi of the 

sequence remains bounded. When c = 1, for example, the sequence diverges, while the 

sequence remains bounded when c = −1 so that it belongs to the Mandelbrot set. Usually, the 

set is depicted by assigning a color to each complex value c tested according to whether the 

sequence remains bounded or, if not, how quickly it diverges. The interesting mathematical 

peculiarities of using complex numbers in iterative functions was first described by two 

pioneers of the field of complex systems, French mathematicians Pierre Fatou in 1906 

and Gaston Julia in 1918. The first visualization of the set was performed by Robert W. 

Brooks and Peter Matelski in 1978 [37], but Mandelbrot was the first to actually realize the 

complexity behind the set as he was able to study the parameter space with the computer 

power available at IBM and show for the first time the self-similarity of the set at different 

scales [38] in 1980. However, the main study of the set was not possible until 1984, 

when the availability of faster computers allowed Adrien Douady and John H. Hubbard 

[39] to show the recurrence of the basic shape with subtle differences through repeated 

magnifications; they named the complex quadratic polynomial set after Mandelbrot.

As it is necessary to carry out several hundred to several thousand iterations to determine 

if a point is a member of the set, even years after the discovery of recurring basic 
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shapes, it is still cumbersome using traditional computing resources to explore different 

regions of the set. However, this problem can significantly benefit from parallel processing. 

Each point can be processed completely independently of its neighbors, which makes it 

embarrassingly parallel. Traditionally, supercomputers were used to achieve parallelism. 

However, application of our GPU computing paradigm can be applied to harness the power 

of GPUs for exploring the fractals.

WebGL is a low-level programming language, which makes it difficult for non-expert users 

to program. In order to overcome this problem, we have developed a programming library 

that streamlines general-purpose GPU programming.

Our programming philosophy for GPU computing is to treat solution domains as images 

[21]. Each pixel of the image represents a computational point and each color can represent 

a quantity to compute. As such, images, which are usually referred to as textures, are an 

integral data structure in our programming paradigm. These data structures can be defined 

easily using our library. First, we define a texture that can be used as output in our parallel 

program to visualize the Mandelbrot set.

This single line of code defines a 512 × 512 single-precision texture named mcolors that can 

be used as input and output for our programs.

Abubu.js removes any complexities that are related to the WebGL application programming 

interface (API). At the heart of our codes are code snippets called vertex shaders that 

determine the coordinates of each pixel and codes called fragment shaders that color each 

pixel. They have a C-like syntax, which makes them easily understandable for typical 

programmers. The same snippet will run for all the pixels of an image in parallel on all the 

available cores of the GPU, which makes the codes inherently parallel.

Below is a vertex shader snippet that is common across almost all the applications that are 

presented in this work.
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The first line of the code tells the WebGL program that we comply with OpenGL version 

3.00. This line is optional when using Abubu.js. The code is commented for clarity and the 

C-like syntax should make it straightforward for most readers to follow the logic of the code. 

We would like to emphasize that in shaders, uniform variables are those that are defined 

uniformly for all the pixels. They are uploaded to the GPU from the JavaScript wrappers. We 

will subsequently explain how their upload is facilitated through our library. The variables 

declared with out identifiers will be calculated in the vertex shader and sent to the fragment 

shader for use. This vertex shader can be used without any modifications as a generic vertex 

shader in all our subsequent codes.

Now, we will focus on the fragment shader, which includes the main WebGL code for the 

Mandelbrot set.
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Most of the main body of this shader is simple and clear, although some parts may be new 

to C programmers. vec2 and vec4 data types represent two- and four-dimensional vectors. 

Each dimension is a single-precision float. We use the two-dimensional vectors for pixel 

coordinates and complex numbers and four-dimensional vectors for color calculations. Each 

dimension/channel of the vector can be accessed using .r, .g, .b, and .a or .x, .y, .z, and .a 

added to the vector instance to access channels 1–4 or to update them. We can also use 

z=vec2(<value 1>, <value 2>) to update both the first and second channels simultaneously. 

The logic of the problem is quite simple and it can be easily coded into a fragment shader.

The next step is where our library comes back into the picture to set up a program to 

use these shaders. The use of Abubu.js will remove most of the complexities of setting up 

programs, sending variables and running the program. Assuming that the source codes of the 

vertex and fragment shaders have been saved as simple strings into variables vertShader and 

compShader, we can set up our solver/program using the following wrapper.

This snippet of code creates a massively parallel program that can run on the GPU using the 

previously discussed shaders. The uniforms structure sends all the appropriate values to be 

used in the program to the GPU. For example, the following line of the above code:
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states that we want to upload a variable with value of 3.0 that is of type float (‘f’) into the 

variable escapeRadius in the fragment shader. It should be noted that these values could all 

be defined as constants in the shader, but uploading them in this way gives us a chance to 

update their values at run-time to make the application interactive.

To run the program, we simply call comp.render() in the JavaScript file. This simple 

command hides several layers of detail involved in running the components of a WebGL 

program in the appropriate order.

The next step is to visualize the solution, which can be carried out using another Abubu.js 

utility function:

This function will create a plotting program called disp that uses the red (‘r’) channel of the 

texture (mcolor) on the canvas element with ‘my_canvas’ id. Here, the ‘rainbowHotSpring’ 

colormap is used for visualizing the field. The minimum and maximum values of the data 

are set to 0. and 30.0, respectively. To run this program, simply call disp.render() and the 

field will be visualized on the canvas. This utility Plot2D simplifies visualization of the data 

structure, which is used in all the subsequent programs that are presented in this paper.

To make the program interactive, we calculate new bounds for the domain of interest using 

mouse clicks, scrolls and drags. Once the new values are calculated based on the interaction 

event, simply update the value for the GPU program through the following commands.

Using these simple commands, the values of the mentioned uniforms will be updated on the 

GPU and the subsequent render() call will use the updated values for running the WebGL 

program. The variable comp that was an instance of the Abubu.Solver class ensures that 

sending data to the GPU remains a simple task. To complete the updated solution, we 

call disp.render() one more time to refresh the results. To simplify this process, we use a 

recursive function as follows.

A single call to the run() function in the JavsaScript code keeps recalculating and plotting 

the results on the screen. If there are any interactions with the code, such as through the 
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mouse for zooming or panning, the updated values will be used in real time and the user will 

be able to see the results as a live simulation.

While for a program as simple as drawing a Mandelbrot set the level of abstraction as 

discussed in this section may not appear necessary to seasoned WebGL programmers, 

this process can be quite daunting for those whose primary interests and expertise are 

not in programming GPU applications and more in obtaining solutions for computational 

problems. Our library specifically is aimed at making it easier for non-specialists to create 

and use WebGL codes for problems that typically arise when studying fractals, solitons, 

chaos, or any other problems that may benefit from parallelization.

Fig. 1 shows the output of this application and how it can be used to quickly explore 

different regions of the Mandelbrot set.

The use of the GPU through WebGL makes the massive number of calculations needed to 

explore the Mandelbrot set at various resolutions significantly simpler. Instead of waiting 

5–6 seconds for the domain to be recalculated with each zoom, the calculations are carried 

out 60 times per second, which makes the calculation and interactions seamless.

2.2 Julia Set

At only 25 years old, Gaston Julia presented a detail study, in a seminal manuscript of 199 

pages [40], of iterations of complex numbers by a real function, and for which he received 

an Academie des Sciences (France) award. Julia sets, as they are known now, are defined as 

those complex numbers z for which the nth iterate of a rational function fn(Z) stays bounded 

as n tends to infinity. The Mandelbrot set may appear as a special case of these larger sets. 

The general form of the iterative formulation is

zm + 1 = zmn + c, (2)

where zs are complex numbers, c is a complex constant, m is the iteration number, and n is 

an integer constant. The map is initialized by setting z0 as the coordinate of the point on the 

complex plane; different sets are obtained by varying c and n. As in the Mandelbrot set, a 

point on the complex plane is defined to be part of the Julia set if the modulus of each iterate 

zi remains bounded or smaller than an escape radius. This set can be implemented in WebGL 

by making some minor modifications to the fragment shader that we presented earlier for the 

Mandelbrot set. The new shader is as follows.
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Here, we have added two new uniforms, r and alpha, which will represent the polar 

representation of the complex constant c = reiα in Eq. (2). We have added a graphical 

user interface to the WebGL app for changing the values of r and alpha and other uniforms 

interactively as well. Each time the user changes a value, the values of the corresponding 

uniforms are updated on the fly and the set is recalculated and plotted as was explained 

for the Mandelbrot set. To create the graphical interface, we use a standard JavaScript 

library called dat.GUI. Fig. 2 shows a screenshot of this application with its corresponding 

graphical user interface.

Fig. 3 shows how the quadratic Julia set morphs from one shape into another by interactively 

changing the complex constant c in Eq. (2). Readers are encouraged to run the program in 

their browser and explore different regions of the Julia set for themselves.

Fig. 4 shows an interactive study of the Julia set for various degrees of the polynomial and 

values of c in Eq. (2). The last row of the same figure shows examples from zooming and 

panning interactively to different regions of the set. With the escape radius for the last row 
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set to 40, biomorph shapes that resemble living organisms start to appear in different regions 

of the set. The patterns look similar to those observed in the biomorph set described next.

2.3 Biomorph set

Biomorphs are fractals that are intended to resemble living organisms. They were introduced 

in 1986 by Pickover [36], who originally found them accidentally as a bug in a code 

intended to calculate approximations of the Julia sets. Mathematically, they are another 

class of iterative sets that have been used to simulate evolution of unicellular organisms 

with internal structures [41, 42]. Generalizations of the Julia set and further modifications 

of the biomorph algorithm and implementations of different iteration methods have been 

performed by Gdawiec et al. [43]. Here, we use the following iteration

zm + 1 = αsin zm + βzmn + γezm + δzm
zm + ϵz0 + x + iy, (3)

where z is a complex number; m is an integer indicating the iteration step; n is an integer 

constant; α, β, γ, δ, x, and y are real constants; and z0 is the initial value of z corresponding 

to the coordinates of the points on the complex plane. A point is a member of the set if and 

only if both the real and imaginary parts of z remain smaller than a certain bound. Moreover, 

to color these sets, instead of considering the modulus of z like the Mandelbrot and Julia 

sets, we only use the signs of the imaginary and real parts when z escapes the applied escape 

value, resulting in the use of at most four colors. The corresponding fragment shader for 

calculating the biomorphs set is as follows.
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The above code implements the biomorph set update step in a logical and readable way, as 

WebGL allows for the use of macros and functions in shader codes. The use of our library 

enables us to concentrate our effort on designing the above shader as the wrapping part, and 

interaction with the GPU is simplified through Abubu.js.

Using the above shader together with Abubu.js library, we were able to create an interactive 

WebGL program to produce the fractals observed in Fig. 5.

Fig. 6 shows that it is easy to lose the details of the fractal structures when convergence is 

not achieved. It is more probable to overlook the convergence issues when the computational 

cost is very high. However, by using WebGL it is easy to achieve converged solutions 

without any noticeable decline in performance.

3 From solitons to chaos

Solitons are defined as wave packets that maintain their shape as they propagate. They tend 

to appear as solutions for a large range of partial differential equations and in nature were 

first described by John Scott Russell in the 1830’s while observing solitary waves in the 

Union Canal in Scotland [44, 45]. Solitons can have several characteristics depending on 

the systems they describe. Some solitons can pass through each other after a collision, as 

in elastic or water waves, while others can annihilate with each other, as in excitable media 

such as fire and neuronal and cardiac tissue. The dynamics of solitons can vary as well; for 

example, “dispersive systems ” will have a velocity dependence as a function of frequency, 

while others can have constant velocities or even a velocity of zero, becoming standing 

waves such as in Turing patterns [46]. When solitons interact in two and three dimensions, 

they can also lead to complex pattern formations and chaotic dynamics [47]. In the next 

section, we describe some WebGL implementations to simulate and study different types of 

wave dynamics in one, two and three spatial dimensions.
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3.1 One-dimensional systems

One of the most famous systems that produces solitons is the FitzHugh-Nagumo model [48], 

a two-variable model that describes a generic excitable medium and that was introduced as 

a simplified neuronal model. This model was first derived from a Van der Pol relaxation 

oscillator [8, 49] by Fitzhugh [50] to model a system that accounted for a fixed point 

that can be either stable, resulting in an excitable system, or unstable, resulting in an 

auto-oscillatory system, depending on the model parameters. About the same time, Nagumo 

et al. [51] derived a similar model as a simplification of the Hodgkin-Huxley [52] axon 

nerve model and simulated its propagation using an array of transistors in 1D. Thus, the 

model is now commonly known as Fitzhugh-Nagumo model for excitable media. The model 

can be written in several equivalent ways, with one of the most common ways being:

∂u
∂t = ∇ ⋅ (D∇u) + u(1 − u)(u − a) − v;

∂v
∂t = ϵ(bu − v + δ) .

(4)

Here, the cubic term in u has three roots, 0, a and 1. So, the value of the u variable that 

represents the voltage is scaled around 0 and 1 and a acts as the threshold for excitation. ϵ is 

the relative ratio of time scales for the u and v processes; as its value is in general considered 

to be less than 1, the u dynamics is much faster than the v dynamics as ϵ goes to zero. D is 

the diffusion coefficient for the u variable that diffuses in space. Diffusion also can be added 

to v when the model is used to simulate chemical media [47, 53].

This model can be used to represent the membrane potential changes, known as action 

potentials, induced in cardiac cells and neurons as a result of stimulation (external or self) 

[54]. The model is also capable of generating propagating excitation waves in space [51]. 

For example, Fig. 7 shows a solitary wave generated by the FitzHugh-Nagumo model 

for different parameter sets that can alter the wavelength. In this case, periodic boundary 

conditions are used to create a ring geometry. The top row shows time-space plots of the fast 

variable u that represents the membrane voltage, with waves propagating rightward; as the 

excitation threshold value of a is decreased, the excitability of the system increases, leading 

to increased velocity and wavelength. The slope of the wavefront in the figure indicate the 

velocity, with steeper slopes representing faster propagation. The bottom row shows the 

variables u (red) and v (green) as a function of time for a fixed location on the ring. Again, 

as a is decreased, the wavelength increases, and the slow variable v also takes longer to 

recover. With our WebGL implementation and Abubu.js library, it is simple to vary the 

parameter slowly over time to study their effect on the solution behaviour without the need 

to run separate simulations/studies with predefined fixed parameter values, as shown in Fig. 

7.

Along with simple wave propagation [51], interactions between waves can be studied 

by interacting with the mouse and generating new activations and waves using WebGL. 

Reaction-diffusion systems can also display new emerging behavior as the system dimension 

increases. For example, cardiac cells are known to undergo a period-doubling bifurcation 
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when stimulated at very fast periods [55,56] that is known to be proarrhythmic [57]. As 

the period of stiumlation is increased, the dynamics progress from having identical action 

potentials every beat to a state called alternans in which the action potentials alternate in 

duration between long and short. The bifurcation parameter is thus the period of stimulation: 

shorter periods provide less time for recovery, which leads to the instability. Alternans 

in tissue can become even more complicated because the speed of wave propagation can 

also depend on the recovery time. Thus, it is possible for the wavelength of a wave 

to change between long and short while it is propagating. This phenomenon has been 

observed experimentally in cardiac tissue [58, 59] and has been explained theoretically and 

numerically [60, 61]. Fig. 8 shows examples of propagating waves and the development of 

alternans using the three-variable Fenton-Karma (FK) model [62] in a domain with periodic 

boundary conditions using a WebGL program. Time-space plots in the top row correspond to 

the plots in the bottom row of state variables (voltage: red; fast inward current inactivation 

gate: green; slow inward current inactivation gate: blue) over time at a fixed location at the 

center of the domain. In Fig. 8A-B, no alternans occurs. Fig. 8C-D shows the development 

of alternans with a small but noticeable transition in wavelength (long to short or short to 

long) as each wave propagates. The alternans is even more pronounced in Fig. 8E-F.

3.2 Two-dimensional systems

In two dimensions, new types of waves can be studied depending on the type of system. 

In this section, we show the dynamics of solitons that can interfere when they cross, as in 

elastic media, as well as solitons that annihilate, as in excitable media.

In 1746, d’Alembert wrote the wave equation for one-dimensional systems [64]; a few 

years later in 1766 Leonard Euler wrote the multi-dimensional version [65]. The d’Alembert 

equation in space is given by

∂2u
∂t2 = c2∇2u, (5)

where c is the propagation speed of the wave and u represents the wave signal. For 

simulations, the wave equation can be writen as two first-order differential equations as 

follows:

∂v
∂t = c2∇2u,

∂u
∂t = v,

(6)

where v is the time derivative of u. This formulation has only first-order derivatives of time 

and is more straightforward to solve numerically. We use the Euler time-stepping scheme to 

update v and the Verlet time-stepping scheme to update u. We will use the wave equation to 

demonstrate the methodology to use the Abubu.js library to solve time-marching problems.

Eq. (6) has two state variables, namely u and v, which we assign to the red and green 

channels of image data structures to form the time-marching code. We use the following 

fragment shader.
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This fragment shader uses a new uniform variable of the type sampler2D, which is the 

image/texture data structure that contains the information about the current time step. Each 

fragment (or pixel) in the shader has access to all the pixels of this data structure. Accessing 

the pixel values of this texture is facilitated by the use of the texture function, which accepts 

a sampler2D variable and vec2 variable as the position of the desired pixel. The variable 

pixPos is calculated in the vertex shader, which is identical to that of the fractals. Several 

calls to the texture function appear in the fragment shader to make the calculation of the 

Laplacian operator using a fourth-order central scheme possible. To maintain a high level of 

accuracy in this simulation, we have also included the diagonal directions in the calculation 

of the Laplacian. Therefore, we are using a 17-point stencil to calculate the Laplacian. After 

time-stepping is updated using the Euler and Verlet schemes, the updated values of u and 

v are packed again in the red and green channels to color a new texture. To avoid typical 

problems that may arise for a shared memory parallel application, such as competition for 

data, WebGL does not allow the same texture to be both the input and the output of the same 

shader. Therefore, to create the application that can update the solution of the wave equation, 

at least two textures are needed. Assuming a 512×512 computational grid, the following 

JavaScript calls to Abubu.js are used to create the necessary textures.

Assuming that the source code for the vertex shader and the above mentioned fragment 

shader are stored as strings in variables vertShader and waveShader, a WebGL program 

can be defined that receives fuv as the input texture and writes suv as its output texture as 

follows.
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The above snippet of code automatically defines a program named wave_1 and sets inUv 

in the fragment shader to the texture fuv. When the program is executed by calling 

wave_1.render(), the rendered colors will be stored in the suv texture. Similar to the fractal 

programs, this program will be also massively parallel by automatically utilizing the GPU 

cores to update several pixels each time step. In order to update the solution from suv into 

fuv for another time step, the following program is defined.

The above program is identical to wave_1 except that the roles of the textures fuv and 

suv are swapped in this program. Executing wave_1 and wave_2 sequentially will result in 

updating the solution for two time steps and marching the solution from fuv to suv and then 

back into fuv. This has the potential of creating a marching loop without the need to use 

fuv or suv as both input and output textures at the same time in any time step. Assuming 

similar to the Mandelbrot program disp that visualization is used to plot the red channel of 

fuv texture, we can finalize the time marching loop as follows.

Calling the above function once results in an infinite loop that will keep marching the 

solution for two time steps and then updating the color plot of the displacement field. Since 

most modern screens update at 60Hz frequency, the plotting step becomes the bottleneck 

of the solution by allowing only for 120 steps per second of wall time. To overcome this 

bottleneck, the above function can be modified as follows.

This implementation updates the solution for ns time steps before attempting to visualize the 

solution. By changing the variable ns, either through the main code, or through the graphical 
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interface, the simulation speed can be controlled. Fig. 9 shows the result of running this 

program from a circular initiated disturbance at the center of the domain.

Reaction-diffusion systems can support the formation of complex Turing patterns [46]. One 

of the most widely used models to study pattern formation in animal fur and skin is the 

Gray-Scott model [66, 67], which can be formulated as

∂u
∂t = Du∇2u + f(1 − u) − uv2;

∂v
∂t = Dv∇2v − (f + k)v + uv2;

(7)

where u and v are the state variables, f and k are often referred to as feeding and killing 

rates, and Du and Dv are the diffusion coefficients of u and v, respectively. In different 

parameter regimes, the system can display a broad range of different dynamics. Fig. 10 

shows examples of six different dynamics exhibited by the Gray-Scott model, including 

spots, stripes/labyrinths, spiral waves, and chaos.

Other reaction-diffusion systems similarly can form stable patterns. For example, Liu et al. 
[68] suggested the following formulation.

∂u
∂t = Dδ∇2u + αu + v − r2uv − αr3uv2

∂v
∂t = δ∇2v + γu + βv + r2uv + αr3uv2

(8)

This equation was implemented in WebGL, which can be found here, and reproduces the 

spotted fur/skin patterns observed on fish and other animals such as leopards.

Excitable systems like the FitzHugh-Nagumo model also exhibit new emergent behavior in 

two dimensions, with the most dramatic being spiral waves, which exhibit a large range of 

dynamics [69–71] and which have been also observed in experiments in chemical systems 

[72] and cardiac tissue [73, 74] among many others. A single spiral wave can be initiated 

by breaking the symmetry of a propagating wave; in experiments and in simulations this 

typically is accomplished using a cross-field stimulation protocol [75]. Numerically, this can 

be done by initiating a plane wave from one boundary and, once it has reached the center 

of the domain, launching a plane wave at a 90-degree angle to the receding wave back. 

Most reaction-diffusion models have a range of parameter settings for which spiral waves 

are possible. Fig. 11 shows an example of a spiral wave initiated using the Barkley model 

[76], which is formulated as follows.

∂u
∂t = D∇2 + u(1 − u)(u − v − b

a )
∂v
∂t = ϵ(u − v)

(9)

Four different values of parameter a, which affects the wavelength, were used in Fig. 11. 

Thus, spiral arms can be spaced relatively far from each other or may be packed close 
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together. This model has parameter regimes defined by only two parameters that can be 

used to obtain no spiral waves, spiral waves with different type of trajectory (circular, 

epicycloidal, cycloidal, hypocycloidal) [76] that can be simulated with the WebGL program.

Spiral waves can trace out different patterns as they rotate depending on the excitability 

and wavelength [77]. In Fig. 12, we use the FK model [63] to show six different types of 

trajectories that spiral waves can follow, including circles (A), inward petals (epicycloidal) 

(B), translating petals (cycloidal) (C), outward petals (hypocycloidal) (D), a complex non­

repeating pattern (hypermeandering) (E), and precessing lines (F). The trajectories were 

obtained interactively by modifying parameter values on the fly. In particular, by reducing 

the system’s excitability through increasing the time constant of the excitability parameter 

τfi, the system reduces its excitability (as it takes longer to excite), which promotes the 

development of outward-petal and then circular trajectories that grows in diameter as the 

excitability is decreased. Upon further decreases in excitability, a spiral wave will reach 

an infinite core radius of rotation with zero rotational frequency [78, 79] (equivalent to a 

propagating broken pulse) and then becomes retracting waves until excitations can no longer 

propagate [80].

Fig. 12 shows cases where the spiral wave remains stable; however, it is also possible for 

spiral waves to become unstable and break apart into multiple spiral waves through a large 

number of mechanisms [63]. The new waves may be short- or long-lived depending on 

factors like the model structure, parameter values, domain size, and boundary conditions; 

collectively, they can be classified as arising from several different mechanisms. For 

example, action potential alternans in 2D can break spiral waves far from the core for 

circular trajectory spiral waves [81] and close to the core for hypermeandering spiral 

waves [82]. A decrease in temperature can elongate wavelengths and increase alternans, 

thereby facilitating breakup [83, 84]. In addition, boundary conditions [63] and gradients in 

physiological parameters [85] can induce breakup.

Fig. 13 shows examples of dynamics associated with three mechanisms of spiral wave 

breakup [63] using the FK model. Along with snapshots at particular times, our WebGL 

implementation allows interaction with the system by adding regions of stimulation using 

the mouse and by changing model parameters on the fly. There are also easy visualization 

alternatives like that depicted in Fig. 14, which shows on the left two types of spiral wave 

dynamics (stable and breakup) and on the right the same simulation but only for one spatial 

dimension vs time. Plots B and D show space in the horizontal axis and time on the vertical 

axis. Thus, the right panels represent a view at the horizontal mid-plane cross-sections 

through the three-dimensional time series. Here, this view allows for simpler interpretation 

of the single spiral wave with waves propagating with the same velocity alternating between 

right and left from the center. For the breakup case, it is possible to see initiation of waves 

at different points other than the center of the tissue, with some waves very short-lived and 

clear oscillations in wavelength characteristic of alternans.

While so far we have shown the power of simulations in WebGL using relatively simple 

models, it is possible to simulate much more complex models fast enough that they can run 

at speeds near real time [20]. Here, we show an example of simulations in 2D of what is 
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currently considered the most realistic and accurate human ventricular model to date, the 

OVVR model [86]. This model is now being considered as the standard for testing and 

evaluating drug safety by the FDA under a recently sponsored Cardiac Safety Research 

Consortium initiative (CiPA) [87, 88] that specifies the use of mathematical models of 

cardiac cells to aid in pro-arrhythmic drug risk assessment. The OVVR model simulated 

here consists of 41 differential equations and hundreds of parameters for just a single cell. 

Using an NVIDIA Titan-V graphic card, our WebGL programs developed using Abubu.js 

can solve over 42 billion ODEs per second. This means that for a 512×512 domain, it is 

possible to march this model for 400 ms in only 1 second of wall-time! This implies at 

the moment our WebGL programs can operate close to real time even for a complex model 

such as the OVVR model. This speed will allow researchers and students without access 

to supercomputers to be able to simulate and study this model as a function of parameters 

and the effects of simulated drugs. Simulations of the OVVR model in Fig. 15 show several 

frames of a spiral wave rotating in a regime where the sodium conductance is enhanced by a 

factor of 2 and the L-type calcium current is blocked by 55%. This leads to self activations 

occurring on the backs of the waves known as early afterdepolarizations (EADs), which 

have recently been shown for the first time to appear on the high curvature of the wave back 

[20].

3.3 Three-dimensional systems

One important characteristic of complex systems is that there is often emerging behavior 

in their dynamics as the system increases in dimensionality. For example, 2D spiral waves 

in excitable systems become scroll waves in 3D, which can become unstable by various 

mechanisms. As another example,; gradients in temperature (or physiological properties) can 

create sporing in a vortex filament that can cause it to elongate and create new filaments 

upon collision with a boundary [89]. Similar elongation of vortex filaments can be induced 

by local twist due to fiber rotation [62, 90] or, in the low excitable i limit (due to low oxygen 

or hypoxia), by negative tension [91].

We demonstrate the use of WebGL in simulations of 3D interactive chaotic systems by 

modeling ventricular fibrillation in rabbit ventricles using the parsimonious three-variable 

rabbit cardiac cell model of Gray and Pathmanathan [92]. While the model is stable in 2D, 

it breaks into multiple waves when simulated in the 3D rabbit ventricles. Fig. 16 shows 

two snapshots of scroll wave breakup at two different times including transparent views 

of the same episode that allow visualization of the complexity in waves intramurally. The 

Gray-Pathmanathan model consists of a sodium current and a potassium current as follows.

∂V m
∂t = D∇2V m − INa + IK /Cm;

INa = gNam3ℎ V − ENa ;

IK = gKe−b u − EK u − EK

(10)

In here, m and h are gating variables of the Hodgkin-Huxley [52] type that follow a simple 

formulation of
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dm
dt = m∞ − m

τm
,

dℎ
dt = ℎ∞ − ℎ

τℎ
.

(11)

Here, m∞and ℎ∞are the steady states of the gating variables as a function of voltage and the 

τs are time constants for each gate defined as below.

m∞ = 1
1 + e V − Em /km

ℎ∞ = 1
1 + e V − Eℎ /kℎ

τm = 0.12
τℎ = 2tℎ0eδℎ u − Eℎ /kℎℎ∞

(12)

In this model, gNa = 11mS/μF, ENa = 65mV, EK = −83mV, Em = −41mV, km = −4mV, Eh = 

−74.9mV, kh = 4.4mV, τℎ
0= 6.80738ms, δh = 0.799163, gK = 0.3mS/μF, and b = 0.047mV−1.

4 Limitations

We have presented here a methodology to use WebGL to solve interactively and in real time 

models for complex systems, with examples of fractals, wave dynamics, wave patterns and 

chaotic dynamics. It is important, however, to mention two current limitations of WebGL. So 

far only single precision has been implemented in WebGL 1.0 and 2.0; therefore, problems 

that require double precision may not be adequately solved under this methodology at this 

time. The second limitation is that WebGL will only run on a single GPU; if multiple GPUs 

are required for a given application [93–95], other solutions such as NVIDIA CUDA and 

WebGL could be used together [33].

5 Summary and conclusion

Complexity and nonlinear dynamics have become some of the best tools we have to 

investigate many processes in nature [96]. For example, they have been very valuable in 

the study and underestanding of cardiac arrhythmias [97–104]. Simulations of these complex 

systems can be very daunting, as biological models can sometimes require tens of variables 

and hundreds of parameters to describe their physiological dynamics. There have been 

previous efforts to develop software that can be run by computational non-experts to study 

cardiac and neuronal dynamics [105, 106]; however, they could be used only for relatively 

simple models. In this paper, we have described a novel use of WebGL and our library 

Abubu.js to allow fast simulations of complex nonlinear systems such as fractals, which 

can be studied with seamless instantaneous zooming and panning, and real-time (or near 

real-time) simulations of solitons and chaotic dynamics for a broad range of time-dependent 

systems. Along with fast calculations, our approach includes integrated visualization and 

interactivity, including support for changing parameters on the fly and other interactions 
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with the simulation such as external pacing. In addition, the Abubu.js library greatly 

simplifies programming for WebGL so that even novice programmers can easily modify 

existing programs to extend them or code new models.

Our work builds on previous efforts for simple programs with embedded visualization 

and/or interactivity [105, 107, 108] but is updated to exploit widely available hardware 

while removing barriers to programming to allow simulation of even large domains and 

complex models at fast speeds. We have successfully tested the codes presented here on a 

variety of devices, including desktops under Windows and Linux with GPUs (from NVIDIA 

GTX-970 and up), 2017 MacBook Pro (with Intel Iris Plus 460 GPU), 2015 MacBook 

Pro (with AMD Radeon R9 M370X GPU) and Galaxy phones from S7 to S9, using both 

Chrome and Firefox browsers. On desktops the programs are able to solve up to 40 billion 

differential equations per second (wall time) and on cell phones up to 1.4 billion. Thus, our 

implementation greatly extends access to detailed simulations using only moderate graphics 

cards rather than expensive supercomputers. Accordingly, researchers, students, and the 

general public should be able to use our programs to study chaos, solitons and fractals in 

more detail with hardware standard on most desktop computers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Visualizing the Mandelbrot set. The files to regenerate these figures are included in the 

supplementary material. Panel A shows the overall outline of the Mandelbrot set. Panels 

B and C show self-similar copies of the set along the real axis. Panels D, E, and F show 

different branches of the Mandelbrot set away from the real axis.
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Figure 2: 
The Julia set WebGL application in use with the interactive graphical user interface.
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Figure 3: 
Interactively changing the complex constant c in the quadratic Julia set. c = reiα. In panels 

A to F, the (r, a) tuple is interactively set to (1.36, π), (0.28, 0.03), (0.869, 2.554), (0.773, 

2.647), (0.77, 3.02), and (0.75,1.87).
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Figure 4: 
Interactive study of the Julia set for various polynomial degrees and c values. To reproduce 

panels A-H, we set n to 2, 3, 4, 5, 10, 13, 16, and 19, c to 0.82e2.95i 0.77e1.66i 0.79e1.53i 

0.79e1.81i 0.84e2.02i 0.84e2.02i 0.84e2.02i and 0.8713e2.0247i respectively. To produce panels 

I-L, we set n =15 and c = 1.035e2 02i. Panel I is the overall view of the set and panels J-L 

are achieved by interactively zooming and panning to different regions of the same set. The 

input files to reproduce all the panels are included in the supplementary material.
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Figure 5: 
Various visualizations of the biomorph set using different parameters. In panel A, α = β = γ 
= ϵ = x0 = y0 = 0 and δ = n = 1.0. In panel B, we change x0 = 9.72 × 10−3 and y0 = 1–18 × 

10−3. In panel C, minor changes to x0 = 1.10 × 10−2 and y0 = 1.14 × 10−3 produce the fine 

details that are observed. Panel D is obtained by setting α = 1., x0 = 0.669, and y0 = 0.2297. 

Panel E is obtained by setting α = γ = ϵ = x0 = y0 = 0, β = 1 and n = 3, which transforms 

into panel F by increasing x0 into 0.4, and then into panel G when y0 is increased to 3.4 × 
10−3. Panel H is obtained by setting α = β = γ = 0, α = n =1, x0 = 0.5 and y0 = 0.077. Panel 

I is obtained by setting α = γ = ϵ = 0, β = δ = 1, n = 4, x0 = 1.5 and y0 = 0.3. Panel J is 

obtained by setting α = ϵ = 0, β = δ = 1, γ = −2, x0 = 1.5548 and y0 = 0.366. Panel K is 

obtained by setting α = β = ϵ = ϵ = x0 = y0 = 0, and γ = n = 1, which transforms into panel 

L is by setting x0 = −.535 and y0 = 0.043.
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Figure 6: 
Convergence can be easily achieved and no details need to be lost. The parameters in panels 

A and B are identical to Fig. 5H; here, we zoom into the spiral section of the fractal. Panels 

A and B use 300 and 1000 iterations, respectively.
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Figure 7: 
Solitary propagating diffusive waves for the FitzHugh-Nagumo model in a domain with 

periodic boundary conditions. Top row: time-space plots indicating waves of u propagating 

rightward; periodic boundaries are at the left and right edges. Bottom row: u and v at a fixed 

location at the center of the domain over time. Parameter a was slowly changed from 0.3 to 

0.2 and 0.15 from A to C and D to F.
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Figure 8: 
Three-variable minimal model: occurrence of alternans can be easily studied by using 

interactive simulations. From A to C, we set the domain size interactively to 8cm, 7.5cm, 

and 6.0cm. A single activation is initiated on the lower boundary and periodic boundary 

conditions are used after ensuring a single unidirectionally propagating wave. As the domain 

size becomes smaller, alternans start to form. We use parameter “set 4” from Fenton et al. 
[63].
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Figure 9: 
Simulation of the wave equation on a 512×512 domain. A circular wave is initiated at the 

center of the domain that propagates away from the center and and interacts with rigid 

boundaries. Note how symmetry is maintained for the long duration of the simulations, 

which attests to the stability and reliability of the library. The simulation was completed in 

less than 3 minutes on an NVIDIA Titan-V GPU and required solving more than 1.57 × 1012 

differential equations.
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Figure 10: 
Different patterns can be observed using the Gray-Scott model. (A) Alpha waves: Du = 0.21, 

Dv = 0.11, f = 0.01, k = 0.047; (B) Beta waves: Du = 0.2097, Dv = 0.105, f = 0.014, k = 

0.039. (C) Gamma waves: Du = 0.2097, Dv = 0.105, f = 0.022, k = 0.051. (D) Turing dots: 

Du = 0.2097, Dv = 0.105, f = 0.03, k = 0.055. (E) Attracting spirals: Du = 0.2097, Dv = 

0.105, f = 0.01, k = 0.041. (F) Soap bubbles: Du = 0.2097, Dv = 0.105, f = 0.09, k = 0.059.
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Figure 11: 
Spiral wave in the Barkley model initiated when the parameters of the Eq. (9) were set to 

a = 0.5, b = 0.04, and ϵ = 0.02 (panel A). Then, parameter a of the model was slowly and 

interactively changed to 0.8, 1.0, and 1.2 from B to D. Note how the wavelength increases as 

a is increased.
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Figure 12: 
Spiral wave trajectories in the three-variable Fenton-Karma model [63] can be reproduced 

with ease by changing model parameters interactively. Panels A to D were obtained by 

initiating a spiral wave starting with parameter “set 1” in reference [63]. From A to D, 

the time constant τd was gradually decreased and set to 0.42, 0.40, 0.389, and 0.38, to 

obtain circular, epicycloidal, cycloidal, and hypocylcoidal trajectories, respectively. The 

hypermeandering trajectory in panel E was obtained by using parameter “set 10” from the 

reference [63] and the linear trajectory in panel F was obtained using parameter “set 2” of 

the same reference.
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Figure 13: 
Breakup arising from a number of mechanisms can be easily modeled using the three­

variable Fenton-Karma model [63] using WebGL. Parameter sets 4, 5, and 9 of reference 

[63] were used to obtain panels A, B, and C, respectively.
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Figure 14: 
Spiral wave dynamics using the three-variable Fenton-Karma model [63]. (A) A circular 

core spiral wave is initiated using parameter “set 1” of reference [63]. (B) Activations 

along the horizontal mid-plane in the domain for the same spiral wave. The solitary waves 

propagate to the left and right as a result of the spiral wave activity. (C) Breakup pattern 

using parameter “set 3” of reference [62]. (D) Horizontal mid-plane activity through time. A 

drastic change in the mid-plane activity is observed that no longer conforms to the solitary 

wave generation that was earlier observed.
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Figure 15: 
EADs in the OVVR model obtained by enhancing the sodium current by a factor of 2 and 

blocking the L-type calcium current by 55%. The figure shows a time-lapse sequence over a 

160 ms period on a 512×512 domain. The figure shows a spiral wave rotating clockwise 

that is continuously destabilized by activations that appear in the highly curved back 

section of the wave. This section, while in principle highly refractory, allows activations 

to continuously propagate.The time lapse requires solving at least 17 billion ODEs, which 
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was carried out in 400 ms of wall-time on an NVIDIA Titan-V GPU using our WebGL 

program.

Kaboudian et al. Page 42

Chaos Solitons Fractals. Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 16: 
Three-dimensional simulation of fibrillation in rabbit ventricles using the Gray­

Pathnamathan model. Panels A and B show two different instances of scroll-wave activity on 

the surface of the ventricular structure. C and D show the same cases with transparency to 

allow details of the scroll waves within the structure to be seen using Abubu.js.
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