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Abstract

Introduction: Teaching dermatology to medical students entails a series of lectures, pictures, 

and hands-on skin examinations to convey a sense of skin features and textures, often by use of 

simulated skin models. However, such methods can often lack accurate visual and tactile texture 

representation of skin lesions. To facilitate learning, we have developed a smartphone-based skin 

simulation model, which provides a configurable visual and tactile sense of a lesion by using the 

ubiquitous availability of smartphone-based mobile platforms.

Methods: A polydimethylsiloxane (PDMS) overlay was used as a configurable translucent 

elastomer material to model the stiffness and texture of skin. A novel custom smartphone-based 

app was developed to capture images of various skin lesions, which were subsequently displayed 

on a tablet or second smartphone, over which the PDMS model skin elastomer was placed. Using 

the local Bluetooth connection between mobile devices, an iterative feedback algorithm corrected 

the visual distortion caused by the optical scattering of the translucent elastomer, enabling better 

virtual visualization of the lesion.

Results: The developed smartphone-based app corrected the distortion of images projected 

through the simulated skin elastomer. Surface topography of the developed PDMS elastomer 

provided a more accurate representation of skin texture.

Conclusions: In this investigation, we developed a smartphone-based skin lesion visualization 

app with a simulated skin elastomer for training/education in not only dermatology but also all 

general medical specialties that examine the skin. This technique has the potential to advance the 

educational experience by giving students the ability to see, touch, and feel pragmatic skin textures 

and lesions.
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Teaching dermatology to medical students or primary care physicians still necessitates 

presenting sets of photographs, conducting a series of lectures, and hands-on skin training 

models to comprehend the visual appearance and texture of skin lesions. Physicians in 

the clinic encounter a mixed population of patients having common and/or rare skin 

conditions and lesions. Educators in primary care and surgery have also found insufficient 

skin simulation material.1 Improvement in dermatology education is critical as most of the 

current teaching modes are lacking. Plausibly, this is one of the likely rationales for the 

misdiagnosis of skin pathologies by primary care physicians. Developing an appropriate 

evaluative technique before examining patients will reduce diagnostic errors and improve 

patient treatment outcomes and prognosis.2–5 An extensive amount of investigation has 

led to the development of skin simulation models. Of the many simulation models, 3D 

silicone models have led to a significant improvement in diagnostic outcomes and have 

enhanced knowledge among medical students, when compared with a 2D photographic 

method.6 Commercially available simulated tissue phantoms such as SurgiReal Products, 

Inc, Colorado, have simulated tissue with dermal lesions, having moles and skin tags to 

demonstrate surface and topographic features for dermatology training programs.7 However, 

simulated phantoms are opaque and do not always provide accurate color information, 

limiting their utility for accurately representing skin lesions, moles, or tags.

There is rising interest among medical educators to use a mobile-based platform for 

teaching. Virtual simulation methods are of significant interest among medical schools in 

the United States,8 and students find this to be beneficial for integrating clinical knowledge.9 

A 3D virtual reality–based method was recently developed, wherein 2D still camera images 

of a lesion were used to generate a 3D surface image based on a model and passive stereo 

photogrammetry.10 This generated a 3D image that can be zoomed in and panned and 

can be viewed at different angles. Furthermore, several app-based learning methods for 

analyzing skin lesions have also been developed.11 These mobile applications can determine 

whether the mole is normal or abnormal based on fractal patterns of the skin or based on 

telemedicine where an image of a mole is sent to a dermatologist for evaluation. Unlike 

the previously mentioned image-based analysis, a haptic device model has been developed 

to convert a captured 2D image into a virtual 3D image. This could be felt using a haptic 

device. This enables the user to both visualize and feel the skin texture, such as roughness, 

simultaneously.12,13

For all of the previously mentioned approaches, the learning method either involves 

visualization of photographs or simulated tissue models, which either lack the feel of surface 

topography, or are opaque. In this regard, we investigated the development of a model with 

equitable surface topography but also with optical properties that enable visualization of skin 

lesion images. Polydimethylsiloxane (PDMS) was used to develop a skin simulation model 

because of its translucent nature and its moldable properties for mimicking surface texture 

and topography of skin and skin lesions. However, as a result of the surface texture, the 
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underlying transmitted image is optically distorted. A custom iterative algorithm, written 

as an application for the Android operating system, enabled correction of some of these 

distortions, including color distortion, resulting in a training model having both visual 

representation and surface topography of skin and skin lesions. The resulting technology 

potentiates a new mobile and configurable dermatology teaching platform for medical 

students and physicians.

METHODS

Development of PDMS Elastomer-Based Skin Model

We developed a PDMS elastomer-based skin model to depict accurate features, topography, 

and textures of skin, including elevated skin tags, moles, and lesions. The PDMS elastomer 

was developed as a cast, using a commercially available simulated skin elastomer (SurgiReal 

Products, Inc, Colorado) to first create a mold, shown in Figure 1A. To accurately derive 

the features, a paraffin mold of the simulated elastomer was first generated (Fig. 1B). The 

elastomer and curing agent (Sylgard 184, in a ratio of 7:1) were thoroughly mixed for 5 

minutes and placed inside a vacuum desiccator for 15 minutes to eliminate any air bubbles. 

This PDMS mixture was then poured into the paraffin-based mold and allowed to set at 

room temperature according to the manufacturer’s instructions. The cured PDMS elastomer 

cast [7 cm (x) × 6.5 cm (y) × 1 cm (z)] had a tactile representation of skin texture and 

topography of elevated moles, as shown in Fig. 1C. The PDMS elastomer was then used as 

a semitransparent skin model that was placed over the screen of a smartphone (Fig. 1D), 

which was used to display various images of acquired skin and skin lesions. Together, this 

combination platform was used to provide both a realistic tactile and visual sense of a skin 

lesion.

Development of SkinSimulator App

The semitransparent simulated skin elastomer placed over the screen of a smartphone or 

tablet provided a textured and topographic surface to simulate the feel of skin and skin 

lesions. However, the image displayed on the smartphone (or tablet) and visualized through 

the elastomer skin model was distorted because of the optical scattering properties of the 

elastomer. To compensate for the feature and color distortion caused by the elastomer, 

we developed an Android-based app called “SkinSimulator,” which corrected the optical 

distortions by adjusting the image sharpness, contrast, and color using an iterative feedback 

loop. Figure 2 illustrates the sequence of using the smartphone-based skin simulation model. 

The Android program was written in the Java platform (Android SDK) and 2 smartphones 

(Google Pixel 2) were used for this study. One of the smartphones (Master) was used to 

display the color skin image, and the other smartphone (Capture) was used to capture the 

distorted image of the skin displayed on the Master phone with the elastomer overlay. The 

distortion was then iteratively corrected by the Bluetooth-linked Capture smartphone, which 

was positioned over the Master phone, while adjustments were made to the brightness 

and contrast of the image projected on the Master phone. This enabled better virtual 

visualization of the skin and lesion, while providing a textured, biomechanically appropriate 

tactile representation of the skin and lesion.
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RESULTS

Characterization of PDMS Skin Elastomer

Optical and surface characterization of the PDMS elastomer was done using spectral-

domain optical coherence tomography (OCT), an optical imaging technique that provides 

noninvasive images of surface topography and cross-sectional images of scattering tissues, 

such as skin,14 as well as scattering materials, such as the elastomer.15 Imaging was done 

using a custom-developed 1310-nm OCT system over a region of approximately 10 mm 

(x) × 10 mm (y) × 3 mm (z).16 The OCT system had an axial and lateral resolution of 

approximately 6 μm and approximately 16 μm, respectively. Figure 3 (first column) shows 

the digital image of the silicone and PDMS elastomers, whereas the second column shows 

cross-sectional OCT images of each. The silicone elastomer shows more scattering (brighter 

signal) in depth, whereas the PDMS elastomer shows largely only the surface interface, with 

low scattering interior due to the optical semitransparency of the PDMS material. The third 

and fourth columns show the maximum intensity projections of both elastomers and show 

similar surface topography between the silicone elastomer and the PDMS elastomer cast.

Assessment of Developed Skin Simulator Model

To demonstrate the practicality of the developed simulation methodology, skin images 

with different textural, topographic, and pathologic features such as pyogenic granuloma, 

superficial basal cell carcinoma, cutaneous horn with squamous cell carcinoma, and 

seborrheic keratosis were displayed on the Master smartphone. A PDMS elastomer was 

then placed over the Master smartphone, and the visualized images through the elastomer 

were expectedly distorted. By regulating the brightness, contrast, and color through iterative 

feedback, the developed algorithm was able to accurately correct the distortion. Figure 4 

shows the results after the distorted images were corrected using the iterative feedback 

algorithm. Figures 4A, C, and D show the image correction with a uniform (flat surface) 

elastomer, and Figures 4B and E show the correction with a nonuniform (elevated 

topography) surface of the elastomer. A mean square error (MSE) metric was obtained 

from a region of interest (ROI, square box) to compare the image sharpness between the 

original image and the distorted/corrected one. The corrected image had a low MSE value, 

compared with the original image, indicating improvement after distortion correction. To 

further validate the improvement, a histogram plot was obtained from the uniform and 

nonuniform regions in Figure 4. Figures 5A and B correspond to the ROI shown in Figures 

4B and E. The developed algorithm had corrected the distortion, which is evident from both 

the histogram profile and the visual appearance of the corrected image.

DISCUSSION

The development and practical use of a simulated skin model will play a key role in 

introducing dermatology to medical students as well as educating and training them with 

various examples of dermatopathology.17 Given the unmet need for the development of a 

realistic skin simulator model, our approach using a smartphone-based imaging algorithm 

coupled with a semitransparent or translucent PDMS elastomer overlay to represent skin 

texture and topography provides a novel simulator and a means to teach dermatology 
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physical examination skills to medical students and healthcare providers. Importantly, this 

new technology and methodology will enable a more realistic feel of skin and clinical skin 

conditions, along with projected and corrected images that can be acquired immediately 

from patients, or downloaded from skin lesion databases with a smartphone or tablet. In 

the future, this smartphone or tablet-based skin simulator technique could provide new 

point-of-care training for students.

For decades, several materials and skin models have been used to train medical students. 

However, most have been developed after trial and error and are often research specific. 

The simulation-based surgical training methods can be of immense help in acquiring and 

maintaining surgical skills in safe environments without incurring any human health risk.18 

However, they do not always provide accurate and true representation of skin biomechanics, 

texture/topography, and visual appearance for these needs.19

Interactive real-time skin simulation based on finite element solutions is also of interest, as 

these can provide accurate visualization of skin but fail to provide a real tactile perception of 

skin texture.20,21 In contrast, our approach offers the potential to provide both a visual and 

tactile representation of skin conditions. In this study, our developed algorithm corrected the 

distortion induced by the scattering properties of the semitransparent elastomer and closely 

displayed the features, sharpness, contrast, and color of the original image. Nevertheless, 

this technique also depends on how well the original image was captured, as our correction 

algorithm uses the original image as a reference target.

Spatial augmented reality (SAR)–based techniques provide a unique way of health 

care training as they project textures and augment stationary objects.22 A multitouch 

detection platform for interacting on a human head-shaped surface directly with the fingers 

provides hands-on touch-sensitive health care training.23 Similarly, a physical-virtual patient 

simulator has been developed, which combines the tangible object with a virtual patient 

and exhibits a wide range of multisensory cues.24 Haptic-based softness perception in SAR 

has also been developed, which visually manipulates the sense of softness by pushing 

a soft physical object.25 These technologies hold promise in the future and can also be 

potential methods to teach dermatology to students and practitioners. Although there has 

been a report on a mobile-based SAR system,26 most SAR systems are bulky and require 

complex components. On the other hand, our technology is simple and compact in nature 

and provides an alternative way of learning. Although our current elastomer is static and 

is limited in the types of lesions that it can represent, there is the potential for this static 

elastomer to be replaced by a programmable elastomer in the future.

Despite the noted advantages, the present study has some limitations. The topographical 

features of the developed PDMS elastomer are based on the molding of the skin phantom, 

and each elastomer overlay is designed specifically for only one type of skin color and 

skin condition. Although skin color can be adjusted by doping the elastomer material with 

different particles, this will also alter the transparency of the material, thereby affecting the 

color and presentation of the displayed imaging. It should also be possible to alter the skin 

color of the displayed image. Further studies are needed to optimize this trade-off between 

skin color representation and elastomer transparency. In the future, we plan to also explore 
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lead zirconate titanate–based piezoelectric material–based actuated approaches,27,28 which 

will change the shape, texture, or topography of the elastomer based on applied voltages, 

and which could be co-registered with the displayed image pixels. To create an elevated 

lesion such as a mole, or any depth-based structure, it may be possible to incorporate 

OCT imaging or histology images of skin from our library and feed these metrics into 

the electroactive polymer to create a simulated elevated mole in the elastomer. Similarly, 

a soft, low-cost, pneumatic, or hydraulic-based elastomer approach could be an alternative 

for a reconfigurable, programmable elastomer.29,30 Other image correction and enhancement 

methods can also be explored, including deconvolution-based approaches to correct out-of-

focus images displayed over the smartphone.31 In the future, we will incorporate this model 

in the IOS platform.
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FIGURE 1. 
Development of a PDMS elastomer skin overlay. A, Photograph of a commercially available 

nontransparent silicone-based elastomer. B, Photograph of the simulated PDMS skin 

elastomer and paraffin mold. C, Photograph of the thin, translucent, stretchable PDMS skin 

elastomer showing representation of skin texture and elevated skin features such as moles 

and skin tags. D, Application of the simulated skin PDMS elastomer placed on a smartphone 

screen to simulate both the tactile nature and visual appearance of skin lesions.
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FIGURE 2. 
Illustration of the smartphone-based skin simulation model. An original digital image of a 

skin lesion visualized through the semitransparent elastomer will be distorted. The distortion 

is corrected through an iterative feedback algorithm, which simultaneously corrects the 

color, contrast, and intensity, until the corrected visualized image closely matches the image 

characteristics of the skin and lesion in the original digital image.
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FIGURE 3. 
Characterization of a simulated PDMS skin elastomer. The top row shows cross-sectional 

and surface topography of the silicone elastomer skin model. The bottom row shows cross-

sectional and surface topography of the fabricated semitransparent PDMS elastomer. The 

solid line boxes highlight the raised topography imaged with OCT and shown in the second 

and fourth columns, from the left. The dotted line boxes indicate the flat regions of the 

elastomers that were imaged with OCT and shown in the third column from the left. Scale 

bars represent 500 μm.
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FIGURE 4. 
Representative images showing displayed, distorted, and corrected images of various skin 

conditions. A, Superficial basal cell carcinoma. B, Seborrheic keratosis. C, Cutaneous 

horn with squamous cell carcinoma. D, Pyogenic granuloma. E, Psoriasis. An MSE was 

calculated for the ROIs shown by the square dotted boxes.
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FIGURE 5. 
Histogram plots of the displayed, distorted, and corrected images from uniform and 

nonuniform surfaces. A, Corresponds to Figure 4B. B, Corresponds to Figure 4E. The plots 

were generated based on the pixel values within the ROI.
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