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Abstract

Sensor technology plays an important role in modern information and intelligence. The accuracy 

of sensor measurement becomes more challenging in complex working environment. In this paper, 

we studied relationship between output frequency difference data and corresponding loading 

pressure in SAW (Surface Acoustic Wave) micro-pressure sensor. Then using frequency difference 

as input and pressure as output, we construct BP (Back Propagation) neural network which is 

trained using experimental data and used to predict output pressure of the sensor. We also calculate 

error with actual loading pressure, same in the least squares method commonly used. Through 

multiple comparisons of same set of sample data in overall and local accuracy of predicted results, 

we verified that the output error predicted by BP neural network is much smaller than least squares 

method. For example, one set of data is only about 2.9%. It provided a new method for data 

analysis in SAW micro-pressure sensor.
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1. Introduction

SAW micro-pressure sensor is a new type of sensor that combines surface acoustic 

wave technology, thin film technology and electronic technology [1]. It can sense micro­

pressure according to the sensitive component, generate the change of frequency and 

realize the measurement of micro-pressure, which has high precision, quasi-digital output, 

miniaturization, strong anti-interference ability, wireless passive, multi-parameter sensitivity 

and good structural process [2–3]. SAW micro-pressure sensors are increasingly applied in 
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multiple fields [4–5]. Therefore, the demand for performance is also increasing. However, 

measurement accuracy is the core parameter of the sensor [6], which directly reflects the its 

performance. The improvement of accuracy is not only reflected in the process of designing 

the sensor itself, but also by choosing the appropriate algorithm to fit the relationship 

between the variables of sensor.

To select the appropriate algorithm to fit the relationship between sensor variables, 

researchers have applied the least squares method to establish a linear regression model and 

plot the fitting curve of frequency and pressure. Least squares solution is readily available 

using numerical linear algebra, however the prediction performance accuracy can be further 

improved.

According to the previously studies, delayed linear SAW micro-pressure sensor has high 

sensitivity, good stability, passive and expandable wireless functions [7]. This paper 

proposed the BP neural network to model the relationship between the micro-pressure and 

the frequency difference of the sensor. After tuning the learning rate, convergence speed and 

system stability, we made predictions on the sample points, and compared the overall and 

local error of the BP neural network with the least squares method. Results demonstrated the 

superior prediction performance the BP neural network over the least squares method.

2. Related work

The linear regression model has been used to obtain the functional relationship in various 

sensor fields [8]. Akhlaq M and Sheltami T R etc used the least squares method to estimate 

the offset and skewness of communication time in wireless sensor networks, and they also 

implemented a more accurate global time synchronization with compensation algorithm [9]. 

Sun Lei obtained the noise parameters by the least squares method for the spectral sensor, 

which solved the problem of noise estimation in hyperspectral remote sensing images [10].

However, linear regression is based on the angular analysis of the linear relationship 

between variables [11]. Least squares method is used to investigate the relationship between 

the input and output variables of SAW micro-pressure sensor, which may have a large 

predictive error. Extrapolation outside the range of sample points leads to large errors in 

practical applications. Multi-layer feed forward neural network allows nonlinearity in the 

relationship and finds more applications than linear regression analysis. For the response 

prediction of multiple fiber optic pH sensors, Suah FBM and Ahmad M etc. analyzed the 

input and output variables of the sensor through a BP neural network model, and predicted 

the pH value of the unknown buffer solution with higher accuracy [12]. F, Wang L etc. used 

BP neural network to process the signals collected by the acceleration sensor in the WBAN 

(Wireless Body Area Network) and applied to the recognition of the human body posture, 

which has a great improvement in the recognition rate [13]. BP neural network is widely 

used to model the relationship between variables from the above sensors, found general 

applicability and high reliability.

The main principle of surface acoustic wave micro-pressure sensor is to use the SAW 

technology theory and the performance of piezoelectric materials to experiment with passive 
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wireless transmission functions. The SAW micro-pressure sensor is mainly composed of two 

interdigital transducers, a piezoelectric substrate, a metal base, and wires [14]. The working 

mechanism is: when the surface piezoelectric material of the SAW micro-pressure sensor 

is subject to an external force, the stress at each point of the material changes. Through 

the nonlinear elastic behavior of piezoelectric material, the elastic constants and densities of 

materials change with the external forces, forcing the surface wave velocity of the acoustic 

surface to change [15]. Meanwhile, after the piezoelectric material is subject to an external 

force, the structural size of the surface acoustic wave device is changed, resulting in a 

change in the wavelength of the surface acoustic wave. Thus, the speed of propagation and 

the change in wavelength together cause a change in frequency. The size of the external 

force can be measured by the frequency of the piezoelectric material [16]. In this paper, the 

BP neural network is applied to model the relationship between the micro-pressure and the 

frequency difference of the SAW micro-pressure sensor.

3. BP neural network training sample data

3.1. Data measurement

According to the characteristics of the SAW micro-pressure sensor, a testing platform was 

established in the laboratory to analyze the functional relationship between the input and 

output parameters. In this experiment, a network analyzer was used to test three different 

sizes of previously-designed SAW micro-pressure sensors. The testing scheme was shown in 

Fig. 1. The network analyzer in (a) connected the input and output wires to the testing base 

in (b). The base was composed of circuit modules, which connected the pins of the SAW 

micro-pressure sensor to establish the path between the sensor and network analyzer.

The loading force of the SAW micro-pressure sensor ranges from 0 g to 20 g. In order 

to realize the simulation of the loading force of the micro-pressure sensor in practical 

application, the loading force is exerted on the center line of the surface of the substrate, 

and the weights of the corresponding mass are added according to the magnitude of the 

exerted loading force. The initial value is 0 g, with 2 g added each time, and the maximal 

loading force is 20 g. The value of the loading force and the corresponding difference of the 

frequency of the SAW micro-pressure sensor are recorded. Multiple simulations performed 

on the same SAW micro-pressure sensor must have the same experimental conditions, 

especially temperature. At the same time, increasing the number of testing can enrich 

the sample capacity, and the derivation of the conversion relationship between the output 

frequency difference and the loading force of the SAW micro-pressure sensor is more 

accurate. Since the SAW micro-pressure sensor’s parameters read by the network analyzer 

are dynamic, the maximum and minimum output frequency of the same substrate under the 

same loading force need to select a relatively stable value. Then, after 10 measurements, the 

average is taken. Finally, get the frequency difference signal. The testing data are showed in 

Table1.

3.2. Network training

The essence of BP neural network is multi-layer feedforward neural network [17], which 

is fitted using the steepest descent method and its variants. It is highly adaptive and can 
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directly learn and store a large number of input–output mapping relationships. It is suitable 

for solving various intrinsic complex problems and can adapt to complex nonlinear mapping. 

Based on the sample data, the relationship between data is summarized in the output 

layer. The weights and thresholds of each layer are continuously adjusted and modified by 

back-propagation to bring the error between the output result and the expected value down to 

less than a preset value [18].

BP neural network is suitable for analyzing sample data of SAW micro-pressure sensors. 

The model topology of the BP neural network consists of the output Layer, the input Layer, 

and the hidden Layer [19]. Fig. 2 shows the basic model of a typical three-layer BP neural 

network.

In the forward propagation process of BP neural network, Pmeans the input information 

and Q represents the output information in each layer. The corresponding connection weight 

between the input layer and the hidden layer is Wih. The corresponding connection weight 

between the hidden layer and output layer is Who. The threshold of inner neurons in the 

hidden layer is represented byKm and the activation function isf (.). The threshold of inner 

neurons in the output layer is represented byKnand the activation function isg(.). The input 

information of input layer I is the amount of frequency variation when the sensor is under 

load and also the input information of the entire network.

It is the same as the output information of the input layer and can be expressed as:

Pi = Qi = Δf1, Δf2, Δf3, ⋯, ΔfA (1)

The input and output information of the hidden layerHare the set of frequency variation:

Piℎ = ∑
i = 1

A
W iℎ × Qi − Km ℎ = 1, 2, …, B (2)

Qℎ = f Piℎ ℎ = 1, 2, …, B (3)

Through the weight coefficient of the frequency variation between the input layer and the 

hidden layer and the relationship with the threshold, the output of the hidden layer is 

obtained. That is the input of the output layer. According to the basic principle of BP neural 

work, set the weight coefficient and the threshold [20].

Similarly, the input and output information of output layer O are:

Pℎo = ∑
ℎ = 1

B
W ℎoQℎ − Kn 0 = 1, 2, …, C (4)

Qo = g Pℎo o = 1, 2, …, C (5)
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Similarly, in this process, the output layer output is obtained by the weight coefficient of the 

frequency variation between the hidden layer and the output layer and the relationship with 

the threshold. That is the entire output of the network.

On the basis of the actual testing data of the SAW micro-pressure sensor, we select a total of 

10 nodes in the loading range of 0–20 g. That is, the number of training sample m is equal 

to 10. So let the desired output d of the network structure equal to (d1, d2, d3, ···, dC). The 

actual output is Fo = Qo = (F1, F2, F3, ···, FC).

Where the output parameter F0 of the output layer is the load force of the sensor.

The error function E of the entire network can be expressed as:

E = 1
2 ∑

o = 1

C
do − Fo

2
(6)

During the back propagation of the error signal, the network derives the steepest descent 

direction, so that after weight each update the actual output of the network approaches the 

expected output. Therefore, it is necessary to solve the error value from the output of each 

layer with neurons network.

The local error signal for output layer O is defined as:

δo = − ∂E
∂Pℎo

= − ∂E
∂Fo

∂Fo
∂Pℎo

(7)

According to formulas (4) and (6), we can get:

∂E
∂Fo

= − ∑
o = 1

C
do − Fo (8)

∂Fo
∂Pℎo

= g′ Pℎo (9)

The local error signal of the output layer O can be expressed as:

δo = g′ Pℎo ∑
o = 1

C
do − Fo (10)

The local error signal of hidden layer H is defined as:

δℎ = − ∂E
∂Piℎ

= − ∂E
∂Qℎ

∂Qℎ
∂Piℎ

(11)

Li et al. Page 5

Measurement (Lond). Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



From the formula (3), (6), we can get:

∂E
∂Qℎ

= ∂
∂Qℎ

[1
2 ∑

o = 1

C
do − Fo

2] = − ∑
o = 1

C
do − Fo

∂Fo
∂Qℎ

(12)

∂Fo
∂Qℎ

= ∂Fo
∂Pℎo

∂Pℎo
∂Qℎ

= g′ Pℎo W ℎo (13)

Therefore, the local error signal of hidden layer H can be expressed as:

δℎ = − ∂E
∂Piℎ

= g′ Pℎo W ℎaf′ Piℎ ∑
o = 1

C
do − Fo = δoW ℎaf′ Piℎ (14)

Adjust the weight of BP neural network of neurons in each layer. According to error 

gradient descent method, the positive direction of the weight modified method is equal to 

the negative direction of error gradient. That is to say: there is a positive correlation between 

the negative gradient of the error and the modified amount of the weight. According to the 

formula (5), (9), (12), the modified formula of the weight of the hidden layer H and output 

layer O, can be respectively represented as:

ΔW ℎo = − η ∂E
∂W ℎo

= − η ∂E
∂Pℎo

∂Pℎo
∂W ℎo

= ηδoQℎ (15)

ΔW iℎ = − η ∂E
∂W iℎ

= − η ∂E
∂Piℎ

∂Piℎ
∂W iℎ

= ηδℎQi = ηQiδoW ℎof′ Piℎ (16)

where η > 0 is the learning rate. The weight modified amount iterates and updates the BP 

neural network, the weight update formula of which is as follows:

W ℎo(n + 1) = W ℎo(n) + ΔW ℎo (17)

W iℎ(n + 1) = W iℎ(n) + ΔW iℎ (18)

where Who(n + 1), Wih(n + 1) represent the modified value of each layer of neurons in 

the (n + 1)th iteration. Who(n) and Wih(n)represent the modified value of each layer of 

neurons in the n-th iteration calculation. Due to the continuous forward-propagation and 

back-propagation of signal, the weight and threshold are modified multiple times. When the 

error of the output result is reduced in the desired range, or the number of training steps 

meets the anticipation, finishing the learning process.
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4. Fitting analysis

4.1. Least squares method for solving linear regression model

This paper sets experimental data sample (Fi, Δf i,i = 1, 2...n) according to the previous 

linear regression analysis. Based on the results of previous studies, let n be equal to six. The 

mathematical model between the input and the output parameters of SAW micro-pressure 

sensor can be expressed as:

Fi = k0 + k1Δfi + k2Δfi
2 + k3Δfi

3 + k4Δfi
4 + k5Δfi

5 + k6Δfi
6 (19)

Using the least squares method to solve the unknown parameters inside the model can 

be calculated in an easier way. Minimizing the sum of the squares of the errors between 

these calculated parameters and the actual parameters can reach the lowest value within 

the range of sample data [21]. Further, we can obtain the regression coefficient k0 - k6. 

Using Polyfit function in MATLAB to achieve it and calculating the average value obtained 

by multiple measurements of the sample data, the fitted curve of the loading force and 

frequency difference of the SAW micro-pressure sensor is shown in Fig. 3.

The red hollow points represent the experimental data of the frequency difference and 

pressure in the coordinate system. And the blue segment is the fitted polynomial curve. The 

red hollow points in the figure are distributed around the curve. The more accurate fitting 

curve can be obtained.

4.2. Training and prediction of BP neural network

The calculation of BP neural network runs through the entire path from the input layer 

to the output layer. The training step size of the network is the core link in the model 

fitting process. The larger the step size, the faster convergence rate; otherwise, oscillation 

can happen, resulting slower convergence. In order to prevent the network from falling 

into the local optimal solution prematurely, we add a “Momentum Item” while setting the 

number of training steps reasonably. According to the connection weight update theory of 

the weight adjustment amount iterating and updating BP neural network, the momentum 

term is expressed as:

W ℎo(n + 1) = W ℎo(n) + ΔW ℎo + α W ℎo(n) − W ℎo(n − 1) (20)

W iℎ(n + 1) = W iℎ(n) + ΔW iℎ + α W iℎ(n) − W iℎ(n − 1) (21)

where the term including parameter α in the formula is the momentum term. In the process 

of weight correction, the momentum term can introduce stability, which accelerates the rate 

of error back propagation under standard conditions. And α is the smoothing factor. The 

value range is 0 < α < 1.

According to the actual data measured in the testing data of SAW micro-pressure sensor, 

select the more stable and regular data as the training sample. The sample input is the 

frequency variationΔf of the output signal of the SAW micro-pressure sensor. The sample 
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output target value is the external micro-pressure F carried by the sensor. Therefore, the 

curve represents the two-dimensional graph with point coordinates, which is (Δf, F). The 

number of neurons in the input and output layers is 1. The number of neurons in the hidden 

layer is 11. The function tansig is used as the activation function of the hidden layer. The 

function purelin is used as the activation function of the output layer. The trainbr algorithm 

set in the training function is modified based on the trainlm algorithm to strengthen the 

generalization ability of network. The network error target is set to 0.1 for the least squares 

method for the fitting results of multiple sets of sample data, and multiple sets of sample 

data are used to train the network continuously. The error signal of back-propagation ensures 

the network to continuously adjust the weight and the threshold. When the output result 

maximizes the approximation to the target value, the training process could be ended. The 

training results are shown in Fig. 4.

The convergence of the training samples is due to the components of the weight vector 

running in the direction of descent gradient. Considering the capacity of the sample data, 

the number of training steps is set to 500. And in Fig. 5, when the number of training steps 

reaches the 22nd step, the error is 0.071251. The network model achieves convergence.

4.3. Numerical comparison

This paper uses the MATLAB software to compare and analyze the same set of sample 

data through BP neural network and the least squares method. The curve fitting results 

are showed in Figs. 3 and 4. The frequency difference corresponding to the loading force 

is discretely distributed. On one hand, it describes the trend of the output variable of the 

SAW micro-pressure sensor in the sample interval. On the other hand, it presents the output 

variable of the sensor corresponding to any point in the sample interval. By comparing the 

two figures, we conclude that the BP neural network and the least squares method display 

similar trend in the fitted curve. Therefore, it is reasonable to set the parameters of the neural 

network model and select fitting times of the least square method. However, the local trends 

of the fitting curve obtained by the two methods are different.

The predicted value of the sample point can be obtained from the fitting results. Based on 

the mean square error expression, we can calculate the global error between the predicted 

value and the expected value of the sample points. The global error is:

MSE = 1
N ∑

i = 1

N
di − Fi

2
(22)

In the formula, the parameter N is the sample size, di is the expected output value of the 

SAW micro-pressure sensor and Fi is actual output value. MSE is a way to evaluate the 

performance across whole change of data. After the sum of the squares of the difference 

between the predicted and actual values of the data, it calculates mean. MSEmeans the 

degree of similarity between the actual value and the predicted value of the data. The larger 

the value of MSE, the worse the accuracy of the model for the data prediction, and vice 

versa. BP neural network is MSEBP = 0.0713, Least squares method hasMSEL = 0.1476. It 
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can be seen that the BP neural network predicts the overall error of the output variable of the 

SAW micro-pressure sensor, which is smaller than the least squares method.

To further verify the accuracy of the BP neural network trained, we can carry out local 

error analysis of the predicted values in the same sample data. Let Fa be the sample output 

predicted value and F is the sample output expected value. The predicted output error 

percentage RE obtained from the two methods is calculated as:

RE = F − Fa
Fa

× 100% (23)

The error and error percentage of the two methods are shown in Table 2 and the error 

distribution curve is shown in Fig. 6.

Researching on the relationship between the input and output variables data of the SAW 

micro-pressure sensor, the smaller the relative error of the sample point prediction, the 

higher the accuracy of the micro-pressure sensor. As can be seen from Fig. 6 and Table 

2, the absolute value of the percentage of the least squares local error reaches more than 

8% in many places, indicating that the predicted error in this range is large. Although there 

are many areas with a small percentage of error, the stability is insufficient and the mean 

is above 4.3%. In contrast, for the BP neural network, there is only one place reaching 

6% within the error percentage of the predicted output and the mean is only about 2.9%. 

Through that sample data, compared with the least squares method, BP neural network has 

higher precision, which is used to predict the SAW micro-pressure sensor.

With BP neural network model constructed and the least squares method in the same term, 

this paper predicted and analyzed multiple sets of sample. The conclusions obtained are 

completely consistent with the above analysis. It turns out that the least squares method 

achieved the minimum predictive error by solving the linear regression model. The errors 

are in the range of the algorithmic limitation. At the same time, the BP neural network 

model constructed can simulate the expert’s empirical thinking and predict the output 

micro-pressureFcarried by the SAW micro-pressure sensor. It is superior to the least squares 

method whether the overall error aspect of the fitting curve or the accuracy of the predicted 

output. For the SAW micro-pressure sensor, there is a significant improvement in accuracy. 

In addition, the model constructed can quickly converge during the training process, which 

meets the needs of practical applications.

5. Conclusion

In this paper, BP neural network was used to predict the SAW micro-pressure sensor’s 

loading force corresponding to the frequency difference. On the basis of the actual 

measuring data, the BP neural network and the least squares method were applied to fit 

the function relationship and predict the output variable in MATLAB software. Due to the 

capability of BP neural network, including nonlinear printing capability, strong self-learning, 

self-organization and fault tolerance, the network training has strong stability and the 

predicted results are more precise. At the same time, the change of the state of the sensor’ 
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frequency variation in the network is closely related to the setting of the network parameters, 

which is also the core link in the design process. The fitting results of the sensor’ input 

and output variables by two methods showed that the model constructed by the BP neural 

network method was better than the least squares method in the overall error and local error, 

which has better accuracy and fast convergence speed. It is of great significance to explore 

the functional relationship between input and output data of the SAW micro-pressure sensor.
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Fig. 1. 
Measurement of SAW micro-pressure sensor.
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Fig. 2. 
Model structure of BP neural network.
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Fig. 3. 
Result of least squares method fitting.
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Fig. 4. 
Result of BP neural network fitting.
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Fig. 5. 
Convergence steps of BP neural network.

Li et al. Page 16

Measurement (Lond). Author manuscript; available in PMC 2021 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Prediction error and percentage of BP neural network and least square method.
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Table 1

Experimental data of frequency and pressure.

Micro-pressure Maximum frequency Minimum frequency Frequency difference

Fm(g) F(MHz) F(MHz) ΔF(kHz)

0 40.781286 40.715051 66

2 40.790326 40.712172 78

4 40.788554 40.704233 84

6 40.791441 40.698579 93

8 40.790431 40.690578 100

10 40.790587 40.677066 114

12 40.78973 40.669366 119

14 40.791827 40.727559 122

16 40.788616 40.669884 127

18 40.788630 40.653306 135

20 40.786386 40.647694 139
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