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Cross-sectional studies are widely prevalent since they are
more feasible to conduct compared with longitudinal studies.
However, cross-sectional data lack the temporal information
required to study the evolution of the underlying dynamics.
This temporal information is essential to develop predictive
computational models, which is the first step towards causal
modelling. We propose a method for inferring computational
models from cross-sectional data using Langevin dynamics.
This method can be applied to any system where the data-
points are influenced by equal forces and are in (local)
equilibrium. The inferred model will be valid for the time
span during which this set of forces remains unchanged. The
result is a set of stochastic differential equations that capture
the temporal dynamics, by assuming that groups of data-
points are subject to the same free energy landscape and
amount of noise. This is a ‘baseline’ method that initiates the
development of computational models and can be iteratively
enhanced through the inclusion of domain expert knowledge
as demonstrated in our results. Our method shows significant
predictive power when compared against two population-
based longitudinal datasets. The proposed method can
facilitate the use of cross-sectional datasets to obtain an initial
estimate of the underlying dynamics of the respective systems.
1. Introduction
Longitudinal studies require a huge investment in terms of time,
money and effort, depending on the system studied. For
instance, biological experiment techniques such as sequencing-
based assays destroy cells in order to measure certain
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concentrations; population-based cohort studies in public health involve asking each of the participants

to visit the hospital, measuring various physiological variables, and assessing psychological well-being
through interviews and questionnaires. This leads to a relative abundance of cross-sectional datasets in
these fields. However, the price to pay is that cross-sectional data lack the temporal information needed
to study the evolution of the underlying dynamics. This hampers the development of models that can
make predictions (predictive models) or even simulate the effects of interventions (causal models) in
these fields. Therefore, in order to use the abundant cross-sectional data to study the dynamics of
system behaviour it is important to design methods that aim to infer the temporal dynamics from
these data.

There are several techniques in the literature for estimating pseudo-longitudinal data from cross-
sectional data, which include employing distance metrics and graph theoretical operations [1–8]. They
aim to construct realistic trajectories through the feature space by using techniques such as ordering of
the data-points and selecting start-points and end-points based on known class labels. For instance,
one way to order data-points is by assuming that the label ‘healthy’ precedes the label ‘diseased’.
Another way to order biological samples or RNA-seq data is by using their gene expression levels. Of
course, these methods rely on the presence of suitable variables in the dataset, as well as the
assumptions about how these labels induce an ordering. Our proposed method, on the other hand,
infers the temporal dynamics from the distribution of the data-points, and hence, is not dependent on
the ordering of the data-points or the presence of order-inducing variables.

In this work, we propose a method for inferring predictive computational models from cross-
sectional data using Langevin dynamics [9]. The main step is to reconstruct a free energy landscape
from the cross-sectional data by assuming that groups of data-points having similar features follow
similar trajectories. A free energy landscape assigns an energy value to all possible states of the data-
points in the system. Intuitively it can be considered analogous to an uneven hillside and the data-
points in the landscape as balls rolling down the hillside. The balls will eventually come to rest in one
or another local minimum (steady state) in the valleys. These valleys are the attractors in the free
energy landscape. The sequence of states of a data-point over time traces a trajectory over this
landscape. The trajectories of the data-points in our method are not only driven by the energy
landscape’s gradient but also by noise, which can be considered analogous to random small kicks
applied continuously to all balls. In summary, our method estimates the free energy landscape based
on the probability distribution of the data-points (which in turn is estimated from the data). More
specifically, the free energy landscape is proportional to the logarithm of the inverse of the probability
distribution of the data-points. In other words, the attractors in this estimated energy landscape will
approximately correspond to the peaks in the probability distribution, and vice versa, peaks in the
energy landscape will correspond to low-probability regions in the probability distribution.

The proposed method is based on the following assumptions. The first assumption is that the
distribution depends only on the variable(s) of interest which are chosen to be dynamic. The second
assumption is that nearby data-points have a statistical tendency to move in similar direction,
i.e. downslope of a free energy landscape. Their exact trajectories at a particular time may
nevertheless be very different, but this can only be due to the incidental noise which acts on all points
at all times. The third assumption is that the distribution of the data-points is a sample from a
distribution that is stable at the time of observation. For instance, if we have cross-sectional data
concerning the BMIs of a group of individuals, we assume that the group of individuals is not
currently subjected to any intervention that will change the distribution of BMIs within a short time
span. That is, even though, the BMIs might change at the individual level, the distribution of the
BMIs remains stationary at the population level. It is important to note that, in a group of data-points
that exhibits a stationary distribution, no state is a permanent condition for any of the individual
data-points, that is, the data-points undergo continual change. However, a force constrains the state
space that can be explored by the data-points and this force is proportional to the gradient of the free
energy landscape.

It is important to note that the appropriateness of these assumptions depends crucially on which
variable(s) are considered ‘dynamic’, which variables are considered ‘confounding’, and which
variables are considered ‘independent’. The dynamic variables will form the dimensions of the energy
landscape. For instance, if we have cross-sectional data concerning the variables BMI, physical activity
(PA), diet and stress of a group of individuals, then we could (i) select BMI as our variable of interest
to obtain a one-dimensional landscape over the BMI scale, or (ii) select both BMI and PA to make a
two-dimensional landscape, and so on. This choice depends on which variables are expected to
causally influence each other. To illustrate the consideration, suppose that a change in BMI is also
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expected to change a person’s PA (for instance, suppose a larger BMI would lead to lower PA and vice

versa). In this case, it would be appropriate to create a two-dimensional landscape. Additionally, suppose
that the landscape is such that, in order to go from a low-BMI state to a high-BMI state, one must first
decrease the PA, and that this transition from high PA to low PA involves crossing a high-energy
barrier (i.e. this transition has a low probability). In this case, it would be inaccurate to only consider
BMI as ‘dynamic’, since this might lead the model to predict that an individual in the low-BMI state
may readily progress towards the high-BMI state, whereas in reality the low-BMI state is relatively
stable and the transition from the low-BMI state to the high-BMI state has low probability. However,
considering PA as a second ‘dynamic’ variable may then match better with reality and make the
transition of individuals from the low-BMI state to the high-BMI state less likely.

Confounding variables are those that are considered to have an effect on the energy landscape but
that themselves are constant. Consider for instance the variable stress. Suppose that stress has an
influence on which BMI values are attractor values; for instance, suppose that higher stress leads to a
higher expected BMI value. Suppose further that stress itself is not influenced (appreciably) by BMI,
but rather by long-term processes such as employment, socio-economic status and psychological traits,
which act on timescales of years. On the other hand, our simulation may be designed to predict only
for a few weeks or months. In this case, we may consider stress to be a confounding variable: stress
has a causal effect on one or more of the dynamic variables, but is not causally influenced itself. This
means that individuals with different stress levels may be following different corresponding
landscapes and it is not possible to transition from one landscape to another.

Finally, independent variables are simply ignored from the model. That is, (i) they are assumed to
have no effect on the dynamics or equivalently on the shape of the landscape(s), or (ii) their effect is
already covered by (correlates strongly with) another variable that is already taken into account as
dynamic or confounding, or (iii) their effect is assumed to be averaged out at the population level.

The temporal dynamics of the data-points are modelled using stochastic differential equations based
on Langevin dynamics and the above-stated assumptions. The summed effect of all external factors and
random incidents on the data-points is modelled using a noise term which causes random movement of
the data-points within the landscape. By default, the added noise is statistically independent in all
directions in our model. However, with the help of domain expert knowledge, this noise term can be
defined by considering the dependencies on other variables and factors. It should be noted that since
at the individual level the data-points exhibit random movement, the assumption that the data-points
have a statistical tendency to move towards the stable attractor states is only valid at the population
level and cannot be applied to the individual level.

This method is applicable to systems where the data-points are influenced by equal forces and are in
(local) equilibrium. At the individual level, there may be continual change in the position of the data-
points, but at the population level the distribution of these data-points remains stable. The inferred
model will be valid for the time span during which this set of forces remains unchanged. This
method would not be applicable to systems that are undergoing intervention. This is because the
landscapes representing these systems will tend to change within short time spans. For example, a
group of individuals for whom the current most probable BMI corresponds to overweight will follow
a landscape where the attractor represents a BMI corresponding to overweight. However, if that group
of individuals is undergoing an intervention that affects their weight-related behaviour, such as
increased physical activity and a healthier diet, then the free energy landscape of that group will
change with the attractor moving away from the BMI corresponding to overweight. In such a
situation, our method will not be applicable since from a single cross-sectional dataset it will estimate
only a single landscape. However, our method could be applied to this system when a past
intervention has resulted in a (new) stable distribution of BMIs for the group of individuals, i.e. after
a considerable time has passed from the start of the intervention.

The goal of our study is to formulate a method to infer a computational model that predicts the
temporal evolution of the data-points. We would like to highlight here that our proposed method
should only be viewed as a starting point for inferring temporal dynamics from cross-sectional data.
Specifically, this method only presents a means to obtain an approximate idea of the underlying
dynamics from the cross-sectional data without considering any other factors and dependencies. This
method is not a causal inference technique in itself, which is a term reserved for automated
techniques that identify causes of an effect by establishing that a cause-and-effect relationship exists
purely based on data [10]. Our proposed method selects a stochastic differential equation model
which best fits the landscape dynamics derived from the data. Even though a differential equation can
always be interpreted as a causal model, since it specifies how one variable changes as function of
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other variables, we would like to clarify that our predictive model does not by itself encode valid causal

relationships. The selected model by our method (without further constraints) is therefore not causally
interpretable. In other words, it can be used to predict the system behaviour, but not how this
behaviour will change in response to interventions. To illustrate this point, consider a dataset of BMIs
of a group of individuals. It may be reasonable to predict that on average this group of individuals
will have a statistical tendency to move towards the most probable BMI within that group. However,
it is an entirely different question what would happen to the BMIs of the individuals within this
group after an intervention. Our method does not address the question of ‘how’ mechanistically the
BMIs of the individuals within a group increase or decrease, only that on average they will
statistically tend to increase or decrease.

Our model can be made causally interpretable by adding domain expert knowledge to our presented
‘baseline’ method in the form of (constraints on the) causal relationships between the different variables
in the system. This should in turn increase the out-of-sample predictive power (generalizability). For
example, in a previous work [11], we constructed an expert-informed causal model between
individual body weight perception, individual weight-related behaviour, and group-level norms
towards body weight. We incorporated domain expert knowledge to gather statements of causal and
non-causal relationships to infer a computational model which can be causally interpreted. These
statements of causal relations (e.g. ‘physical activity directly affects weight loss’) essentially constitute
constraints on the functional forms of the differential equations that are permitted (the differential
equation for ‘weight loss’ must at least include a variable ‘physical activity’). The remaining
uncertainties (parameter values, functional forms) were then estimated from a cross-sectional dataset
by using assumptions. In addition, the selection of the variable(s) as ‘dynamic’, ‘confounding’ and
‘independent’ can also be made more accurate with the help of domain expert knowledge. Our
proposed method can be considered as a starting point of this model-building process for systems
that can be described as effectively following a free energy landscape that does not change within
short time spans and is not under the influence of any external force: in its naive form it produces a
predictive model, and the more expert-informed constraints on functional forms are added based on
causal or non-causal statements, the more accurate the causal interpretation of the resulting model.

We present the theoretical foundation and a numerical illustration of the method which estimates the
dynamics from a cross-sectional dataset and highlight the assumptions. We compare the estimates of the
temporal dynamics obtained by our method against two population-based longitudinal datasets where
the first time-point is used as the cross-sectional data and the subsequent time-points are used for
comparison with the model predictions.
2. Methods
2.1. Langevin dynamics
We consider that each data-point, denoted as x, is vector-valued and can change over time. A data-point
represents a set of attributes (such as BMI) of an individual. We assume that all data-points in a cross-
sectional dataset of size N have had sufficient time to mix and explore the state space by the time at
which they are observed. Thus, we assume that even if there was a major perturbation, a system of
data-points has converged to a stable distribution at the time of our observation. This implies that all
the data-points follow a probability distribution, p(x), which is stationary. Furthermore, this implies
that N is large enough to effectively estimate p(x) from the dataset.

In general, it is not possible to derive the temporal evolution, dx/dt, from the stationary probability
distribution p(x). This is because there are multiple dx/dt which can lead to the same stationary
distribution. For example, a data-point rotating clockwise and another data-point rotating anti-
clockwise both have the same circular stationary distribution, but their dx/dt are different. We solve
this problem by assuming that each data-point tends to follow the same free energy landscape, F(x),
in a ‘downslope’ manner, i.e. moves in time in the direction of −dF/dx. F(x) effectively assigns an
energy value to each possible vector x. The assumption is that systems have a tendency to minimize
their energy, although random fluctuations may sometimes have the opposite effect. The minimum
energy states correspond to the attractors in F(x).

The energy landscape, F(x), can be derived from p(x) through the Boltzmann distribution [12],

bFðxÞ ¼ � log pðxÞ: ð2:1Þ
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Here, the constant β is interpreted as the inverse of temperature, or noise level: the lower the value of

β, the larger is the effect of random fluctuations on x, and thus the lower the influence of F(x) on the data-
points. The assumption behind this relation is that the data-points are in equilibrium, which is already
met by the assumption of p(x) having reached stationarity.

In addition to this deterministic tendency given by F(x), there is a random movement (noise) which is
irrespective of F(x) and is uncorrelated over time, defined by a Wiener process W(t) [13]. Thus, the
displacement of each data-point consists of the sum of a deterministic component and a stochastic
component which leads to the following overdamped Langevin dynamics equation [9]:

dx ¼ �b
dFðxÞ
dx

dtþ sdWðtÞ: ð2:2Þ

Here, β controls the relative strength of the deterministic force and σ controls the relative strength of
the noisy movement. When β→ 0, the deterministic component becomes negligible, and thus the data-
points diffuse randomly over the state space in all directions. When σ→ 0, the stochastic component
becomes negligible, and all data-points converge to one or more local minima of F(x), after which no
further change occurs. Clearly, a balance is needed between these two opposing processes, which will
control the degree of clustering and the amount of variance observed in the predicted distribution,
p̂b,sðxÞ, and match with the p(x) from the data.

For determining the values of β and σ, it is important to realize that only their ratio changes the
stationary data distribution. Thus, if we fix the timescale of the deterministic component by setting β= 1
without loss of generality, then the remaining free parameter σ controls the ratio of the random and
deterministic forces. This timescale can be fixed because if we multiply both parameters in equation (2.2)
with a constant τ, the velocity dx/dt is also multiplied by τ. This means that x changes τ times faster. In
principle, it is impossible to derive how fast x changes per unit time from the data available at a single
time-point. We can, however, still predict the directions of the data-points, which is our main interest.

2.2. Numerical algorithm
To explain the numerical algorithm we will generate a set of data-points moving over a known free
energy landscape and show how the algorithm recovers the dynamics. Consider a true underlying
free energy landscape, F(x) =−ax2 + bx4, from Landau’s second order phase transition formalism,
which contains two attractor states as long as a > 0, b > 0. We set a = 3 and b = 1, where a controls the
height of the energy barrier separating the two attractors. Assuming the Boltzmann distribution
(equation (2.1)), we generate a dataset consisting of 5000 i.i.d. data-points from the probability density
function, pðxÞ ¼ eax

2�bx4=Z, where Z is the normalizing constant. p(x) is shown in figure 1a as a solid
red line. The sampling is done through the inverse transform sampling method [14].

We will now treat this dataset as given and ‘forget’ the F(x) used to generate it. The true p(x) always
has an exponential form due to the assumption of a Boltzmann distribution. Therefore, a Gaussian kernel
density estimation algorithm is used to estimate the data distribution. A Gaussian kernel density estimate
is defined as p̂ðxÞ ¼ ðnh ffiffiffiffiffiffi

2p
p Þ�1 Pn

i e
ðx�xiÞ2=2h2 , where xi are the data-points and the parameter h is

determined using Silverman’s optimization procedure [15]. We would like to highlight here that even
though the parameters h and σ represent similar concepts (both are standard deviation controlling
parameters), they implement different components. The parameter h controls the standard deviation
of the Gaussian kernel density estimate obtained from the data, whereas σ controls the ratio of the
random and deterministic forces in equation (2.2). The estimated p̂ðxÞ from the dataset is shown in
figure 1a as a dashed black line. This estimated p̂ðxÞ is then used to estimate the free energy
landscape as F̂ðxÞ ¼ � log p̂ðxÞ. By fixing the timescale of the deterministic dynamics through β = 1,
the deterministic term, dF/dx, of the Langevin dynamics (equation (2.2)) is given as

dF
dx

¼ �
Xn
i¼1

(xi e�ð(x�xi)
2Þ=2h2=h2 � ðx e�ð(x�xi)

2Þ=2h2=h2Þ)
e�ð(x�xi)

2Þ=2h2 : ð2:3Þ

The stochastic part is then fully determined by an optimal choice for σ. The optimal σ is determined
by using the Hellinger distance, Hð p̂b¼1,sðxÞ, pðxÞÞ, as the cost function. The Hellinger distance is defined
as, Hðp, qÞ ¼ 1

2

Ð
xð

ffiffiffiffiffiffiffiffiffiffiffiffi
dpðxÞp � ffiffiffiffiffiffiffiffiffiffiffiffi

dqðxÞp Þ2 dx. To evaluate the goodness of fit for each choice of σ during this
optimization process, we need to estimate the stationary probability density p̂b¼1,sðxÞ numerically. Since
integration techniques for stochastic differential equations are computationally intensive, we choose to
discretize the domain of the data, x, into f discrete points with distance Δx, which is calculated as
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Dx ¼ ffiffiffiffiffi
Dt

p
=f . Here,

ffiffiffiffiffi
Dt

p
is the expected displacement of a random diffusion process after Δt time. We find

that f = 10 produces accurate results at low memory cost. xmin and xmax are calculated from the data by
taking the floor of the minimum value and ceiling of the maximum value from the standardized data
respectively. In this case, we get xmax =−xmin = 3 from the generated dataset. We obtain 601 discrete
values for x and a sparse, approximately band-diagonal transition matrix of dimension 601 × 601,
denoted by M. To calculate the transition probabilities in M, we first determine the possible positions
that a data-point, starting at position x, can reach after Δt time-steps. The displacement due to the
deterministic force is given by x + (−(dF/dx)Δt). Taking this value as the mean, we determine from
the 601 discrete values of x the values (y) that fall within four standard deviations of this mean, i.e.
within +4s

ffiffiffiffiffi
Dt

p
of the mean. We then calculate the probabilities of displacement to these y values

due to random diffusion, by assuming a normal distribution with mean as x + (−(dF/dx)Δt) and
standard deviation as s

ffiffiffiffiffi
Dt

p
. Thus, M

x!y ¼ Pðy j N ðx� ðdF=dxÞ Dt, s
ffiffiffiffiffi
Dt

p ÞÞ, where Pð:Þ denotes a
probability density function.

For discrete Markov processes, the stationary distribution vector π can be found directly by solving the
set of linear equations π= πM, which is computationally an efficient operation since it reduces to finding the
(left) eigenvector of M, having an eigenvalue of 1. Before performing this operation, we normalize the rows
of M. The initial distribution vector, π0, is calculated from the data as, p0ðxÞ ¼

Ð xþDx=2
x�Dx=2 pðxÞ. Finally, we

compute the Hellinger distance, Hð p̂b¼1,sðxÞ, pðxÞÞ, for which π is converted to a continuous function,
p̂b¼1,sðxÞ, using third-order spline interpolation. If changing σ no longer reduces the Hellinger distance,
the procedure terminates and the Langevin dynamics (equation (2.2)) is completely specified. In figure 1d,
the resulting predicted dynamics of a data-point is shown, where the optimal ŝ � 1:41.

This free energy landscape can be manipulated to favour a particular attractor or shift the attractor.
Here, we show that the landscape can be changed by an intervention, and if it is changed then what
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possible comparisons can be performed using the pre-intervention and post-intervention landscapes. We
would like to point out that we do not know how an intervention should be implemented. This should be
viewed as only a theoretical test where a term (analogous to an intervention) is added to the free energy
function, and then potential comparison measures between the pre-intervention and post-intervention
cases are presented.

Suppose, F(x) denotes the pre-intervention free energy landscape and G(x) = F(x) + cx represents the
post-intervention free energy landscape. Here, cx represents the intervention and c controls the
strength of the effect of the intervention. Let, x1(t) be a stochastic process with respect to the
landscape F(x) defined as

dx1 ¼ � dF
dx1

dtþ sdWðtÞ: ð2:4Þ

Let, x2(t) be another stochastic process with respect to the landscape G(x) defined as

dx2 ¼ � dG
dx2

dtþ sdWðtÞ: ð2:5Þ

For a two-attractor landscape, suppose the pre-intervention free energy landscape is defined as
F(x) =−ax2 + bx4. Adding a term cx makes the left attractor preferred. The pre-intervention and post-
intervention landscapes are shown in figure 2a,b. The average rate of transition from the attractor at x+
to the attractor at x−, with x0 as the local maximum (tipping point) can be approximated using
Kramer’s formula for energy barrier crossing as

rðþ ! �Þ ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F00ðxþÞjF00ðx0Þj

p
e�2ððFðx0Þ�FðxþÞÞ=s2Þ, ð2:6Þ

under the condition that the exponent |F(x0)− F(x+)|/σ
2/2 > >1. Similarly, the average rate of transition

in the opposite direction, r(−→ + ) can be obtained by

rð� ! þÞ ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F00ðx�ÞjF00ðx0Þj

p
e�2ððFðx0Þ�Fðx�ÞÞ=s2Þ, ð2:7Þ

under the condition that the exponent |F(x0)− F(x−)|/σ
2/2 > >1.
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Now, for the pre-intervention landscape, F(x), in our example, the average transition rates in both
direction will be equal since the landscape is symmetric. Using a = 3, b = 1, we get r( +→− ) =
r(−→ + ) = 12.9867. For the post-intervention landscape, G(x), the average rate of transition from the
right attractor at x+ to the left attractor at x− will be higher than that in the opposite direction. Using
a=3, b=1 and c=1, we get r( +→− ) = 0.448 and r(−→ + ) = 0.031.

For a single-attractor landscape, suppose the pre-intervention free energy landscape is defined as
F(x) = ax2. Adding a term cx shifts the attractor to the left. The pre-intervention and post-intervention
landscapes are shown in figure 2c,d. In this case, we can compare the first moments (means) of the
pre-intervention and post-intervention stochastic processes x1(t) and x2(t) respectively. Let μ1 and μ2 be
the means of the stochastic processes x1(t) and x2(t), respectively, and they are defined as

m1 ¼ e�2atx10 ð2:8Þ
and

m2 ¼
e�2atðcþ 2ax20Þ � c

2a
, ð2:9Þ

where, x10 and x20 are the initial states of x1(t) and x2(t), respectively.
Sci.8:211374
2.3. Comparison with longitudinal dataset
We compare the estimates of the temporal dynamics obtained by our method against longitudinal
datasets where the first time-point is used as the cross-sectional data and the subsequent time-points
are used for comparison with the model predictions. For this purpose, we estimate the displacement
of each individual which is influenced by a force towards the attractor and a random movement.
Thus, this estimated displacement is not deterministic, but is random and hence represented as a
normal distribution, whose mean is the gradient of the free energy landscape and standard deviation
is the noise parameter. Mathematically, the displacement of an individual i for a Δt time-step is
represented by a normal distribution with the displacement due to the deterministic force, (−dF/dx)Δt
as the mean and s

ffiffiffiffiffi
Dt

p
as the standard deviation. Using this normal distribution, we determine for

each individual i the probability of positive displacement and negative displacement, denoted as Pi
PD

and Pi
ND, respectively and defined as:

Pi
PD ¼ P x . 0, x � N �dF

dx
Dt, s

ffiffiffiffiffi
Dt

p� �� �
ð2:10Þ

and

Pi
ND ¼ P x , 0, x � N �dF

dx
Dt, s

ffiffiffiffiffi
Dt

p� �� �
: ð2:11Þ

Here, we quantify the prediction accuracy of our model for individual i, which we denote as Ai. If the
observed displacement from the data, Ddata, for individual i is positive, we assign Pi

PD as the prediction
accuracy of our model, and if the observed displacement is negative, we assign Pi

ND as the prediction
accuracy of our model for individual i. The average prediction accuracy of the model, denoted as
Aaverage, is then determined as the average of the prediction accuracy over all individuals.
Mathematically, Ai and Aaverage are defined as

Ai ¼ Pi
PD, if Ddata [ R.0,

Pi
ND, if D data [ R,0

�
ð2:12Þ

and

Aaverage ¼ hAiii: ð2:13Þ

We also determine the maximum prediction accuracy of our model for individual i, Ai
max, and the

average maximum prediction accuracy of our model over all individuals, Aaverage
max . These two

quantities are defined as

Ai
max ¼ maxðPi

PD, P
i
NDÞ ð2:14Þ
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Figure 3. Comparison of the prediction accuracy of our model to random choice under the null hypothesis of random displacement.
The blue shaded area is the confidence interval of the distribution of 1000 mean prediction accuracies of random choice. The violet
dashed line denotes the upper limit (UCI) of this confidence interval (equation (2.16)). The red dashed line denotes average
prediction accuracy (Aaverage) (equation (2.13)) and the green solid line denotes the average maximum prediction accuracy
(Aaveragemax ) (equation (2.15)) (refer to section 2.3: Comparison with longitudinal dataset for details).
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and

Aaverage
max ¼ hAi

maxii: ð2:15Þ

To determine the optimal value of Δt, we employ the metric of Euclidean distance, by varying its
value from 1 to 100 with increments of 1, and selecting the value that gives the minimum Euclidean
distance between the displacement due to the deterministic force (−(dF/dx)Δt) predicted by our
model and the observed displacement from data.

In addition to the above tests, we compare the prediction accuracy of our model to random choice
under the null hypothesis of random displacement. We randomly choose between Pi

PD and Pi
ND for

each individual i and then take the average over all individuals to obtain the prediction accuracy by
random choice. We repeat this random choice step 1000 times to obtain a distribution of mean
prediction accuracies of random choice and then determine the 95% confidence interval of this
distribution. The upper limit of this confidence interval is defined as

UCI ¼ X þ 1:96
sffiffiffiffiffiffiffiffiffiffi
1000

p , ð2:16Þ

where, X is the mean of the distribution of 1000 mean prediction accuracies of random choice and s is the
standard deviation of this distribution. If the average prediction accuracy of our model is greater than the
upper limit (UCI) of this confidence interval, we can say that our model prediction is significantly better
than the prediction obtained by random choice. We also scale the average prediction accuracy (Aaverage)
to better compare with UCI and the average maximum prediction accuracy (Aaverage

max ) as

Aaverage
scaled ¼ Aaverage �UCI

Aaverage
max �UCI

: ð2:17Þ

After the above scaling, UCI will correspond to zero and Aaverage
max will correspond to 1. If Aaverage

scaled is
above zero, we say that our model prediction is better than random choice; if it is below zero, then
our model prediction is indistinguishable from random choice. This comparison process with random
choice is explained in figure 3. Thus, we compare our model predictions against data as well as test
whether the prediction accuracy of our model is significantly better than that by random choice.
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displayed at the individual level, that is, if all individuals have a tendency to move towards the attractor (refer to section 3: Results).
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2.4. Data
We compare our method against two population-based longitudinal datasets: the College study dataset
[16] and the Hoorn study dataset [17–19], where we consider the first time-point as the cross-sectional
data and the subsequent time-points are compared with the model prediction.

The College study dataset [16] is a longitudinal dataset with weights and heights measured over five
time-points: baseline, six weeks, six months, 12 months, and 24 months. This study was conducted with
294 female first-year students (age: 18:24+ 0:44 years; all values are expressed as mean ± s.d. unless
otherwise specified) recruited from two universities in Philadelphia. We preprocessed this dataset to
include only those participants who had their weight and height measured for all the five time-points
and obtained 162 participants. We calculated the BMIs (in kg m−2) of these 162 participants from their
weight and height and their baseline BMI distribution is 23.59 ± 2.69 kg m−2.

The Hoorn study dataset [17–19] is a longitudinal dataset with BMIs measured over two time-points:
baseline, and 7 years. The baseline study [17,19] was conducted in 2006–2007 in the Dutch city of Hoorn
and included 2807 participants. The follow-up study [18,19] was conducted in 2013–2015 and included
1734 participants out of the 2807 participants in the baseline study. We preprocessed this dataset to
include only those participants who had their BMIs measured for both time-points and obtained 1727
participants with age 53:62+ 6:53 years and baseline BMI distribution 26.11 ± 3.88 kg m−2.
3. Results
We present a baseline method for inferring predictive computational models from cross-sectional data
based on Langevin dynamics. We compare our model predictions against two longitudinal datasets:
the College study dataset [16] and the Hoorn study dataset [17–19], where we consider the first time-
point as the cross-sectional data and the subsequent time-points are compared with the model
predictions. The College study dataset contains BMIs over five time-points: baseline, six weeks, six
months, 12 months, and 24 months. The Hoorn study dataset contains BMIs over two time-points:
baseline, and 7 years. Figure 4 shows our model prediction accuracies (Aaverage

scaled (equation (2.17))) using
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these two datasets. Our model shows significant predictive power (green circles in figure 4a) compared

with the prediction of a random choice algorithm (solid red line 0 in figure 4). Additionally, our model
prediction accuracy improves further when we incorporate domain expert knowledge to our model, as
shown by the blue crosses, cyan left triangles, and magenta diamonds in figure 4a.

To test if the predictive power of our model is enhanced with the incorporation of domain expert
knowledge, we apply the empirical observation from epidemiology that individuals from different BMI
categories follow different landscapes [20,21]. In accordance, we cluster the datasets based on the standard
BMI categories: underweight (BMI < 18.5), normal weight (18.5≤BMI < 25), overweight (25≤BMI < 30),
and obese (30≤BMI) [22]. We respectively obtain clusters of sizes 0, 119, 39 and 4 from the College study
dataset, and 12, 739, 729 and 247 from the Hoorn study dataset. Since the underweight and obese clusters
from the College study dataset have only 0 and 4 individuals, respectively, and the underweight cluster
from the Hoorn study dataset has only 12 individuals, we disregard those clusters. We observe that if we
consider separate attractor landscapes for these different clusters, the model prediction accuracy increases
significantly (figure 4a). The attractor in each cluster approximately corresponds to the BMI that is most
prevalent relative to the group of individuals in that cluster. From the above results (figure 4a), we can
conclude that the incorporation of domain expert knowledge to our baseline method further enhances the
predictive power of our model. Next, we do a theoretical test by further narrowing the BMI range to see if
clustering individuals having almost exactly the same BMIs further improves the prediction accuracy.
Accordingly, we select all individuals having BMIs in the narrow range of 21≤BMI < 22, and obtain 29
individuals from the College study dataset, and 96 individuals from the Hoorn study dataset. We observe
that the model prediction accuracy increases further (figure 4a).

Next, we do a theoretical test to see how our method performs if the statistical tendency to move
towards the attractor that is displayed at the population level was also displayed at the individual
level, that is, if all individuals have a tendency to move towards the attractor. In that case, individuals
with a BMI that is greater than the attractor BMI would decrease their BMI and vice versa. Assuming
this, we determine the ‘maximally achievable’ prediction accuracy of our model. As observed from
figure 4b, these ‘maximally achievable’ model prediction accuracies are significantly higher than the
actual prediction accuracies using the real data.

We do another theoretical test by analysing the data to see if individuals having the same BMI have
displacements in the same direction. We select 15 BMI bins based on the data (the bins are shown as
x-axis labels in figure 5). We place an individual in BMI bin x if the individual’s BMI falls in the
range of x≤ BMI < x + 1. For example, we place an individual in BMI bin 25 if the individual’s BMI
falls in the range of 25≤ BMI < 26. Then, we calculate the displacements from baseline to six weeks,
six months, 12 months and 24 months. Figure 5 shows the relative number of individuals having
positive and negative displacements in each BMI bin, which is calculated as (number of positive
displacements − number of negative displacements)/(number of positive displacements + number of
negative displacements). If all individuals in a particular BMI bin have displacements in the same
direction, then this relative number will be 1 or −1 as shown by the red solid lines in figure 5. If
individuals in a particular BMI bin have mixed displacement directions then this relative number will
be between 1 and −1. With this figure we want to show that individual behaviour is inherently
random and that individuals having almost the same BMI may not have displacements in the same
direction. That is, the weights of two individuals having the same BMI of 28 may not decrease in both
cases: in one case it may increase, whereas in the other it may decrease. If all individuals in a
particular BMI bin had displacements in the same direction, then the relative number of individuals
having positive and negative displacements in each BMI bin would be exactly 1 or −1. However, this
is not what we observe from figure 5. It should be noted that this analysis is based on the assumption
that the distribution does not depend on other variables, which in reality is probably not true. And it
is because of these other variables that the relative number of individuals having positive and
negative displacements in each BMI bin is not exactly 1 or −1. However, the purpose of this analysis
is to show that, even without considering the other variables and factors, our method is already able
to provide a good starting estimate of the underlying dynamics from the cross-sectional data. This
estimate can be further enhanced by adding domain expert knowledge in the form of (constraints on
the) causal relationships between the different variables in the system.

Next, we test the performance of our method when the cross-sectional dataset is small. For this
purpose, we use the free energy landscape, F(x) =−ax2 + bx4, from Landau’s second order phase
transition formalism to generate data-points as shown in §2.2: Numerical algorithm. We generate a
large dataset consisting of 5000 data-points and 1000 small datasets consisting of 40 data-points.
Figure 6 shows the estimated probability densities from the large dataset (in red) and the 1000 small
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datasets (in blue). We also compare the probability densities estimated from each of the 1000 small
datasets against the probability density estimated from the large dataset using the two-sample
Kolmogorov–Smirnov test. With a significance level of 0.01, only 7 out of the 1000 small datasets
(0.7%) reject the null hypothesis that the large dataset and the small dataset were drawn from the
same distribution. From these results, we can say that even with a small dataset, the method is able to
generate a close estimate of the true probability density.
4. Discussion
Cross-sectional studies are widely prevalent since they require less investment in terms of time, money and
effort compared with longitudinal studies. However, since these data lack temporal information, they
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cannot be used directly to study the evolution of the underlying dynamics. This temporal information is

essential to develop predictive computational models which is the first step towards causal modelling.
In this work, we present a method to infer predictive computational models from cross-sectional data
using Langevin dynamics. This method can be applied to any system where the data-points are
influenced by equal forces and are in (local) equilibrium. That is, at the individual level, there may be
continual change in the position of the data-points, but at the population level the distribution of these
data-points remains stable. The inferred model will be valid for the time span during which this set of
forces remains unchanged. Our proposed method should be viewed as a starting point for inferring
temporal dynamics from cross-sectional data. This method only presents a means to obtain an
approximate initial estimate of the underlying dynamics from the cross-sectional data without
considering any other factors and dependencies. This method is not a causal inference technique in
itself. Our model can be made causally interpretable by adding domain expert knowledge to our
presented ‘baseline’ method in the form of (constraints on the) causal relationships between the different
variables in the system.

Our method is based on three assumptions. The first assumption is that the distribution depends only
on the variable(s) of interest which are chosen to be dynamic. The second assumption is that nearby data-
points have a statistical tendency to move in similar direction, i.e. downslope of a free energy landscape.
Their exact trajectories at a particular time may nevertheless be very different, but this can only be due to
the incidental noise which acts on all data-points at all times. The third assumption is that the data-points
are sufficiently mixed at the time of observation and are at (local) equilibrium. Thus, we assume that
even if there was a major perturbation, a system of data-points has converged to a stable distribution
at the time of our observation. That is, at the individual level, there may be continual change in the
position of the data-points, but at the population level the distribution of these data-points remains
stable. This assumption would be valid for short time spans where we do not expect any major
perturbation to the system. The applicability of these assumptions depends crucially on which
variable(s) are selected as ‘dynamic’, which variables are selected as ‘confounding’ and which
variables are selected as ‘independent’. This choice of variables as ‘dynamic’, ‘confounding’ and
‘independent’ could be made more accurate with the help of domain expert knowledge.

As opposed to black-box machine learning techniques, our technique is based on interpretable
assumptions such that domain expert knowledge can be readily incorporated. That is, the resulting
model can be made causally interpretable by adding domain expert knowledge in the form of
statements of causal and non-causal relationships. This should lead to increased and more robust
predictive power, as is indeed demonstrated by our clustering based on the standard BMI categories.

It is important to realize that the proposed method can only estimate directions of progression, not
velocities. This is because, in principle, it is impossible to derive how fast a data-point changes per
unit of time from cross-sectional data. In other words, the timescale of the predicted dynamics
remains unknown. In some cases, it is possible to estimate a timescale from the data, for instance by
quantifying the relative frequency of tipping point transitions in the model and comparing it with
knowledge or data about it. It can also be inferred from known statistical properties of the rates of
change in reality; for instance, the fact that the maximum sustainable rate of weight loss observed in a
population is about 2 kg per month that was used in our previous work [11].

We compare the estimates of the temporal dynamics obtained by our method against two population-
based datasets from the public health domain. As these datasets contain data reflective of theweight-related
behaviour of a group of individuals, these data are at least in part representative of the outcomes of human
interaction and social norms that determine behaviour. Our assumption is that the use of Langevin
dynamics can provide an indication of the underlying mechanisms in scenarios where individuals in
groups tend to follow norms and adhere to social conventions [23,24]. This is because these ‘forces’ are
hypothesized to lead individuals to move towards the same norm behaviour, making it possible to
identify the ‘force field’ that the individuals are following. There are many cross-sectional studies of
human behaviours influenced by social norms, such as physical activity, dietary habits, smoking and
alcohol consumption [25–28]. As explained before, cross-sectional data cannot readily be used to develop
predictive computational models to study how these behaviours evolve over time. Predictive
computational models may, however, be valuable in this context since they enable the assessment of
competing hypotheses by allowing us to evaluate hypothetical scenarios in silico and simulate the effect
of interventions. This is especially advantageous for systems for which comparing counterfactual
scenarios would not be possible in vivo, as is the case for many systems involving human interaction and
social norms. We would, for instance, never be able to conduct an empirical study to assess the effect of
group-level social norms versus individual-level weight-related behaviour on body weight [11].
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The proposed method can be a useful tool to get an approximate estimate of the underlying dynamics

of the system when we only have data for a single time-point. Later, if domain expert knowledge is
incorporated, this ‘baseline’ model could be developed into a causal model and the timescale of the
model predictions could be estimated. We believe that the proposed method is sufficiently simple to
use as well as interpretable so that it can initiate the iterative development of computational models
for any system that can be described as effectively following a free energy landscape and thus help in
studying the progression of important processes.
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5. Conclusion
We have proposed a method to infer predictive computational models from cross-sectional data based on
Langevin dynamics for systems where the data-points are influenced by equal forces and are in (local)
equilibrium. Our method shows significant predictive power when compared against two population-
based longitudinal datasets from the public health domain. The performance of our method could be
further improved by taking domain expert knowledge into account. Thus, our method can bootstrap
the use of the already abundant cross-sectional datasets to study the evolution of processes and
initiate the iterative development of predictive computational models.
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