Skip to main content
. 2021 Oct 12;10:e68620. doi: 10.7554/eLife.68620

Figure 5. Given the recovery dynamics inside a condensate, the key parameters D𝐢𝐧, D𝐨𝐮𝐭 and P can in theory be determined uniquely without measuring the outside dynamics, using Equation (6).

Figure 5.

(a) Given the partition coefficient P, Dout is found by fitting the model to synthetically generated example data. As example systems, indicated by open circles, we consider in silico data, obtained by solving Equation (6) with known parameters P and Dout. To mimic the approach of initially determining Din (see Figure 1) we keep Din=0.01μm2s1 for all in silico datasets. For each example system (open circles), the best fitting Dout is found given a range of P (solid lines). Parameters used were as follows: pink circle: Dout=0.1μm2s1, P=5, orange circle: Dout=1μm2s1, P=5, green circle: Dout=0.1μm2s1, P=150, blue circle: Dout=1μm2s1, P=150. (b) Cost function (colorbar, log-scale) as a function of Dout and P. We note that the global minimum coincides with the parameters used to generate the synthetic data (green circle). The valley in parameter space (dashed line) corresponds to the green line in (a). (c) Minimum of cost function for each P, corresponding to curves shown in (a). This minimum corresponds to the valley indicated by the dashed line in (b). Note the minimum at the input parameter set, which indicates uniqueness of the outside dynamics for given values of Dout and P.