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A B S T R A C T   

The coronavirus disease 2019 (COVID-19) has been first reported in December 2019 and rapidly spread 
worldwide. As other severe acute respiratory syndromes, it is a widely discussed topic whether seasonality affects 
the COVID-19 infection spreading. This study presents two different approaches to analyse the impact of social 
activity factors and weather variables on daily COVID-19 cases at county level over the Continental U.S. 
(CONUS). The first one is a traditional statistical method, i.e., Pearson correlation coefficient, whereas the second 
one is a machine learning algorithm, i.e., random forest regression model. The Pearson correlation is analysed to 
roughly test the relationship between COVID-19 cases and the weather variables or the social activity factor (i.e. 
social distance index). The random forest regression model investigates the feasibility of estimating the number 
of county-level daily confirmed COVID-19 cases by using different combinations of eight factors (county pop-
ulation, county population density, county social distance index, air temperature, specific humidity, shortwave 
radiation, precipitation, and wind speed). Results show that the number of daily confirmed COVID-19 cases is 
weakly correlated with the social distance index, air temperature and specific humidity through the Pearson 
correlation method. The random forest model shows that the estimation of COVID-19 cases is more accurate with 
adding weather variables as input data. Specifically, the most important factors for estimating daily COVID-19 
cases are the population and population density, followed by the social distance index and the five weather 
variables, with temperature and specific humidity being more critical than shortwave radiation, wind speed, and 
precipitation. The validation process shows that the general values of correlation coefficients between the daily 
COVID-19 cases estimated by the random forest model and the observed ones are around 0.85.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) has been first reported in 
December 2019 and rapidly spread worldwide. According to the World 
Health Organization (WHO), there are more than 174 million COVID-19 
cases that have been confirmed across 219 countries, areas or territories 
globally as of early June 2021, and number of COVID-19 related deaths 
are over 3.7 million. The global pandemic has affected our society in 
many aspects. To better understand this challenging situation, there has 
been a significant number of studies investigating the dynamics of 
COVID-19 transmission (Kucharski et al., 2020; Davahli et al., 2021, 
Sapkota et al., 2021) and the short and long term impacts of COVID-19 
on people’s life, health condition, and social activities (Goodell, 2020; 
Melo-Oliveira et al., 2021; Fiok et al., 2021; Sonza et al., 2021, Joseph, 
2021). 

The first COVID-19 case in the United States (U.S.) was identified in 
Washington state in January 2020 and remained at a relatively slow rate 
of transmission throughout February of the same year. The daily number 
of U.S. confirmed cases started to increase dramatically in March until 
hitting its first peak in early April 2020. Then, the spread of COVID-19 in 
the U.S. slowed down due to the stay-at-home orders issued by most of 
the states. However, the daily number of confirmed cases began to rise 
again in mid-June since the states reopened gradually. The number of 
daily confirmed cases started to reduce again in August through October 
2020, but a new extreme peak came right after (November 2020 to early 
January 2021) with over of 200,000 daily confirmed cases during the 
winter time. As a plausible consequence of the effective COVID-19 
vaccines that became available towards the end of 2020, the number 
of daily confirmed cases started to decrease in mid-January 2021. 
However, the sharp decreasing curve of daily confirmed cases became 
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flat since mid-March 2021, while the number of administered vaccine 
doses are increasing rapidly. The pandemic is still ongoing. As of early 
June 2021, there are about 63% of the adults in the U.S. had received at 
least one dose of vaccine, but the average number of daily confirmed 
COVID-19 cases was still around 20,000 and the cumulative confirmed 
cases already reached 33 million. More than 607,000 deaths happened 
in the U.S. indicating an overall COVID-19 death rate of 1.8% while the 
death rates of the seasonal influenza is usually below 0.1% according to 
a recent report from World Health Organization (WHO, 2020). 

The COVID-19 case rate (number of cases per million people) varies 
dramatically across the U.S. Despite the socioeconomic differences 
among different states and counties, it is speculated that the trans-
mission mechanism of the COVID-19 might be related with local mete-
orological conditions as other respiratory viruses. Several studies have 
investigated the relationship between the weather condition and 
COVID-19 transmission. For instance, Wu et al. (2020) used a log-linear 
generalized additive model to explore the effect of temperature and 
humidity on the COVID-19 transmission in 166 countries and found that 
temperature and relative humidity were negatively related to the 
COVID-19 cases. Chen et al. (2020) established a statistical model to 
estimate the number of COVID-19 cases with four weather variables 
(temperature, relative humidity, wind speed, and visibility) during the 
January to March 2020 time frame. The model-estimated case counts 
showed an acceptable correlation with the real counts based on the data 
of 54 countries around the world. Wang et al. (2021) applied a 
Fama-Macbeth Regression and found effective reproductive number of 
COVID-19 to decrease with increasing air temperature and relative hu-
midity based on the data of 100 Chinese cities and 1005 U.S. counties 
from January to April 2020. Haque and Rahman (2020) focused on 
Bangladesh in the March-to-May 2020 period using a linear regression 
framework to conclude that high temperature and humidity signifi-
cantly reduce the COVID-19 transmission. Another study (Mofijur et al., 
2020) in Bangladesh using the Spearman rank correlation test showed 
different results, i.e., only minimum and average temperatures had a 
significant relationship with the number of COVID-19 cases. More 
recently, He et al. (2021) studied 9 major Asian cities with generalized 
additive modeling (GAM) and Pearson correlation. The GAM analysis 
showed the number of daily COVID-19 cases to be positively associated 
with the weather variables (i.e., temperature and relative humidity), 
while the Pearson correlation showed the relationships between 
COVID-19 cases the weather variables can be either negative or positive 
depending on different cities. 

The results from previous studies all highlight the impact of weather 

variables such as temperature and humidity on the spread of COVID-19, 
though the conclusions may vary significantly, e.g., Wu et al. (2020) 
found a negative relationship between temperature and COVID-19 cases 
whereas He et al. (2021) reported an increasing in temperature may 
yield an increase in daily COVID-19 cases in some cities. Moreover, these 
studies are based either on large (county) scale analyses or several 
distinct cities. Most research methods proposed in such studies did not 
consider public health interventions, such as mask wearing and social 
distancing, which can largely influence the transmission dynamics of 
COVID-19. In this study, we aim to provide a comprehensive analysis of 
the relationship between weather conditions and COVID-19 trans-
mission at the county level across the Continental U.S. (CONUS) on a 
daily basis. A machine learning algorithm is thus developed, by 
considering not only weather variables, but also the impact of public 
health interventions. Although the COVID-19 has been spreading across 

US since January 2020 and the pandemic is still ongoing as of April 
2021, for this work we focused on the period from January to September 
1st, 2020 because we considered the virus transmission was less 
impacted by vaccination conditions during this period. Thus, it should 
be easier to isolate and analyse the influence of weather factors. 

2. Study area and Data 

2.1. Study area 

The study was carried out in 48 states across CONUS, including 3142 
counties and independent cities. The population density varies widely 
across counties (Fig. 1 top). For example, the population density of New 
York County (Manhattan) is close to 27,000/km2 while the population 
density in some rural midwestern counties can be as low as 0.1/km2. The 
climate over CONUS varies due to the different terrain features and the 
wide range of latitudes (Fig. 1 bottom). Major climate types include 
humid continental, humid subtropical, semi-arid, desert, and Mediter-
ranean, which are all characterized by extremely different temporal and 
spatial patterns of temperature and humidity. 

2.2. Data collection 

2.2.1. COVID-19 data 
The nationwide county level COVID-19 data were provided by the 

University of Maryland COVID-19 Impact Analysis Platform (https:// 
data.covid.umd.edu) that was originally developed by Zhang et al. 
(2020, preprint) at the Maryland Transportation Institute (MTI) in 
partnership with the Center for Advanced Transportation Technology 
Laboratory (CATT Lab). 

The variables used in this study include the number of new COVID- 
19 cases (NewC) and the social distance index (SDI) at the county level. 
Both variables were extracted for the period of March 23rd to September 
1st, 2020. NewC represents the number of daily confirmed cases that 
tested positive to coronavirus detection. The SDI is an integer that 
ranges from 0 to 100 and represents the extent residents and visitors are 
practicing social distancing. A value of zero indicates that no social 
distancing is observed in the community, while 100 indicates that all 
residents are staying at home and no visitors are entering the county 
(Zhang et al., 2020, preprint). Specifically, Zhang et al. (2020 preprint) 
defined the SDI as a combination of six mobility metrics, according to 
the following equation:  

where SH stands for Staying Home, which is the percentage of residents 
staying at home; RAT is the percentage of Reduction of All Trips 
compared to a pre-COVID-19 benchmark; RBT is the reduction of busi-
ness trips (%), RNT is the reduction of non-business trips (%), RDT is the 
percent Reduction of Travel Distance; and ROT is the Reduction of 
Out-of-county Trips (%). The weights are chosen based on shared resi-
dents and visitor trips (e.g., about 20% of all trips are out-of-county 
trips, which led to the selection of a weight of 0.8 for resident trips 
and 0.2 for out-of-county trips); what trips are considered more essential 
(e.g., business trips more essential than non-work-related trips); and the 
principle that higher SDI scores should correspond to fewer chances for 
close-distance human interactions and virus transmissions. 

2.2.2. County attributes 
The county attributes used in this study, including boundary, area, 

SDI = 0.8[SH + 0.01(100 − SH)(0.1RAT + 0.2RBT + 0.4RNT + 0.3RDT)] + 0.2RTO (1)   
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and population, are collected from the U.S. Census Bureau (http 
s://www.census.gov/). The boundary and area data are based on the 
files in year 2015, while the population data are based on the 2019 
estimates. 

2.2.3. Weather data 
The weather variables are extracted from the North American Land 

Data Assimilation System – second phase (NLDAS-2) dataset (Xia et al., 

2012). NLDAS-2 is an upgraded version of the first phase of the multi- 
institution NLDAS-1 (Mitchell, 2004) project, which was initiated to 
provide coupled atmosphere–ocean-land models with reliable initial 
land surface states for improving weather predictions (Xia et al., 2012). 
The original NLDAS-2 is available at 1/8◦ and hourly spatial and tem-
poral resolution, respectively. We processed the gridded hourly NLDAS- 
2 data from March 23rd to September 1st, 2020 and obtained the county 
level daily mean values of temperature, specific humid, wind speed, 

Fig. 1. Top: Population Density by County over CONUS. Bottom: Köppen climate types of the U.S. (Map source https://en.wikipedia.org/wiki/Climate_of_the_Unite 
d_States. Data source: Köppen types calculated based on data from PRISM Climate Group https://prism.oregonstate.edu/explorer/). 
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shortwave radiation, and precipitation over CONUS. 

3. Methodology 

The study is organized in two parts. The first part presents a tradi-
tional statistical analysis to explore the impact of each weather variable 
on the COVID-19 transmission. In the second part of the study, we 
develop a machine learning algorithm. The overarching goal is to 
investigate which weather variable(s) can explain most of the COVID-19 
transmission variability across the U.S. 

3.1. Traditional statistical analysis 

This analysis assesses Pearson correlation coefficients of each 
weather variable and SDI versus the number of COVID-19 cases per 1000 
people (NewC1000) at the county level. The NewC1000 is used here 
instead of NewC for the sake of eliminating the influence of the county 
population on the results. In addition, to minimize the uncertainty of 
COVID-19 spreading due to population density, the analysis is applied to 
five separate county groups with population density: i) greater than 
10,000 people per mile2, ii) around 1000 people per mile2, iii) around 
500 people per mile2, iv) around 100 people per mile2, and v) around 10 
people per mile2. Moreover, as the COVID-19 disease transmission might 
be largely influenced by human activities, policies, and social 
distancing, the study time frame is divided into three periods according 
to different public health intervention levels: i) Period A: non-intervened 
COVID-19 transmission period (January 1st to March 22nd, 2020), ii) 
Period B: intervened period (most states issued mandatory stay-at-home 
orders, March 23rd to May 10th, 2020), and iii) Period C: reopening 
period (May 11th to September 1st, 2020). The correlation coefficients 
between each weather variable and COVID-19 case numbers are studied 
for each group of counties during each period of analysis. 

3.2. Machine learning algorithm 

Correlation coefficients used above are valid metrics when investi-
gating linear or slightly non-linear problems. Given the complicated 
nature and highly non-linear response of the COVID-19 transmission 
mechanisms, we hypothesized that the signal-to-noise ratio between the 
weather variables and the NewC might not be high enough to be 
detected due to the complex interactions coupled with human-related 
impacts. Thus, a nonparametric random forest (RF) regression algo-
rithm (Breiman, 2001; Liaw and Wiener, 2002) was adopted here to 
further investigate the impact of weather data on COVID-19 trans-
mission. An RF model is a collection of decision trees trained on a 
random subset of data, using a random subset of predictors. For training 
the RF model in this study, we used the NewC data, population and 
population density, SDI, and different selections of weather variables. 
Specifically, the RF model allows to predict daily NewC values at county 
level based on all available predictors. Theoretically, the RF model could 
also be used to predict future values of NewC by using weather forecasts, 
population data, and predicted SDI values. However, this study did not 
include the testing of future cases due to the lack of SDI predictions. 

The RF model was trained with three versions of predictor list 
(Table 1). The first version estimated NewC values utilizing eight pre-
dictors: county population, county population density, county SDI, and 
the five weather variables (daily maximum surface air temperature, 
daily maximum specific humid, daily maximum shortwave radiation, 
daily total precipitation, and daily maximum wind speed). The second 
version used the same list of predictors but removed three weather 
variables (shortwave radiation, precipitation, and wind speed). For the 
third version, all weather variables were removed in model training, 

leaving only three predictors (county population, population density, 
and SDI). 

The RF regression algorithm is applied for the intervened and 
reopening periods (Period B and Period C, March 23rd to September 1st, 

2020, 163 days in total) when the reported COVID-19 cases started to 
increase rapidly. The non-intervened period (Period A, January 1st to 
March 22nd, 2020) is eliminated in the RF model because of the limited 
records of nationwide COVID-19 cases. As there are 3112 counties and 
county equivalent administrative units across CONUS and each region 
has 163 days of weather, population, and COVID-19-related data, a total 
of over half a million data records are included in this study. First, we 
randomly selected 70% of the data records for the RF model training. 
The remaining 30% of the data records were used for independent model 
validation. In the RF model training procedure, for each tree, a different 
two-third subset was randomly taken from the training data records, 
while the remaining one-third of the training data records served as out- 
of-bag samples for model evaluation. The number of subset predictors 
for each tree in the forest was set to be 5 (out of 8) for the first version of 
the predictor list; 3 (out of 5) for the second version; and 2 (out of 3) for 
the third version. This procedure was carried out to quantify the 
importance of predictors for the NewC estimation in the RF model. 
Different numbers of trees were also investigated in the RF model 
training in order to identify an optimal number of trees (which would 
balance model accuracy with model efficiency). Specifically, the RF 
model performance using 10, 20, 30, 50, 60, and 100 trees was assessed, 
and results are shown in Section 4. 

3.3. Model performance measures 

The estimated number of the new COVID-19 cases by all three 
models for the validation data set are compared with the observed 
number of cases to determine which model gives the best prediction. As 
described in section 3.2, there are more than 151,000 county level data 
records included in the validation procedure. We adopt the normalized 
root-mean-square-error (NRMSE) and the Pearson correlation coeffi-
cient (CORR) to evaluate the model performances. The NRMSE can be 
calculated using 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1(NewCmodel, i − NewCobserved,i)
2

n

√

NewCobserved
(2) 

The CORR is obtained by  

Table 1 
RF model predictors.  

Predictors RF model 
version 1 

RF model 
version 2 

RF model 
version 3 

(8-predictor) (5-predictor) (3-predictor) 

Population ✓ ✓ ✓ 
Population density ✓ ✓ ✓ 
SDI ✓ ✓ ✓ 
Temperature (daily 

maximum) 
✓ ✓ – 

Specific humidity (daily 
maximum) 

✓ ✓ – 

Shortwave radiation (daily 
maximum) 

✓ – – 

Precipitation (daily 
accumulation) 

✓ – – 

Wind speed (daily 
maximum) 

✓ - -  
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where n is the number of county level validation data records; 
NewCobserved is the mean of the NewC values in the validation dataset, and 
NewCmodel is the model estimated ones. 

4. Results 

4.1. Temporal change of the COVID-19 and weather condition 

The CONUS total COVID-19 NewC values reached two peaks from 
January to September 2020 (Fig. 2). The NewC showed two peaks 
during this period. One was in late March and the other one was in mid- 

July. The spreading of COVID-19 mildly slowed down after the first peak 
mainly due to the mandatory stay-at-home orders issued in late March in 
many states. 

This is confirmed in the time series of county averaged SDI (Fig. 3f) 
that the SDI started to go up in late March because of the stay-at-home 
orders. With the stay-at-home orders gradually expiring in May and 
June, the SDI decreased immediately and the NewC value went up 
accordingly. The SDI is definitely a crucial factor that largely impact on 
COVID-19 transmission, while the impact of weather on COVID-19 is 
much more complicated. Unsurprisingly, the variation of CONUS aver-
aged weather condition (Fig. 3 a-e) reveals increasing trend for tem-
perature, specific humidity, and shortwave radiation, and there is no 
clear temporal pattern for precipitation and wind speed. None of the 
weather variables represents clear relationship with COVID-19 trans-
mission at CONUS scale. The quantitative relationship between the two 
needs to be further analysed at finer special scale such as county level. 

4.2. Traditional statistics 

The correlation coefficients between NewC1000 and each of the 

weather variables and SDI are shown for different group of counties in 
three periods at different public health intervention levels (Fig. 4). In the 
first period (January 1st to March 22nd, 2020), most of the weather 
variables show near-zero values in terms of correlation with NewC1000. 
This was because the COVID-19 had just started to spread across U.S. at 
that time. The number of COVID-19 cases was small and the health 
departments in most states were experiencing difficulty to collect the 
real-time data. In the second period (March 23rd to May 10th, 2020), 
although the stay-at-home orders began to be effective, the confirmed 
COVID-19 cases maintained at a relative high level in many regions 
(Fig. 2). The correlations between the weather variables and the 

Fig. 2. Time series of CONUS total NewC from January 1st to September 
1st, 2020. 

Fig. 3. The series of CONUS averaged a) temperature, b) specific humid, c) wind speed, d) precipitation, e) shortwave radiation, and f) SDI from January 1st to 
September 1st, 2020. 

CORR=

∑n
i=1

(
NewCmodel, i − NewCmodel

)(
NewCobserved,i − NewCobserved

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
NewCmodel, i − NewCmodel

)2∑n
i=1

(
NewCobserved,i − NewCobserved

)2
√ (3)   
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NewC1000 became more obvious except for precipitation which are still 
close to zero. In the third period, the correlation between temperature/ 
specific humidity and the NewC1000 became even stronger, while wind 
speed and shortwave radiation keep showing low values as the corre-
lations in the second period. The precipitation has no impact on the 
NewC1000 in all three periods. In addition, Fig. 4f reveals that the 
NewC1000 is affected by SDI, especially in densely populated regions. 
For the areas with low population density (i.e. 10 people per mile2), SDI 
rarely impact the NewC1000. 

Overall, SDI has a more obvious impact on COVID-19 transmission in 
densely populated regions. Among the five weather variables, 

temperature and specific humidity have higher influences on the 
COVID-19 transmission comparing to wind speed and shortwave radi-
ation. The precipitation can be considered as noninfluential to the 
COVID-19. These findings are consistent with the results of the RF 
regression model in section 4.3. 

Nevertheless, all the correlation coefficients (even the relative high 
values) shown in Fig. 4 are not high enough to demonstrate a convincing 
relationship between the weather variables or SDI and the number of 
COVID-19 cases. None of the graphs provides a strong and clear trend. 
Some of them even showed contradictory results. This phenomenon 
indicates that the traditional linear statistical analysis is not able to 

Fig. 4. Correlation coefficients between NewC1000 and weather variables or SDI of selected county groups.  

Fig. 5. Model performance in terms of (a) RMSE and (b) computation time as a function of the number of trees in the RF algorithm.  
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identify the impact of weather condition and social activity on COVID- 
19 transmission because of the complicated mechanism of their in-
teractions. The machine learning approach shown in next section is 
designed to investigate the complicated nature and highly non-linear 
relationships. 

4.3. RF regression model 

The RF model aims to estimate the NewC by randomly selecting 5 
predictors from the 8 initially identified (temperature, specific humid, 
wind speed, shortwave radiation, precipitation, county population, 
county population density, and the county SDI). The model is trained 
with different numbers of trees to select the optimal number in terms of 
model accuracy and efficiency. The performance of difference numbers 
of trees (Fig. 5a) is shown in terms of root mean square errors (RMSEs) of 
model-simulated NewC versus the observed NewC based on the 

validation data records (30% of the entire sample pool, around 152,701 
county level daily data records). The RMSE values decrease quickly with 
the increasing of tree numbers from 10 to 40. Then, it shows a mostly flat 
trend from 40 to 100 trees, though the RMSE still descends slightly. As 
expected, the model computation time (Fig. 5b) is increasing with 
adding more trees in the forest, while there is a flat step between 40 and 
50 trees. Finally, we chose the 50-tree RF model because it is accurate 
enough and more efficient than the 60-tree or 100-tree model settings. 

As described in section 3.2, the RF regression model was initially 
trained with 8 predictors, 5 of which are weather variables. Scatter plot 
based on the validation dataset (Fig. 6) shows that the model performs 
fairly well for observed NewC above 100, while the bias of the model 
estimates is evident for values below 100. Although points show a wide 
spread in the plot, a linear relationship is still distinguishable. Specif-
ically, the correlation coefficient of the data points depicted in Fig. 6 is 
0.84. 

Fig. 6. Scatter plots of estimated and observed NewC at the county level using 
the 8-predictor version of the RF model. 

Fig. 7. NRMSE (left) and CORR (right) between the estimated and observed new cases for counties with different population densities (based on RF model 8-pre-
dictor version). 

Table 2 
The permutation-based predictor importance for the 8-predictor RF model.  

Predictors Permutation-based importance 

Population 24 
Population density 18 
SDI 10 
Temperature (daily maximum) 12 
Specific humidity (daily maximum) 12 
Shortwave radiation (daily maximum) 8 
Precipitation (daily accumulation) 5 
Wind speed (daily maximum) 6  

Table 3 
NRMSE between Estimated and Observed NewC in validation data set.  

County population 
density [People/ 
Square Mile] 

NRMSE 

RF model 
version 1 (8- 
predictor) 

RF model 
version 2 (5- 
predictor) 

RF model 
version 3 (3- 
predictor) 

0.1–10 4.29 4.06 4.88 
10–100 3.28 2.84 3.08 
100–500 2.74 3.09 3.31 
500–1000 1.35 1.43 1.55 
1000–5000 1.35 1.30 1.57 
>5000 0.98 1.05 1.09 

All testing counties 3.46 3.56 3.96  
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The model accuracy is affected by county population density as well. 
There is a clear decreasing trend of the NRMSE between the model 
estimated and the observed NewC as population density increases 
(Fig. 7). This performance is substantiated by the higher correlation 
coefficients observed in more densely populated counties, with the only 
exception of a small peak value for population densities between 100 
and 500 people/mile2. 

Table 2 lists the predictor importance for the 8-predictor RF model. 
The importance of a predictor in the RF algorithm is estimated by 
looking at how much the prediction error increases when the out-of-bag 
data for that predictor is permuted while all others are left unchanged. 
Specifically, for each tree in the forest, the model records the mean 
square error (MSE) of the prediction on the out-of-bag portion of the 
data, then the same procedure is followed after permuting each pre-
dictor. Finally, the difference between the two MSEs is averaged over all 
trees and normalized by the standard deviation of the differences. The 
most important predictors in this RF model for estimating NewC are 
population and population density, followed by the SDI and the 5 
weather variables. Temperature and specific humidity are more 
important than shortwave radiation, wind speed, and precipitation, with 
precipitation being the least important predictor in the RF model, which 
is consistent with the results of the traditional statistical analysis pre-
sented in section 4.2. 

Considering the low importance of shortwave radiation, wind speed, 
and precipitation shown in the 8-predictor RF model, a 5-predictor RF 
model was trained without these 3 predictors. Furthermore, a RF model 
in which all weather variables were eliminated was trained with only 3 
predictors (population, population density, and SDI). Normalized 
RMSEs for the three RF models (Table 3) is shown for county groups 
with different population density. A similar comparison for correlation 
coefficients is presented in Table 4. Overall, the performance of the 8 
and 5 predictor RF models is comparable. The lowest Normalized RMSE 
and highest correlation coefficients are shown in either the 8 or the 5 
predictor RF model. It is worth noting that the 5-predictor RF model 
performs the best in low population density regions (less than 100 
people/square mile), while the 8-predictor RF model shows best scores 
in the moderate population density regions (100–1000 people/square 
mile). The RF model with no weather variable (3-predictor model) is 
never the winner for any county group, which indicates the effectiveness 
of using weather variables for predicting COVID-19 cases. To summa-
rize, the addition of weather variables, temperature and specific hu-
midity in particular, improves the RF model performance in the 
estimation of COVID-19 cases. 

4.4. Discussion 

In general, the RF models show competitive results in the 8-predictor 
version and the 5-predictor version (Tables 3 and 4), which indicate that 
the most important weather variables are temperature and humidity. 
However, the mechanism for which temperature and humidity impact 
the COVID-19 transmission is complex. There are a couple of hypotheses 

that may explain such phenomenon. First, the COVID-19 transmission is 
highly affected by social activities that are usually sensible to temper-
ature. People tend to gather inside in cold and hot days but are prone to 
outdoor activities in warm weather. Considering that the virus spreads 
more efficiently when people share limited indoor spaces, the temper-
ature variation could have indirect impact on COVID-19 transmission. 
Humidity is another key weather factor on COVID-19 transmission as 
the aerosol spread of virus is possibly dependent on ambient humidity 
and temperature. Lowen et al. (2007) investigated 20 experiments 
performed for different relative humidity values ranging from 20% to 
80% and different temperatures (5 ◦C, 20 ◦C, or 30 ◦C), indicating that 
both cold and dry conditions favor transmission. Their results could 
partly explain the crucial importance of humidity and temperature that 
we observe in the RF models we developed. 

As described in section 3.2, the RF models presented above are all 
built using daily maximum values of the weather variables (except for 
precipitation). For a more comprehensive understanding of the effects of 
weather condition, daily mean weather variables are also tested in the 
models. However, the RF model based on daily mean weather variables 
are found to be slightly, but constantly, less accurate than the daily 
maximum weather variable-based model for estimating NewC (Table 5). 
A possible explanation is that the maximum value of weather variables 
(e.g. daily maximum temperature) could have more impact on the 
people’s social activities than average values and therefore have stron-
ger influence on COVID-19 transmission. 

Moreover, it is worth to mention that the process of data collection, 
especially for the daily number of COVID-19 cases, can be influenced by 
some uncertainties. For example, the number of reported cases tends to 
decrease during weekends due to the lab working schedule; testing or 
reporting delays could happen in many circumstances; the case number 
can also be affected by the accessibility of testing resources in a region, 
etc. All these factors introduce uncertainties in the original data set thus 
affect the accuracy of the model. 

5. Conclusions 

The study presented a traditional statical approach and a machine 
learning algorithm to analyse the impact of weather, population, and 
social activity factors on COVID-19 transmission in terms of daily 
COVID-19 cases (i.e., NewC) for all the counties over CONUS. Specif-
ically, we considered 8 factors: county population, county population 
density, county SDI (i.e. social distance index), and the 5 daily weather 
variables (air temperature, specific humidity, shortwave radiation, total 

Table 4 
CORR between Estimated and Observed NewC validation data set.  

County population 
density [People/ 
Square Mile] 

CORR 

RF model 
version 1 (8- 
predictor) 

RF model 
version 2 (5- 
predictor) 

RF model 
version 3 (3- 
predictor) 

0.1–10 0.57 0.59 0.50 
10–100 0.52 0.60 0.51 
100–500 0.76 0.75 0.65 
500–1000 0.66 0.63 0.58 
1000–5000 0.75 0.76 0.64 
>5000 0.944 0.938 0.91 

All testing counties 0.84 0.85 0.77  

Table 5 
Comparison of RF model performances with daily maximum and daily mean 
weather variables.  

Model NRMSE CORR 

Model with 
daily 
maximum 
weather 
variables 

Model with 
daily mean 
weather 
variables 

Model with 
daily 
maximum 
weather 
variables 

Model with 
daily mean 
weather 
variables 

RF model 
version 1 (8- 
predictor, in 
which 5 of 
them are 
weather 
related) 

3.46 3.85 0.84 0.82 

RF model 
version 2 (5- 
predictor, in 
which 3 of 
them are 
weather 
related) 

3.56 3.34 0.85 0.84  
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precipitation, and wind speed). 
The traditional statistical approach (i.e., correlation coefficients be-

tween each weather factor and NewC) shows weak correlations co-
efficients between NewC values and most of the weather factors, while 
the precipitation does not show any correlation with NewC. 

The machine learning approach adopts a random forest model to 
estimate county level daily NewC values by the 8 factors aforemen-
tioned. Three version of the RF model are tested using different subsets 
of the 8 factors (Table 1). The validations of the three RF models show 
that the general value of correlation coefficient between the daily 
COVID-19 cases estimated by the random forest model and the observed 
ones is around 0.85. Results also show that the most important pre-
dictors in the RF model for the NewC estimation are population and 
population density, followed by the SDI and the 5 weather variables. 
Temperature and specific humidity are more important than shortwave 
radiation, wind speed, and precipitation. Precipitation is the least 
important predictor in the RF model, which is consistent with the result 
by the traditional statistical approach. 

Most weather variables in the RF models presented in this study are 
based on their daily maximum value, except for precipitation. The daily 
mean weather variables are also tested in the models but found be to less 
accurate than the daily maximum weather variable-based model 
(Table 5). 

To our current knowledge, this paper is among few of the studies 
presenting COVID-19 transmission at county level and daily scale across 
the entire U.S. We acknowledge that a single study here is not enough to 
fully resolve the question of how weather and social activity conditions 
affect COVID-19 transmission. But we believe the presented paper did 
successfully demonstrate a systematic and robust framework towards 
addressing the mechanics in COVID-19 transmission with regards to a 
variety of weather conditions. In the future work, we will extend the 
study period and incorporate additional parameters such as the per-
centage of population fully vaccinated into the model to achieve more 
comprehensive analysis. 
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