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A B S T R A C T   

The outbreak of coronavirus disease (COVID-19) has become one of the most challenging global concerns in 
recent years. Due to inadequate worldwide studies on spatio-temporal modeling of COVID-19, this research aims 
to examine the relative significance of potential explanatory variables (n = 75) concerning COVID-19 prevalence 
and mortality using multilayer perceptron artificial neural network topology. We utilized ten variable impor-
tance analysis methods to identify the relative importance of the explanatory variables. The main findings 
indicated that several variables were persistently among the most influential variables in all periods. Regarding 
COVID-19 prevalence, unemployment and population density were among the most influential variables with the 
highest importance scores. While for COVID-19 mortality, health-related variables such as diabetes prevalence 
and number of hospital beds were among the most significant variables. The obtained findings from this study 
might provide general insights for public health policymakers to monitor the spread of disease and support 
decision-making.    

List of Abbreviations 
ANN artificial neural network 
CW connection weights 
FR fatality rate 
GA Garson’s algorithm 
GIS geographic information system 
GR growth rate 
PR prevalence rate 
PR-IQR prevalence rate in interquartile range 
MR mortality rate 
MR-IQR mortality rate in interquartile range 
MSE mean squared error 
PD partial derivatives 
RMSEIQR root mean square error in interquartile range 
MCW modified connection weights 
MS model selection 
SLP single-layer perceptron 
TMMR trimmed mean mortality rate 
VIA variable importance analysis 
VIF variance inflation factor 

WIC weighted information criterion 

1. Introduction 

On January 29, 2020, the World health organization (WHO) 
declared the coronavirus disease (COVID-19) an epidemic, and shortly 
after, on March 11, 2020 announced it a pandemic (World Health Or-
ganization (WHO) 2020a). As of October 1, 2021, almost 234 million 
cases and more than 4.7 million associated deaths related to the disease 
have been reported globally (World Health Organization (WHO) 
2021b). The outbreak of this acute respiratory infection has adversely 
impacted individuals and societies (Wang et al., 2020). Although initial 
cases of COVID-19 were found in China, the transmission pattern of the 
virus has changed many times, causing irreparable damages worldwide 
(Mansour et al., 2021). 

Understanding the interactions between the determinant variables 
and health outcomes seems incomprehensible. In recent decades, arti-
ficial neural networks (ANNs) have been widely utilized to model the 
relationship between the factors and infectious diseases (Mollalo et al., 
2020, Mollalo et al., 2019). The primary aim of ANNs is to predict the 
future status or unknown values of a particular dependent variable from 
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a given set of independent variables. However, within ANNs, quanti-
fying the contribution of each input variable in predicting the health 
outcome is difficult (Ripley, 2007). 

Previous studies have utilized various ANNs topologies to quantify 
the contribution of explanatory variables on dependent outcomes. Duh 
et al. (1998) proposed multilayer neural networks for evaluating the 
input weights of ANNs. They validated this technique on three datasets 
and found that ANNs are effective in epidemiologic problems that 
require complicated classification techniques. Olden and Jackson 
(2002) examined the neural interpretation diagram, Garson’s algorithm, 
and sensitivity analysis to understand neural network relation weights. 
They showed that by extending randomization methods to ANNs, the 
black box mechanics of ANNs could be illuminated. Olden et al. (2004) 
proposed the connection weights approach and argued that this 
approach is the least biased method that can accurately quantify the 
variable importance. Ibrahim (2013) provided a modification to the 
connection weights algorithm and most squares method in multilayer 
perceptron (MLP) neural networks. They used crop production as a case 
study and compared this model with the connection weights algorithm, 
dominance analysis, Garson’s algorithm, partial derivatives, and mul-
tiple linear regressions. The proposed algorithms’ output was evaluated 
using empirical evidence. Their findings indicated that the most squares 
method outperformed other methods, which was consistent with the 
results of multiple linear regressions in terms of partial R2 (Özesmi and 
Özesmi, 1999). 

Because of the complexity of interactions between variables, 
particularly in large datasets, variable importance analysis (VIA) has 
gained attention in many practical applications (Ferretti et al., 2016). 
VIA is a critical task in classification or regression problems to improve 
model interpretability, computational costs, data storage, and ulti-
mately provide a sparse model without sacrificing prediction capacity 
(Wei et al., 2015). Dealing with various balance scenarios, Dfuf et al. 

Table 1 
Various indicators used as target values for prevalence.  

Indicator Formula 

Prevalence rate 
(PR) 

Total COVID19 confirmed cases
Total population

× 106  

Prevalence rate 
in 
interquartile 
range (PR- 
IQR) 

Total COVID19 confirmed cases (in IQR)
Total population

× 106  

Trimmed mean 
rate (TMR) 

Trimmed mean of COVID19 confirmed cases
Total population

× 106  

Growth rate 
(GR1) 

Total COVID19 confirmed cases
Cumulative number of confirmed cases at the beginning of the period   

Table 2 
Various indicators used as target values for mortality.  

Indicator Formula 

Mortality rate 
(MR) 

Total COVID19 deaths
Total population

× 106  

Mortality rate 
in 
interquartile 
range (MR- 
IQR) 

Total COVID19 deaths (in IQR)
Total population

× 106  

Trimmed 
mean 
mortality 
rate 
(TMMR) 

Trimmed mean of COVID19 deaths
Total population

× 106  

Growth rate 
(GR2) 

Total COVID19 deaths
Cumulative number of confirmed deaths at the beginning of the period  

Fatality rate 
(FR) 

Total COVID19 deaths
Total COVID19 confirmed cases

× 106   

Table 3 
The category, name, and source of the variables.  

Category Variable Source 

Demographic 
(25 variables) 

Population, male (% of total 
population) 

World bank (World Bank 
February 1, 2021)  

Population, female (% of total 
population) 

World bank  

Population ages 0-14 (% of total 
population) 

World bank  

Population ages 0-14, male (% of 
male population) 

World bank  

Population ages 0-14, female (% of 
female population) 

World bank  

Population ages 15-64 (% of total 
population) 

World bank  

Population ages 15-64, male (% of 
male population) 

World bank  

Population ages 15-64, female (% 
of female population) 

World bank  

Population ages 65 and above (% of 
total population) 

World bank  

Population ages 65 and above, 
male (% of male population) 

World bank  

Population ages 65 and above, 
female (% of female population) 

World bank  

Population density (people per sq. 
km of land area) 

World bank  

Urban population (% of total 
population) 

World bank  

Urban population growth (annual 
%) 

World bank  

Rural population (% of total 
population) 

World bank  

Rural population growth (annual 
%) 

World bank  

Population in the largest city (% of 
urban population) 

World bank  

Age dependency ratio (% of 
working-age population) 

World bank  

Birth rate, crude (per 1,000 people) World bank  
Death rate, crude (per 1,000 
people) 

World bank  

Physicians (per 1,000 people) World bank  
Nurses and midwives (per 1,000 
people) 

World bank  

Hospital beds (per 1,000 people) World bank  
Age dependency ratio, old (% of 
working-age population) 

World bank  

Age dependency ratio, young (% of 
working-age population) 

World bank 

Economic 
(19 variables) 

Labor force participation rate, total World bank  

Labor force participation rate, male World bank  
Labor force participation rate, 
female 

World bank  

Employment to population ratio, 
15+, total 

World bank  

Employers, total (% of total 
employment) 

World bank  

Employers, male (% of male 
employment) 

World bank  

Employers, female (% of female 
employment) 

World bank  

Vulnerable employment, total World bank  
Unemployment, total World bank  
Unemployment with advanced 
education 

World bank  

Unemployment, male (% of male 
labor force) 

World bank  

Unemployment, female (% of 
female labor force) 

World bank  

International migrant stock World bank  
Poverty headcount ratio at national 
poverty lines 

World bank  

Inflation, consumer prices World bank  
GDP per capita World bank  
GDP per capita growth World bank 

(continued on next page) 

N. Kianfar et al.                                                                                                                                                                                                                                 



Spatial and Spatio-temporal Epidemiology 40 (2022) 100471

3

(2020) introduced the nonparametric mh − χ2 variable importance 
technique, which uses a multivariate continuous response system to 
select and rank the most influential variables. The method measures the 
dissimilarities between the distribution of errors caused by the base 
learner before and after permuting the variable. Casiraghi et al. (2020) 
used a prediction model, “an explainable machine learning decision 
system based on additive trees”, which processed clinical, radiological, 
and laboratory data of COVID-19 patients to predict the risk of severe 
outcomes. They combined Boruta and random forest in a 10-fold 
cross-validation scheme to produce variable importance estimates not 
affected by the presence of surrogates. Pasha et al. (2021) employed 
multiple linear regression and a nonlinear regression based on 43 
socio-economic and meteorological variables of 31 counties in Califor-
nia, United States. They found that the total population, household in-
come, occupation, and transportation are more influential on COVID-19 
spread than other variables. Shaffiee Haghshenas et al. (2020) applied 
ANNs based on particle swarm optimization and differential evolution 
algorithms to prioritize climatic and urban factors. They found that 
population density and humidity were the most influential variables to 
predict the confirmed COVID-19 cases. 

In addition to the machine learning algorithms, the geographic 

information system (GIS) is a robust tool for analysis and visualizing 
many public health problems (Mollalo et al., 2015, 2018). Recent 
GIS-based research has shown that several factors such as air quality 
(Bashir et al., 2020), population flow (Zhang and Schwartz, 2020, Jia 
et al., 2020), and population density (Ahmadi et al., 2020, Ramírez and 
Lee, 2020) could contribute to the higher rates of COVID-19 morbidity 
and mortality. In the Caribbean, Moonsammy et al. (2021) applied 
spatial lag and linear regression models to identify spatial clusters of 
COVID-19 and the most influential socio-economic variables. They 
suggested that COVID-19 cases and deaths in the Caribbean have a 
spatial connection with mainland countries. They also concluded that 
population transmission could contribute to higher COVID-19 spread. 
The consequences of the COVID-19 outbreak on the environment have 
also been investigated in some studies. For instance, Ambade et al. 
(2021) examined the levels of three air pollutants, namely particulate 
matter (PM2.5), Black Carbon (BC), and Polycyclic Aromatic Hydrocar-
bons (PAHs), in Jamshedpur city, India. Their results indicated that the 
concentrations of the contaminants were reduced during the lockdown 
compared to unlock down circumstances and regular days. Gautam 
(2020) showed that India experienced a large decrease in aerosol con-
centration during the lockdown, which led to fewer deaths during the 
outbreak. Gautam (2020) also suggested that lockdowns could help 
Asian and European countries experience lower levels of NO2. On the 
other hand, in China, Wang et al. (2020) demonstrated that quarantine 
actions would not be sufficient to prevent severe air pollution despite 
reductions in transportation and industrial emissions. 

COVID-19 transmission is not limited to national borders and 
geographical territories. The primary focus of many studies that utilized 
machine learning methods such as ANNs was limited to a specific 
geographic location and applied pure spatial analysis with few sets of 
parameters while disregarding the impact of various potential variables 
over time. Therefore, to bridge the gap, this study investigates the in-
fluence of a broad range of explanatory variables (n = 75) on disease 
prevalence and mortality using VIA methods based on ANNs, across the 
globe. This research optimized ANNs structure using a weighted infor-
mation criterion (WIC) index to improve modeling accuracy. Moreover, 
as COVID-19 has shown various behaviors and mutated several times, 
different indicators were used to estimate mortality and morbidity rates 
over time. For this purpose, nine targets have been used to study the 
neural network’s learning process with distinct desires. 

2. Materials and methods 

2.1. Data 

The daily COVID-19 data were obtained from WHO (World Health 
Organization (WHO) 2021b) from the beginning of March 2020 to the 
end of February 2021. The data contained new confirmed COVID-19 
cases and newly confirmed deaths for all countries. Moreover, nine 
different indicators were used to study the learning process of further 
modeling. The formula for each indicator can be found in Table 1 (for 
prevalence) and Table 2 (for mortality). We divided the COVID-19 data 
into four equal time intervals (3-month periods): early March 2020 to 
the end of May 2020 (Period 1), early June 2020 to the end of August 
2020 (Period 2), early September 2020 to the end of November 2020 
(Period 3), and early December 2020 to the end of February 2021 
(Period 4). In addition to COVID-19 data, a set of 75 variables, including 
demographic, environmental, social, economic, cultural, health, and 
public transportation variables was compiled at the country level as 
explanatory variables. The category, name, and source of the variables 
are presented in Table 3. 

2.2. Variables selection 

Existence of many correlated explanatory variables (n = 75) may 
cause multicollinearity which can in turn reduce the generalizability of 

Table 3 (continued ) 

Category Variable Source  

GNI per capita World bank  
GNI per capita growth World bank 

Environmental 
(11 variables) 

CO2 emissions from transport World bank  

CO2 emissions from electricity and 
heat production 

World bank  

CO2 emissions from manufacturing 
industries and construction 

World bank  

CO2 emissions from residential 
buildings and commercial and 
public services 

World bank  

Methane emissions World bank  
Nitrous oxide emissions World bank  
PM2.5 air pollution, mean annual 
exposure 

World bank  

Tropopause Height Giovanni (Giovanni, 
2021)  

Surface layer height Giovanni  
surface precipitation Giovanni  
Surface air temperature Giovanni 

Social 
(9 variables) 

Literacy rate, adult total World bank  

Freedom to make life choices World happiness report ( 
Helliwell et al., 2018)  

Happiness World happiness report  
Life Ladder World happiness report  
Social support World happiness report  
Perceptions of corruption World happiness report  
Positive affect World happiness report  
Negative affect World happiness report  
Confidence in national government World happiness report 

Health 
(7 variables) 

Life expectancy at birth, total 
(years) 

World bank  

Prevalence of severe food 
insecurity in the population 

World bank  

Mortality from CVD, cancer, 
diabetes or CRD 

World bank  

Incidence of tuberculosis World bank  
Diabetes prevalence World bank  
Incidence of HIV World bank  
Healthy life expectancy at birth World happiness report 

Public 
transportation 
(2 variables) 

Air transport, passengers carried World bank  

Railways, passengers carried World bank 
Cultural 

(2 variables) 
Religion diversity index Pew Research Center ( 

Pew Research Center 4 
April. 2014)  

Generosity World happiness report  
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the models due to overfitting. In order to reduce multicollinearity, 
variance inflation factor (VIF) was used (Shrestha, 2020). Using VIF and 
also Pearson’s correlation analysis, 18 correlated variables were 
removed, and the most uncorrelated ones were selected as the input of 
the further employed models. 

2.3. Model development 

ANNs are computational systems consisting of a large number of 
connected nodes called neurons (Civco, 1993). ANNs can identify the 
relationships among dependent and independent variables, which helps 
in understanding system function (Kang et al., 2011). Neurons in these 
networks are structured in different layers, including input layer, output 
layer, and hidden layer(s). There is full connections between the neurons 
in the input layer and the ones in the hidden layer. Likewise, each 
neuron in the hidden layer is connected to the neurons in the output 
layer (Mollalo et al., 2019). Fig. 1 shows the topology of a single-layer 
neural network with a non-linear sigmoid transfer function in the hid-
den layer and a linear function in the output layer. Theoretically, any 
function with a finite number of discontinuities can be approximated by 
using a single-layer neural network with a non-linear sigmoid transfer 
function in the hidden layer and a linear one in the output layer (Fig. 1) 
(Yonaba et al., 2010). Therefore, in this study, single-layer perceptron 
(SLP) neural networks with the mentioned characteristics were 
employed. 

The ultimate purpose of this research is to assess the relative 
importance of various variables in modeling COVID-19 prevalence and 
mortality over time. For this purpose, we first optimized the structure of 
ANNs for hyperparameters, number of neurons in the hidden layer, and 
learning parameters (Ojha et al., 2017). We used Bayesian regulariza-
tion method to train the network while addressing overfitting problem 
and complex interactions between variables (Kayri, 2016). Then we 
determined the optimum number of neurons in the hidden layer using 
WIC index (Eğrioğlu et al., 2008). Based on this method, the number of 
neurons in the hidden layer was systematically increased from one to the 
number of variables, and then the WIC index value of each model was 
calculated. The lower model’s WIC index indicates a more efficient 
model (Eğrioğlu et al., 2008). Fig. 2 shows the WIC index model selec-
tion process. 

Different targets were used as the desired value (system output) as 

COVID-19 has shown various behaviors and mutated several times to 
estimate mortality and morbidity rates. For this purpose, nine different 
targets have been used to study the neural network’s learning process 
with different desires. The accuracy for each of these targets was eval-
uated by ANNs. A target with highest accuracy suggests a highest suit-
ability for determining the importance of variables and thus was 
selected as the optimum target for modeling. 

As the indicators are not in the same scale, the resulting models have 
been compared with each other by the normalized root mean square 
error interquartile index (RMSEIQR) (Li et al., 2019). Compared to the 
RMSE, which is a scale-dependent index and partly sensitive to outliers 
and extreme values, RMSEIQR can be used as a practical index for 
comparing models over various concentration scales (Li et al., 2019). 
Moreover, RMSEIQR was used as a common tool to assess and measure 
the uncertainty of the results (Wechsler and Kroll, 2006). 

After variable selection, we assessed the relative importance of the 
selected variables in modeling COVID-19 prevalence and mortality for 
each period. The following steps explain the process of determining 
relative importance of variables in each period (Fig. 3): 

Step 1: Different target values from COVID-19 data were generated 
as described in 2. 

Step 2: WIC index was used to determine optimum network archi-
tecture for modeling each type of target (model selection). Nine of them 
were chosen from the n * m models (n: number of explanatory variables; 
m: number of targets) in total. 

Step 3: Models were developed based on optimum networks and 
their RMSEIQR were computed. 

Step 4: Two separate models (prevalence and mortality) with the 
lowest RMSEIQR values for each period were selected. 

Step 5: The variables were ranked based on relative importance using 
VIA methods. Ten different methods were used to perform VIA through 
the MLP artificial neural network. These ten VIA methods are described 
in the next section. 

2.4. Variable importance analysis (VIA) 

The relative importance of input variables refers to each variable’s 
contribution to predict the dependent variable (Ibrahim, 2013). Ten VIA 
methods were used to derive the relative importance of variables from 
these qualified networks: connection weights algorithm, modified 

Fig. 1. A single-layer neural network with a non-linear sigmoid transfer function in the hidden layer and a linear function in the output layer.  
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connection weights, most squares, Garson, partial derivatives, stepwise, 
perturb, Lek’s profile, modified Lek’s profile, and variance-based ap-
proaches. The findings of these approaches can be integrated to draw a 
general inference. For this purpose, the total of the relative weights 
obtained from various methods (in percent) was calculated for each 
variable. This was performed individually for each period, for both 
infected cases and associated deaths. Below, we briefly explained the 
VIA techniques used in this study to quantify the relative importance of 
selected variables used in ANNs. 

Connection weights (CW) algorithm 
The main benefit of the CW algorithm is that the relative contribu-

tion of each connection weight is preserved for both magnitude and sign 
(Olden et al., 2004, Ibrahim, 2013). The relative importance of a given 
input variable can be defined as Eq. (1). 

RI =
∑m

y=1
wxywyz (1) 

Where RI is the relative importance of the input layer, x is the input 

neuron, y is the total number of neurons in the hidden layer, and z is the 
output neuron. This method estimates the final network weights ob-
tained through network training. The estimates of final weights differ 
depending on the initial weights used at the beginning of the training 
phase (Olden et al., 2004). 

Modified connection weights (MCW) algorithm 
Using the same notation as the CW algorithm, after calculating the 

sum of product of final weights of connections from input neurons to 
hidden neurons, a correction term (partial correlation) is multiplied by 
this sum and the absolute value is taken. This absolute value is called the 
corrected sum. The corrected sum of each input is then divided by the 
total corrected sum to determine the relative importance of each input in 
the MCW algorithm, which is calculated as Eqs. (2) and (3) (Ibrahim, 
2013). 

RI =
∑m

y=1wxywyz × rij.k
∑n

x=1
∑m

y=1wxywyz
(2)  

Fig. 2. WIC index for model selection process.  
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rij.k =
rij − rki × rkj

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − r2
ki) ×

(
1 − r2

kj

)√ (3) 

Where rij.k is the partial correlation of input i with output j after input 
k, which assesses the association degree between two random variables. 
Moreover, rij denotes the simple correlation between input i and 
output j. 

Most squares 
Using the same notation as the CW algorithm, the most squares 

approach computes the sum of the squared between initial weight (wi
xy) 

and final weight (wf
xy) for each input. The sum of squared differences for 

each input is then divided by the total sum of all inputs. Eq. (4) is used to 
calculate the relative importance of each input (Ibrahim, 2013). 

RI =

∑m
x=1

(
wi

xy − wf
xy

)2

∑m
x=1

∑n
y=1

(
wi

xy − wf
xy

)2 (4) 

Garson’s algorithm (GA) 
GA partitions the neural network relative weights and then uses the 

absolute values of the final correlation weights. Thus, GA does not 
include the direction of the relationship between the input and output 
variables (Eq. (5)) (Garson, 1991). 

RI =
∑n

x=1

⃒
⃒wxywyz

⃒
⃒

∑m
y=1

⃒
⃒wxywyz

⃒
⃒

(5) 

Partial Derivatives (PD) method 
The output variable in the PD method would decrease when the input 

variable increases if the PD is negative (Ibrahim, 2013). 

dji = Sj

∑nh

h=1
whoIhj

(
1 − Ihj

)
wih (6)  

SSDi =
∑N

j=1

(
dji
)2 (7) 

Fig. 3. The steps for determining the relative importance of variables in each period.  
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In Eq. (6), yj is the output with respect to input xj, N denotes the total 
number of observations in a network with ni inputs, one hidden layer 
with nh neurons, and one output neuron. Sj is the derivative of the output 
neuron with respect to the corresponding input. Ihj is the hth hidden 
neuron’s output, and who and wih are the correlation weights between the 
output neuron and the hth hidden neuron, and between the ith input 
neuron and the hth hidden neuron, respectively. In Eq. (7), SSDi is the 
sum of the square partial derivatives. 

Stepwise method 
The stepwise method involves adding or removing one input variable 

step by step while considering the effect on the output result. Depending 
on various arguments, the input variables are ranked according to their 
significance based on the changes in mean squared error (MSE). The 
largest increases or decreases in MSE due to input deletions are used to 
classify inputs in order of importance (Sung, 1998). 

Perturb method 
Perturb method aims to measure how minor changes in each input 

will affect the neural network output. The algorithm modifies one var-
iable’s input values while leaving the others unchanged. The output 
variable’s responses to each change in the input variable are registered. 
The input variable with the greatest relative effect on the output is the 
one with the largest changes. The input variables are classified accord-
ing to the impact of the small changes (Gevrey et al., 2003). 

Lek’s profile method 
In Lek’s profile method, each input variable is studied while the 

others are blocked at fixed values. The basic idea behind this method is 

to create a fictitious matrix that encompasses the entire range of input 
variables. Each variable is divided into a set of equal intervals between 
its minimum and maximum values. Except for one, all variables are set 
to their minimum, first quartile, median, third quartile, and maximum 
values at the beginning. The median value is subtracted from these five 
numbers. The output variable’s profile is plotted for the considered 
values (Gevrey et al., 2003). 

Modified Lek’s profile method 
Despite in Lek’s profile method where the input variables were kept 

constant at five points, Modified Lek’s profile method selects an input 
variable and partitions it into 12 parts. Further, a qualified ANN is 
evaluated for each point of the partitioned variable’s range and is 
implemented for each fixed values. The average of the outputs for each 
scale point is determined. This process is repeated until all ANN input 
variables could be assessed. The resulting curve profile for each input 
variable is then plotted (do Nascimento et al., 2019). 

Variance based method 
Variance based method computes and updates the variance for given 

variables. It has the advantage of not requiring the values to be stored for 
computing the variance at the end. To measure the variance in this 
method, the sum of squares is updated by previous values according to 
Eq. (9), and then the variance values are calculated using Eq. (10) 
(Welford, 1962). 

xn =
∑n

i=1

xi

n
(8)  

SSn = SSn− 1 +

(
n − 1

n

)(

xn − xn− 1

)2

(9)  

Var(xn) =
SSn− 1

n − 1
+

(

xn − xn− 1

)

n
(10) 

Where x represents the mean of values, SSn is the corrected sum of 
squares, and n is the total number of updates. 

3. Results 

Based on the lowest obtained values for RMSEIQR, we selected 
prevalence rate in interquartile range (PR-IQR) as the target for 
modeling the prevalence rates of COVID-19 in each studied period 
(Table 4). The spatio-temporal variations of prevalence rates in IQRs for 
each period has been depicted in Fig. 4. According to Fig. 4, the coun-
tries in North and South America had a persistent higher prevalence 
rates in IQR than the rest of the world in all periods. In the period 2, the 
countries in continental Europe and America showed a relatively 
increasing trend in COVID-19 prevalence compared to the period 1, as 
the prevalence rates in IQR values have increased in these areas. The 
period 3 was the peak of the disease prevalence compared to other pe-
riods. During this period, Europe and most countries in north Asia were 
significantly infected by COVID-19. 

In period 4, the prevalence rates slightly decreased compared to 
period 3. This reduction in changes is more visible in America, maybe 
due to earlier initiation of vaccination programs. However, the countries 
of Central and South Africa have had no remarkable differences in 
prevalence rates (in all periods), except for the southernmost ones, 
including South Africa and Namibia, which have had the highest prev-
alence rates in IQR over time (Fig. 4). 

Regarding COVID-19 deaths, we selected mortality rate (MR) as the 
target indicator in all periods due to the lowest values of RMSEIQRs 
(Table 4). The spatio-temporal distribution of the MRs is demonstrated 

Table 4 
Selected models in step 2 and 4.  

Period Target 
type 

Optimum number of 
neurons 

RMSEIQR Selected to 
perform VIA? 

Period 
1 

PR 23 0.017 No 
PR-IQR 17 0.011 Yes 
TMR 25 0.051 No 
GR1 28 0.02 No 
MR 18 0.085 Yes 
MR-IQR 16 0.218 No 
TMMR 27 0.512 No 
GR2 22 0.245 No 
FR 17 0.451 No 

Period 
2 

PR 24 0.005 No 
PR-IQR 5 0.003 Yes 
TMR 7 0.022 No 
GR1 3 0.419 No 
MR 13 0.012 Yes 
MR-IQR 9 0.021 No 
TMMR 21 0.423 No 
GR2 16 0.471 No 
FR 28 0.474 No 

Period 
3 

PR 2 0.03 No 
PR-IQR 5 0.02 Yes 
TMR 10 0.165 No 
GR1 7 0.421 No 
MR 6 0.08 Yes 
MR-IQR 8 0.115 No 
TMMR 23 0.776 No 
GR2 7 0.841 No 
FR 26 0.887 No 

Period 
4 

PR 2 0.057 No 
PR-IQR 4 0.032 Yes 
TMR 7 0.089 No 
GR1 5 0.196 No 
MR 21 0.015 Yes 
MR-IQR 17 0.04 No 
TMMR 24 0.426 No 
GR2 18 0.359 No 
FR 18 0.901 No  
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in Fig. 5. According to Fig. 5, the changes in MR trends is more visible in 
America and Europe continents. In period 1, the distribution of MR was 
almost uniform across the world. Moreover, in the first period, most 
countries experienced lower MR rates compared to the following pe-
riods. In the period 2, South American countries including Brazil, 
Argentina, Bolivia, Peru, and Colombia experienced higher MRs than 
other countries. The period 3 shows a relatively significant increase in 
COVID-19 MRs in continental Europe and North America. Although the 
highest prevalence rates in IQR were found in period 3 (Fig. 4), period 4 
was found to be the peak of mortality rates, especially in the United 
States, Brazil, South Africa, and some European countries (Fig. 5). 

Based on the WIC index, the optimum network architecture for 
modeling each type of target was identified. Nine models were chosen 
from a total of n * m (n: number of explanatory variables; m: number of 
targets) models (step 2). Further, two models with the lowest RMSEIQR 
were selected for each period, one model for prevalence and the other 
for mortality (step 4). Table 4 lists the models that were selected in step 
2 and 4. 

The ANN topologies that were selected to perform VIA are repre-
sented as bold rows in Table 4. Fig. 6 to Fig. 9 depicts the twenty most 
influential explanatory variables on COVID-19 prevalence and mortality 
for all selected periods, respectively. As can be seen, some of the 
explanatory variables were among the twenty most important variables 

across all periods (non-black horizontal bars). Most economic-related 
variables such as unemployment, gross national income (GNI) per cap-
ita, and GNI per capita growth have always been among the most 
influential explanatory variables on COVID-19 prevalence. In addition, 
other variables related to public transportation, including rail and air 
transportation, as well as surface temperature, population density, and 
urban population were among the most significant variables for cases at 
all periods. For mortality, diabetes prevalence, the number of hospital 
beds (per 1000 people), number of nurses and midwives (per 1000 
people), negative affect (negative emotions and experiences during life), 
and air transportation were the most influential explanatory variables 
for all periods. 

In addition, Table 5 lists the two most influential variables for each 
period based on the median of weights. Fig. 10 depicts the worldwide 
spatial distribution of PR-IQRs in all periods, along with the most 
influential variables on the disease prevalence. In addition, Fig. 11 
shows the spatial distribution of MRs for all countries, along with the 
most influential variables in each period. 

4. Discussion 

The outbreak of COVID-19 has adversely affected many countries 
around the world. Numerous mutations caused by the SARS-CoV-2 virus 

Fig. 4. Spatio-temporal distribution of the prevalence rates in IQR for all periods.  
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have intensified its spread, making the control of the epidemic even 
more challenging. Identifying the effective variables and their rela-
tionship with disease prevalence and mortality over time can be useful 
for controlling disease outbreak. ANNs are among the most widely used 
approaches to model this relationship, particularly as the associated 
data and computations become more readily available (Augusta et al., 
2019). 

Since the epidemic of COVID-19, as a contagious disease, is directly 
related to the geographical concept of an area, GIS can play an essential 
role in its planning, management, and modeling (Mollalo et al., 2020). 
GIS has been used in many studies to manage and plan epidemiological 
issues from spatial perspectives (Meliker and Sloan, 2011, Shrestha 
et al., 2020). It also has been consistently used to analyze health-related 
data and can be a valuable tool for analyzing the spread of disease in 
each region (Meliker and Sloan, 2011). Increasing the power of com-
puters, improving spatial analysis methods, and developing artificial 
intelligence models have led to the development of advanced and 
modern GIS applications in disease modeling and prediction (Ghayvat 
et al., 2021). Therefore, in this study, we utilized GIS technology to 
develop a spatio-temporal model for COVID-19 prevalence and 
mortality. 

Given that little space-time COVID-19 modeling has been conducted 
at the global scale, we compiled a geodatabase of potential influential 

variables on the prevalence and mortality of the disease and ranked 
relative importance of variables based on VIA methods for four periods 
of time. Our findings showed that various VIA algorithms yielded 
varying results. Although the relative importance of variables on prev-
alence and mortality changed over time, some variables were identified 
among the top 20 most relevant variables in all periods. 

Dealing with complicated interactions among variables, we applied 
ten different VIA methods to evaluate the influence of potential 
explanatory variables by optimizing the data storage, advancing the 
model interpretability, and providing a smaller number of influential 
variables without losing accuracy. VIA techniques can be implemented 
to solve the intricacy of interactions among variables on big datasets 
(Ferretti et al., 2016). For instance, these techniques were used to figure 
out how well each variable influences the COVID-19 prevalence. Dfuf 
et al. (2020) implemented a parametric and a nonparametric VIA 
method and calculated the impact of the 35 companies on the political, 
economic, and social instability captured by two highly regarded 
Spanish economic newspapers during the COVID-19 outbreak. The 
result showed that the nonparametric VIA method outperformed its 
competitors since it incorporates all the information using the entire 
distribution errors. 

Economic variables have retained their significant impact on higher 
rates of COVID-19 prevalence over time. Consistent with our findings, 

Fig. 5. Spatio-temporal distribution of MRs for all periods.  
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unemployment was found strongly correlated with the increased risk of 
disease prevalence (Jin et al., 1995). Since unemployment and poverty 
reduce people’s ability to access health facilities, unemployed people 
who are infected communicate with others in the society without being 
treated, which may increase the severity of the disease transmission. 
Another hypothesis that can explain this association is unemployed in-
dividuals and uneducated people are less likely to get vaccinated due to 
underestimating the positive impacts or overestimating the risks of 

getting vaccinated, which can cause a higher prevalence of the COVD-19 
in a society (Malik et al., 2020, Mollalo and Tatar, 2021). Some other 
studies, such as (Jin et al., 1995), have shown that unemployment and 
inadequate social welfare can increase the disease spread. 

Demographic variables were other influential variables affecting the 
COVID-19 spread. Due to the contagious nature of COVID-19, the higher 
population density and overcrowding in an area are associated with the 
greater likelihood of disease occurring (Sigler et al., 2021, Sirkeci and 

Fig. 6. The 20 most influential explanatory variables on COVID-19 a) prevalence b) mortality in the period 1.  
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Yucesahin, 2020). On the contrary, countries with a lower population 
density showed lower prevalence rates of COVID-19 in all periods, such 
as Australia and Russia. Consistent with our findings, a recent study 
(Mansour et al., 2021) shows that the higher population density rates in 
Oman could result in a higher prevalence of COVID-19. A research by 
Ahmadi et al. (2020) suggests that population density and 
intra-provincial movement are directly associated with the spread of the 
coronavirus in Iran. Other studies confirm that higher population 

density increases the chance of transmission of the virus (Coşkun et al., 
2021, Rocklöv and Sjödin, 2020) and can alter the prevalence and 
mortality rates (Bhadra et al., 2021). 

The use of public transit was persistently found significant on 
COVID-19 prevalence in all periods. A possible explanation might be 
that many people in public transportation stand together for a long time 
in a closed environment especially transportation by plane and train. As 
a result, the contagious virus can rapidly be transmitted from infected 

Fig. 7. The 20 most influential explanatory variables on COVID-19 a) prevalence b) mortality in the period 2.  
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individuals to other passengers, causing the disease to spread more 
severely. Zheng et al. (2020) showed that the infected individuals during 
the incubation period brought the disease from Wuhan, China to other 
cities and nations by using public transportation such as flights, trains 
and buses. In New York, Cordes and Castro (2020) suggested that people 
who rely on public means of transportation might be at higher risks of 

COVID-19 due to contact with other infected passengers, consistent with 
our findings. 

Regarding COVID-19 mortality, diabetes prevalence was found to be 
a significant variable in all periods. Inadequate and poor immunological 
responses to viral infections may be among the leading cause of mor-
tality in COVID-19 patients with diabetes (Critchley et al., 2018). The 

Fig. 8. The 20 most influential explanatory variables on COVID-19 a) prevalence b) mortality in the period 3.  
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increased blood sugar level in a person with diabetes can severely 
damage the beneficial intracellular bacteria, which in turn increases the 
viral binding affinity and reduces the virus removal (Muniyappa and 
Gubbi, 2020, Gazzaz, 2021). Exploring the spatial variations of 

COVID-19 in the Caribbean, Moonsammy et al. (2021) found that the 
higher prevalence of diabetes in the Caribbean could increase COVID-19 
deaths. A meta-analysis on more than 16,000 patients also found that 
diabetes in patients with COVID-19 doubled the risk of death (Kumar 

Fig. 9. The 20 most influential explanatory variables on COVID-19 a) prevalence b) mortality in the period 4.  
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et al., 2020). Consistent with our results, other researchers have shown a 
strong relationship between diabetes prevalence and COVID-19 mor-
tality (Huang et al., 2020, Guo et al., 2020). 

There were several caveats and limitations in this study that should 
be acknowledged. First, due to the worldwide distribution of this study, 
it is most likely that some countries have not provided accurate statistics 
about COVID-19 prevalence and deaths, which may bias the results. 
Another limitation of this study was associated with different lockdown 
policies and stay-at-home restrictions for each country. Some countries 
quickly began quarantine policies after the pandemic was announced 
than others that did not make any specific lockdown policy. Although 
we tried to find the most influential factors related to COVID-19 

prevalence and mortality for all countries at the same time, a study on a 
higher spatial resolution (sub-country level) can provide more reliable 
results. Despite above-mentioned limitations, the findings may help 
policymakers to track the spread of disease over time based on the most 
significant variables identified by the employed models. 

5. Conclusions 

In summary, we examined ten different VIA methods to estimate the 
relative importance of potential explanatory variables on COVID-19 
prevalence and mortality at a global scale. Due to the numerous muta-
tions of the virus, various targets were considered for modeling to 

Table 5 
The two most influential variables for each period based on median of weights classified for prevalence and mortality, separately.  

Period prevalence mortality 

Variable Median of Weights Variable Median of Weights 

Period 1 Population density 1.778 Diabetes prevalence 1.755 
GNI per capita 1.775 Hospital beds 1.675 

Period 2 Unemployment 2.11 Diabetes prevalence 1.995 
Population density 1.973 Nurses and midwives 1.778 

Period 3 Population density 1.775 Hospital beds 1.684 
Air transport, passengers carried 1.645 Negative affect 1.648 

Period 4 GNI per capita 1.721 Diabetes prevalence 1.764 
Unemployment 1.673 Hospital beds 1.688  

Fig. 10. Spatio-temporal distribution of the most influential variables on PR-IQRs for each period.  
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enhance the accuracy of the results. Our findings indicated that the 
extracted relative importance from different models by VIA methods 
varies over time. However, several variables were persistently among 
the most influential variables on the prevalence and mortality of the 
disease in all periods. Unemployment, population density, air and rail 
transportation, urban population, GNI per capita, GNI per capita 
growth, and surface air temperature were among the most significant 
variables on disease prevalence in all periods. Regarding COVID-19 
mortality, diabetes, air transportation, number of hospital beds, num-
ber of nurses, and negative affect were among the most influential 
variables. Better spatial resolution can improve the validity of the results 
in future studies. Policymakers and epidemiologists can use spatio- 
temporal analysis to monitor and evaluate COVID-19 prevalence and 
mortality concerning significant variables. 
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