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The original version of this article unfortunately contained a
mistake. Due to a typesetting error some of the figures were
omitted and figure legends were misplaced. We sincerely
apologize for the errors. The correct figures and legends can be
found below.
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Fig. 1 Impaired SM22α expression is associated with development of atherosclerosis. a, b WT (n = 10) and Sm22α−/− (n = 10) mice with or
without Ldlr−/− background (n = 10) fed Paigen diet for 8, 12, and 24 weeks, respectively. Representative images of en face ORO-stained aortas
(a), aortic sinus, aortic cross sections (b), and quantification of lesion areas are shown. c M-mode and Doppler echocardiography images
obtained from aortic arch and outflow tract of WT (n = 15) and Sm22α−/− (n = 15) mice fed Paigen diet for 12 and 24 weeks. As: outflow tract
and aortic diameter in systole; Ad: outflow tract and aortic diameter in diastole. d Identification of SMC-derived foam cells within
atherosclerotic lesion of Sm22α−/− mice (n = 6) by CD68 (blue), ACTA2 (red), and Bodipy (green). Scale bar, 20 µm. Arrows indicated foam cells,
which were VSMCs-derived. e Representative immunofluorescence of LXRα (red) and quantification of cells with nuclear LXRα in the aortic
sections from WT (n = 3) and Sm22α−/− (n = 3) mice. Scale bar, 15 µm. Data and images are representative of at least three independent
experiments. Data in a and b were analyzed by two-way and one-way ANOVA, respectively. Data in d and e were analyzed by unpaired t-test.
*p < 0.05; **p < 0.01; ***p < 0.001.
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Fig. 2 Expression and activity of LXRα is abnormal in Sm22α−/− VSMCs. a qRT-PCR and Western blot analysis of LXRα and LXRβ in WT and
Sm22α−/− VSMCs treated with LXRs agonist T090 for 0, 12, 24, 48, and 72 h, respectively, (n = 3). b qRT-PCR and western blot analysis of LXRα
in WT VSMCs with or without cholesterol loading following knockdown of SM22α (n = 3). c qRT-PCR and western blot analysis of LXRα and
SM22α expression in Sm22α−/− VSMCs transducted with Ad-GFP and Ad-GFP-SM22α for 24 h (n = 3). d Confocal microscopy images of LXRα
and LXRβ distribution in WT and Sm22α−/− VSMCs. Scale bar, 10 µm. e Immunofluorescence staining for endogenous LXRα and LXRα-GFP in
Sm22α−/− VSMCs transducted with Ad-GFP and Ad-GFP-SM22α or not. Scale bar, 10 µm. f qRT-PCR analysis of cholesterol intake (LDLR, SR-BI),
efflux genes (ABCA1, ABCG1) and sclerosis related genes (Col1α, Eln) in WT and Sm22α−/− VSMCs incubated with or without cholesterol (n =
3). g The mRNA and protein levels of ABCA1 in WT and Sm22α−/− VSMCs treated with cholesterol for 0, 12, 24, 48, and 72 h, respectively (n =
3). h ORO staining of WT and Sm22α−/− VSMCs stimulated with cholesterol for 0, 24, 48, and 72 h, respectively, and quantification of positive
ORO staining. Scale bar, 20 μm. i The binding activity of LXRα to the promoter of abca1 gene was decreased in Sm22α−/− VSMCs (n = 4). j ChIP
and RT-PCR detected LXRα binding to col1α promoter in WT and Sm22α−/− VSMCs (n = 6). k The Young’s modulus of WT and Sm22α−/− VSMCs
treated with or without cholesterol (n = 120). Data and images are representative of at least three independent experiments. Data in a, g, and
h were analyzed by Kruskal–Wallis rank sum test and two-way ANOVA. Data in b, c, f, i, and j were analyzed by unpaired t-test. N.S. not
significantly different; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

D.-D. Zhang et al.

4

Cell Death and Disease         (2021) 12:1071 



D.-D. Zhang et al.

5

Cell Death and Disease         (2021) 12:1071 



Fig. 3 Function of LXRα-ABCA1 axis is impaired in phenotypically switched VSMCs. a Heatmap of proteomic analysis between synthetic
and contractile VSMCs. b Analysis of KEGG pathway enriched by differentially expressed genes of proteomic analysis between synthetic and
contractile VSMCs. c The mRNA expression of SM22α, LXRα, and ABCA1 in WT VSMCs treated with PDGF-BB for 0, 12, 24, and 48 h, respectively
(n = 3). d Confocal microscopy images of LXRα distribution in WT VSMCs incubated with PDGF-BB for 0, 12, 24, and 48 h, respectively. Scale
bar, 10 µm. e Confocal microscopy images of LXRα and ACTA2 in arterial walls of WT mice after ligation for 0, 7, 14, and 28 days. Scale bar,
20 µm. f Quantification of each lipid class in synthetic and contractile VSMCs. Lipid classes were expressed as μmol per g protein. g Heatmap
of CEs between synthetic and contractile VSMCs. h ORO staining of WT VSMCs transducted with or without Ad-GFP-SM22α following with
PDGF-BB and/or cholesterol treatment and quantification of positive ORO staining. Scale bar, 20 μm (n = 3). i M-mode and Doppler
echocardiography images obtained from aortic arch and outflow tract of Sm22α−/− mice transducted with AAV-GFP (n = 10) and AAV-SM22α
(n = 10) fed Paigen diet for 12 weeks. As: outflow tract and aortic diameter in systole; Ad: outflow tract and aortic diameter in diastole.
j Representative images of en face ORO-stained aortas and quantification of lesion areas (n = 6). k Representative immunofluorescence of
LXRα (green) and quantification of cells with nuclear LXRα in the aortic sections from Sm22α−/− mice transducted with AAV-GFP (n = 4) and
AAV-SM22α (n = 4) fed Paigen diet for 24 weeks. Scale bar, 10 µm. Arrows indicated the distribution of LXRα. l Identification of SMC-derived
foam cells within atherosclerotic lesion of Sm22α−/− mice infected with AAV-GFP (n = 4) and AAV-SM22α (n = 4) fed Paigen diet for 24 weeks
by CD68 (blue), ACTA2 (red), and Bodipy (green). Scale bar, 25 µm. Arrows indicated foam cells which were VSMCs-derived. Data and images
are representative of at least three independent experiments. Data in c were analyzed by two-way ANOVA. Data in f, h, j, k, and l were
analyzed by unpaired t-test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Fig. 4 Nuclear import of LXRα is regulated by actin dynamics. a Fluorescence recovery after photobleaching (FRAP) studies with LXRα-GFP
to measure nuclear import. Cells were pretreated with LMB. Decreased accumulation of nuclear fluorescence indicates a lower rate of nuclear
import of LXRα-GFP in Sm22α−/− VSMCs relative to WT controls (n = 25). b Representative images of F-actin (phalloidin, red) and G-actin
(DnaseI, green) in WT and Sm22α−/− VSMCs. Scale bar, 10 μm. c, d Representative images for F-actin (phalloidin, red) and LXRα (green) in WT
and Sm22α−/− VSMCs with cholesterol loading or not (c) and in WT VSMCs treated with JPK, CytoB and after CytoB washout (d). Scale bars,
10 µm. e Western blot analysis of cytoplasmic and nuclear LXRα in WT VSMCs treated with CytoB at different time points (n = 6). Data and
images represent at least three independent experiments. Statistical analyses, unpaired t-test and Kruskal–Wallis rank sum test. **p < 0.01; ***p
< 0.001; ****p < 0.0001.
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Fig. 5 G-actin interacts with and retains LXRα in the cytoplasm, blocking LXRα binding to Importin α. a Double immunofluorescence
staining for G-actin (DnaseI, red) and LXRα (green) in WT VSMCs accompanied with treatment of JPK or CytoB and also in Sm22α−/− VSMCs.
Scale bar, 10 μm. b, c Co-immunoprecipitation of ACTA2 and LXRα (b) and LXRβ (c), respectively, in F- and G-actin fractions of WT and Sm22α−/

− VSMCs (n = 3). d Double immunofluorescence staining of G-actin (Dnase1, red) and LXRα (green) or IgG in atherosclerotic lesion in aortic
wall of Sm22α−/− mice. Scale bar, 20 μm. e Representative immunofluorescence staining for endogenous LXRα (green) and LXRα-GFP (green)
in WT VSMCs transfected with HA-ACTA2 (red, stained by anti-HA antibody) or not. Scale bar, 15 μm. f Representative immunofluorescence
staining for LXRα-GFP (green) and HA-ACTA2 (red, stained by anti-HA antibody) in HEK-293A cells. Scale bar, 10 μm. g–j Two-color STORM
images and quantification of the co-localization degree between LXRα and G-actin as well as Importin α in WT VSMCs with (h) or without (g)
CytoB treatment and Sm22α−/− VSMCs with (j) or without (i) Ad-GFP-SM22α infection (n > 10). k Co-immunoprecipitation of LXRα and
Improtin α, Improtin β or ACTA2 in WT and Sm22α−/− VSMCs with or without JPK, CytoB, PDGF-BB, and Ad-GFP-SM22α treatment (n = 3).
l Double immunofluorescence staining for Importin α (red) and LXRα (green) in WT and Sm22α−/− VSMCs as well as CytoB-treated WT VSMCs.
Scale bar, 15 μm. m Co-immunoprecipitation of LXRα and Importin α, Improtin β or ACTA2 in WT VSMCs transfected with HA-ACTA2 of
different concentration (n = 3). Data and images represent at least three independent experiments.
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Fig. 6 The C-terminal domain mediates interaction between G-actin and LXRα. a Representative immunofluorescence staining for LXRα-
GFP (green) in WT VSMCs transfected with HA-ACTA2-CTD (red) or HA-ACTA2-NT (red). Scale bar, 15 μm. b Representative
immunofluorescence staining for LXRα-GFP (green) and HA-ACTA2-CTD (red) or HA-ACTA2-NT (red) in HEK-293A cells. Scale bar, 15 μm.
c LXRα-CTD-GFP (green) or LXRα-NT-GFP (green) was transfected into Sm22α−/− VSMCs. Scale bar, 10 μm. d LXRα (-CTD, -NT)-GFP (green) and
HA-ACTA2-CTD (red) were co-expressed in HEK-293A cells. Scale bar, 10 μm. e Interaction of HA-ACTA2 (-FL, -CTD, -NT) and GST-LXRα (-FL,
-CTD, -NT) proteins analyzed by in vitro pull-down assay (n = 3). f Schematic representation of a working model which SM22α inhibits VSMC-
derived foam cell formation by blocking actin-LXRα signaling ameliorating atherosclerosis. Data and images represent at least three
independent experiments.
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