Table 1.
Nutraceutical and pharmacological potential of some seaweeds.
| Species | Compounds | Properties | References1 |
|---|---|---|---|
| Red seaweed (Rhodophyta) | |||
| Asparagopsis taxiformis | Alkaloides, flavonoids, anthraquinones, phenols, chlorophylls, halogenated compounds | Antioxidant, antiproliferative, free radical scavenging, antimethanogenesis | 1, 2, 34, 35 |
| Asparagopsis armata | Halogenated compounds | Antimicrobial, antitumor activity | 3, 35 |
| Chondria armata | Galactoglycerolipids | Antimicrobial | 4, 5 |
| Corallina pilulifera | Phlorotannins | Antioxidant and tyrosinase pathways | 6, 7 |
| Corallina tamariscifolia | Phlorotannins | Anti-inflammatory, antioxidant | 8 |
| Eucheuma cava | Phlorotannins, Lectins | Antioxidant, UV protection, Antibacterial, antiviral | 9, 10, 11 |
| Laurencia pacifica | Laurinterol, Bromophenols, Sesquiterpene | Antibacterial, antioxidant | 12, 13, 14 |
| Gracilaria spp. | Steroid, terpenoid, eiconoid | Antibacterial | 14 |
| Rhodomella spp. |
Bromophenols |
Antimicrobial activity |
14 |
| Green seaweed (Chlorophyta) | |||
| Cladophora glomerata | Chlorophylls | Antioxidant, antibacterial | 15, 16, 17 |
| Caulerpa sp. | Flavonoids, phenols, saponin | Tyrosinase inhibitor | 18 |
| Haematococcus lacustris | Carotenoids | Antioxidant, anti-inflammatory | 19, 20, 21 |
| Ulva lactuca | Chlorophylls | Antibacterial, antioxidant | 22, 23, 24 |
| Dunaliella tertiolecta |
Phenolics |
Anti-aging |
25 |
| Brown seaweed (Ochrophyta) | |||
| Ascophyllum nodosum | Phlorotannins | Anti-bacterial, inhibit rumen fermentation | 26, 27 |
| Cystoseira tamariscifolia | Phlorotannins | Anti-inflammatory | 28 |
| Ecklonia cava | Sulfated polysaccharide/Phlorotannins | Anti-viral, antioxidant, anti-inflammatory. Tyrosinase inhibition | 29, 30,31 |
| Ecklonia bicyclis | Sulfated polysaccharide | Antiviral, antioxidant, anti-inflammatory | 32, 33 |
| Himanthalia elongata | Volatile fatty acids | Antioxidant, antimicrobial | 34 |
| Laminaria digitata | Iodine | Control iodine deficiency disorders and animal weight gain | 35 |
Sources: 1 = Nunes et al. (2018), 2 = Neethu et al. (2017), 3 = Horta et al. (2019), 4 = Al-Fadhli et al. (2006), 5 = Fabrowska et al. (2015), 6 = Thomas and Kim (2013), 7 = Stengel et al. (2011), 8 = Ferreres et al. (2012), 9 = Heo et al. (2009), 10 = Ko et al. (2011), 11 = Samarakoon and Jeon (2012), 12 = Fenical (1976), 13 = Liu et al. (2011a), 14 = Kasanah et al. (2015), 15 = Spears (1988), 16 = Borowitzka (2013), 17 = Christaki et al. (2013), 18 = Demais et al. (2007), 19 = Goldberg (1943), 20 = Spears (1988), 21 = Lanfer-Marquez et al. (2005), 22 = Goldberg (1943), 23 = Spears (1988), 24 = Delaunay and Voile (2011), 25 = Norzagaray-Valenzuela et al. (2017), 26 = Wang et al. (2008, 2009a, b), 27 = Kannan et al. (2019), 28 = Ferreres et al. (2012), 29 = Robic et al. (2009), 30 = Samarakoon and Jeon (2012), 31 = Heo et al. (2009), 32 = Chizhov et al. (1999), 33 = Wijesinghea and Jeona (2012), 34 = Plaza et al. (2010), 35 = He et al. (2002).